Underlying mechanisms of biochemical oscillations

Size: px
Start display at page:

Download "Underlying mechanisms of biochemical oscillations"

Transcription

1 Underlying mechanisms of biochemical oscillations (YUGI, Katsuyuki) Kuroda Lab., The University of Tokyo

2 Electrocardiograph

3

4 Borisuk and Tyson (1998) k<1.2x10 2 sec 1 k>1.2x10 2 sec 1

5 Hes1 (Notch signalling system) mrna 2 Hirata et al. (2002) Science MAPK 2, 2006 Nakayama et al. (2008) Curr. Biol. In depth

6 Relaxation oscillator (e.g. Sel kov model) Hopf Negative feedback oscillator (e.g. Repressilator)

7 Sel kov

8 Sel kov { ẋ = v2 v 3 v1 v2 v3 F6P(y) PFK v1 = b v2 = ay + x 2 y ẏ = v 1 v 2 ADP(x) v3 =x Strogatz (1994) pp.205

9 Kennedy et al. (2007)

10 insulin Bertram et al. (2007) Corkey et al. (1988)

11 Insulin Luteinizing hormone Growth hormone ( Adrenocorticotropic hormone )

12 15 11 min 11 min insulin insulin Continuous insulin insulin glucose production µ mol/kg/min 13min 26min

13 1(MATLAB): Sel kov model { ẋ = v2 v 3 v1 v2 v3 F6P(y) PFK ADP(x) v1 = b v2 = ay + x 2 y ẏ = v 1 v 2 v3 = x Strogatz (1994) pp.205 : a = 0.06, b = 0.6 : ADP = 1.0, F6P = 1.0

14 function selkov( ) time = 0.001:1:100; s0 = [1.0, 1.0]; % Initial values param = [0.06, 0.6]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); figure; plot(t,time_course); end function dsdt = ODE(t,s,param) ADP = s(1); F6P = s(2); a = param(1); b = param(2); v1 = v2 = v3 = dsdt(1,:) = dsdt(2,:) = end

15 :F6P : ADP

16 function selkov( ) time = 0.001:1:100; s0 = [1.0, 1.0]; % Initial values param = [0.06, 0.6]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); figure; plot(t,time_course); end function dsdt = ODE(t,s,param) ADP = s(1); F6P = s(2); a = param(1); b = param(2); v1 = b; v2 = a * F6P + ADP^2 * F6P; v3 = ADP; dsdt(1,:) = v2 v3; dsdt(2,:) = v1 v2; end

17 1 David Baltimore

18 Baltimore Rockefeller Caltech

19 Baltimore

20 Hoffmann et al. (2002) Science

21 NF-κB NF-κB IκB NF-κB IKK IκB IκB NF-κB NF-κB IκB NF-κB

22 ( ) ( ) EMSA(Electrophoretic Mobility Shift Assay)

23 (feedback)

24 1

25 Phase plane ( ) [F6P] 2 x-y ẏ =0 ẋ =0 Nullcline ( ) = 0 [ADP]

26 2: Sel kov (MATLAB) ([ADP],[F6P]) 2 MATLAB

27 function selkov_phaseplane( ) time = 0.001:1:50; plot_phase_plane(time_course,param(1),param(2)); end function plot_phase_plane(time_course,a,b) figure; hold on; % plot(, ); % ADP = 0:0.1:3; F6P = ADP./ ( a + ADP.^2 ); % dadp / dt == 0 plot(adp,f6p, r ); % r red r ADP = 0:0.1:3; % d F6P / dt == 0 plot(,, ); hold off; end function dsdt = ODE(t,s,param) ( )

28 :

29 function selkov_phaseplane( ) time = 0.001:1:50; plot_phase_plane(time_course,param(1),param(2)); end function plot_phase_plane(time_course,a,b) figure; hold on; % plot(time_course(:,1),time_course(:,2)); ADP = 0:0.1:3; F6P = ADP./ ( a + ADP.^2 ); % dadp / dt == 0 plot(adp,f6p, r ); % r red r ADP = 0:0.1:3; F6P = b./ ( a + ADP.^2 ); % d F6P / dt == 0 plot(adp,f6p, r ); hold off; end

30 { ẋ = f(x, y) ẏ = g(x, y) ( x, y ) ( ẋ, ẏ ) { ẋ = x + 2y + x 2 y ẏ = 8 2y x 2 y [F6P] 2 5 (1,2) [ADP]

31 x ( ẋ, ẏ ) = ( 0, p ) [F6P] ẏ = 0 ẋ = 0 : ẏ =0 : ẏ =0 [ADP]

32 3a: Sel kov ( ) x ( ) y

33 [F6P] ẏ = 0 ẋ = 0 [ADP]

34 3b: Sel kov Sel kov figure (MATLAB) quiver meshgrid

35 : MATLAB [X,Y] = meshgrid(0.01:0.2:2, 0.01:0.2:2); DX = -X + a * Y + X.^2.* Y; DY = b - a * Y - X.^2.* Y; (X,Y) (DX,DY) quiver(x,y,dx,dy);

36 function selkov_vector_field () ( ) function ODE(t,s,param)( ) function plot_phase_plane(time_course, a, b)( ) function plot_vector_field(a,b) figure(1); [X,Y] = meshgrid( ); DX = DY = quiver( ); % (X,Y) (DX,DY) end

37

38 function selkov_vector_field () ( ) function ODE(t,s,param)( ) function plot_phase_plane(time_course, a, b)( ) function plot_vector_field(a,b) figure(1); [X,Y] = meshgrid(0.01:0.2:3, 0.01:0.2:10); DX = -X + a * Y + X.^2.* Y; DY = b - a * Y - X.^2.* Y; quiver(x,y,dx,dy); % (X,Y) (DX,DY) end

39 2 Arnold Levine

40 p53 Levine Rockefeller

41 Lev Bar-Or et al. (2000) PNAS

42 p53 Mdm2 p53 ( )

43

44 2

45 [F6P] ẏ = 0 ẋ = 0 [ADP]

46 [F6P] [F6P] [ADP] [ADP] 2

47 dx 1 dt = F 1 (x 1,,x n ) F 1 x 1 dx 1 dt = F 1 (x 1,,x n ) d dt x 1 = F 1 (x 1,,x n ). d dt x n = F n (x 1,,x n ) F 1 x 1 F 1 x n d dt x 1. x n = F 1 F 1 x n x F n x 1 F n x n x 1.. x n

48 4: Sel kov Sel kov ( MATLAB) xẋ = x ( x + ay + x2 y) y ẋ = y ( x + ay + x2 y) ( MATLAB) ( MATLAB) ( ẋ x y (MATLAB) ẏ x ẋ ẏ y )

49 MATLAB f diff(f, x); f f = -x + a * y + x^2 * y; J =[ diff(f,x), diff(f,y) ; diff(g,x), diff(g,y) ];

50 Symbolic Math ToolBox syms x y a b; % x, y, a, b x, y S = solve( -x + a * y + x^2 * y=0,'b - a * y - x^2 *y=0', 'x', 'y'); S x,y x S.x

51 J = subs(j, [a,b],[0.06,0.6]) % J a,b 0.06,0.6 A eig(a)

52 function selkov_jacobian( ) syms x y a b; S = solve(' ',' ',' ',' '); % x, y f = -x + a * y + x^2 * y; g = J = [ ; %f x,y ]; %g x,y fix = subs([s.x,s.y],[, ],[, ]) % a,b 0.06,0.6 J = subs(j, [,,,a,b],[,,0.06,0.6]) %J a,b 0.06,0.6 end %

53 fix = >> selkov_jacobian J = ans = i i >>

54 xẋ = x ( x + ay + x2 y)= 1+2xy y ẋ = y ( x + ay + x2 y)=a + x 2 xẏ = x (b ay x2 y)= 2xy ( b, b a + b 2 ) y ẏ = y (b ay x2 y)= a x 2 ( 1+2xy a + x 2 2xy a x 2 ) ( 1+ 2b2 a+b 2 a + b 2 2b2 a+b 2 a b 2 )

55 function selkov_jacobian( ) syms x y a b; S = solve('-x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); % x, y f = -x + a * y + x^2 * y; g = b - a * y - x^2 * y; J = [ diff(f,x), diff(f,y); %f x,y diff(g,x), diff(g,y) ]; %g x,y end fix = subs([s.x,s.y],[a,b],[0.06,0.6]) % a,b 0.06,0.6 J = subs(j, [x,y,a,b],[fix(1),fix(2),0.06,0.6]) %J a,b 0.06,0.6 eig(j) %

56 (Node) d x = J x dt : (attractor) : (repellor) x(t) = exp(jt) x 0 = c 1 exp(λ 1 t)v 1 + c n exp(λ n t)v n (Saddle) y y : : Stable Node Saddle x x

57 (Spiral) (Focus) y y Stable Spiral x Unstable Spiral x y (Center) (Euler s formula) Center x

58 5: Sel kov Sel kov ( ) a=0.06, b=0.6 1: Ax=λx A-Iλ =0 2x2 λ 2 -tr(a) λ+det(a)=0 2: λ τ = tr(a) = λ 1 + λ 2 Δ = det(a) =λ 1 λ 2 τ < 0 Δ > 0 τ 2 4Δ > 0

59 ( J = Δ > b2 a+b 2 a + b 2 2b2 a+b 2 a b 2 ) a,b a=0.06, b=0.6 = det(j) =a + b 2 > 0 τ = tr(j) = (a + b 2 ) a b2 a + b 2 τ 2 4Δ < 0 τ > 0

60 3

61

62 NIH

63 Q. 2hr? A. Hes1, Smad, Stat

64

65

66 ( )

67 3

68 (limit cycle) (trajectory) Center ( ) Limit cycle Center Poincaré-Bendixson Center

69 Supercritical Hopf Im λ Re λ<0 Re λ

70 Hopf Stable Spiral Unstable Spiral Unstable Spiral Hopf

71 6: Sel kov Hopf Sel kov 2 Hopf ( ) 1: a=0.14, b=0.6 2: a=0.06, b=0.6 MATLAB

72 τ = (a + b 2 ) a b2 a + b 2 a=0.06, b=0.6 τ>0 a=0.14, b=0.6 τ<0 Δ = a + b 2 > 0 τ 4 = 5(a + b 2 ) a b2 a + b 2 1,2 τ-4δ < 0

73 a=0.14, b=0.6 a=0.06, b=0.6

74 Relaxation oscillator and Negative feedback oscillator

75 2 Relaxation oscillator ( ) 2 Negative feedback oscillator ( ) 3? Bendixson

76 Bendixson D D f 1 + f 2 x 1 x 2 ( [F6P]) [F6P] + ( [ADP]) [ADP]

77 Relaxation oscillator 1 (positive) 1 negative feedback loop J = ( +?? ) ( )

78 Negative feedback oscillator 2 negative feedback oscillators ( Bendixson ) J = (?? ) ( ) 3 Bendixson

79 7: Sel kov Bendixson Sel kov > 0

80 function selkov_bendixson( ) syms x y a b; f = % ODE g = J = % ODE % f, g J J = subs(j, [a,b],[0.06, 0.6]); % a,b B = % figure(1) hold on; for i=0:0.5:3 % x for j=0:1:10 % y B_value = subs( if( B_value > 0 ) plot(i,j,'ko','markerfacecolor','w'); else plot(i,j,'ko','markerfacecolor','k'); end end end end ); % B x,y i,j

81

82 function selkov_bendixson( ) syms x y a b; f = -x + a * y + x^2 * y; g = b - a * y - x^2 * y; J = [ diff(f,x), diff(f,y); diff(g,x), diff(g,y)]; J = subs(j, [a,b],[0.06, 0.6]); % a,b B = J(1,1)+J(2,2); % figure(1) hold on; for i=0:0.5:3 % x for j=0:1:10 % y B_value = subs( B, [x,y], [i,j] ); % B x,y i,j if( B_value > 0 ) plot(i,j,'ko','markerfacecolor','w'); else plot(i,j,'ko','markerfacecolor','k'); end end end end

83 (bifurcation diagram) (phase diagram) 1 (ρ) 2 (a, b) LacY-GFP b ρ a

84 8: Sel kov ( ) b a

85 1 plot(x,y,'ko','markerfacecolor','k'); plot(x,y,'ko','markerfacecolor','w'); plot(x,y,'ko','markeredgecolor','r','markerfacecolor','r'); plot(x,y,'ko','markeredgecolor','r','markerfacecolor','w'); 1 isreal(n) real(c)

86 2 for a, b if if ( isreal(v(1)) ) OK ( ) if if( real(v(1)) < 0 )

87 function selkov_phase_diagram() figure; hold on; for a=0.01:0.01:0.15 for b=0.1:0.1:1.0 (1/2) end end end function v=jacobian( p, q ) syms x y a b; S = solve(' -x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); f = -x + a * y + x^2 * y; g = b - a * y - x^2 * y; J = [ diff(f,x), diff(f,y); diff(g,x), diff(g,y)]; fix = subs([s.x,s.y],[a,b],[p,q]); J = subs(j, [x,y,a,b],[fix(1),fix(2),p,q]); v = eig(j); end

88 (2/2) function phase_diagram( a, b ) v=jacobian(a,b); if ( isreal(v(1)) ) % v(1) v(2) v(1) if( v(1) < 0 && v(2) < 0 ) plot( ); else plot( ); end else if( < 0 ) % v(1) < 0 end end plot( ); else plot( ); end

89 function selkov_phase_diagram() figure; hold on; for a=0.01:0.01:0.15 for b=0.1:0.1:1.0 phase_diagram(a,b); end end end (1/2) function v=jacobian( p, q ) syms x y a b; S = solve(' -x + a * y + x^2 * y=0','b - a * y - x^2 * y=0','x','y'); f = -x + a * y + x^2 * y; g = b - a * y - x^2 * y; J = [ diff(f,x), diff(f,y); diff(g,x), diff(g,y)]; fix = subs([s.x,s.y],[a,b],[p,q]); J = subs(j, [x,y,a,b],[fix(1),fix(2),p,q]); v = eig(j); end

90 (2/2) function phase_diagram( a, b ) v=jacobian(a,b); if ( isreal(v(1)) ) % v(1) v(2) v(1) if( v(1) < 0 && v(2) < 0 ) plot(a,b,'ko','markerfacecolor','k'); else plot(a,b,'ko','markerfacecolor','w'); end else if( real(v(1)) < 0 ) % v(1) < 0 end end plot(a,b,'ko','markeredgecolor','r','markerfacecolor','r'); else plot(a,b,'ko','markeredgecolor','r','markerfacecolor','w'); end

91 : a, b Hopf b a

92 Sel kov Supercritical Hopf

93 Hopf! Poincaré-Bendixson

94 Negative feedback oscillator

95 Repressilator Elowitz and Leibler (2000) Nature

96 (NOT) 1 / ( 2n ) hup:// /mizutanilab3/roc_rocirc.html Repressilator 3

97 : Ring Oscillator

98 Repressilator 3 ( ) { d[mrna] α dt = α [Repressor] [mrna] n d[protein] dt = β([mrna] [Protein])

99 Phase diagram A n=2.1, α0=0 B n=2, α0=0 C n=2, α0/α=10 3 X

100 X inset

101 h -1

102 9: { d[mrna] α dt = α [Repressor] [mrna] n d[protein] dt = β([mrna] [Protein]) (laci, ci, tetr, LacI, CI, TetR) = (0.2, 0.3, 0.1, 0.1, 0.5, 0.4) α=20, α0=0, β=0.2, n=2

103 MATLAB (1/2) function repressilator( input_args ) time = 0.001:1:200; s0 = [0.2, 0.3, 0.1, 0.1, 0.5, 0.4]; % Initial values param = [20, 0, 0.2, 2]; % Constants [t,time_course] = ode15s(@(t,s) ODE(t,s,param),time,s0); plot_time_course(t,time_course); plot_phase_plane(time_course); end

104 MATLAB (2/2): function dsdt = ODE(t,s,param) laci = s(1); ci = s(2); tetr = s(3); LacI = s(4); CI = s(5); TetR = s(6); alpha = param(1); alpha_zero = param(2); beta = param(3); n = param(4); dsdt(1,:) = dsdt(2,:) = dsdt(3,:) = dsdt(4,:) = dsdt(5,:) = dsdt(6,:) = end

105

106 function dsdt = ODE(t,s,param) laci = s(1); ci = s(2); tetr = s(3); LacI = s(4); CI = s(5); TetR = s(6); alpha = param(1); alpha_zero = param(2); beta = param(3); n = param(4); dsdt(1,:) = alpha_zero + alpha / ( 1 + CI^n ) - laci; dsdt(2,:) = alpha_zero + alpha / ( 1 + TetR^n ) - ci; dsdt(3,:) = alpha_zero + alpha / ( 1 + LacI^n ) - tetr; dsdt(4,:) = - beta * ( LacI - laci ); dsdt(5,:) = - beta * ( CI - ci ); dsdt(6,:) = - beta * ( TetR - tetr ); end

107 Hopf Plan A: 2 Plan B: Repressilator 6 Plan B

108 Hopf 6 J = X X X 0 β 0 0 β β 0 0 β β 0 0 β p3 ṁ 1 p 3 = αnpn 1 3 (1 + p 2 = X 3 )2 p 3 = α 1+p n 3 + α 0 (β + 1) 2 (2X + 4) 3βX 2 < 0

109 10: Hopf β (β + 1) 2 (2X + 4) 3βX 2 < 0 β α=10, α0=0, n=2 X = αnpn 1 3 (1 + p 2 3 )2 p 3 = α 1+p n 3 ( ) α=10, α0=0, n=2 p3 = 2 p3 + α 0

110 β=0.13 β=0.14 (β+1) 2 (2X+4)-3X 2 = > 0 (β+1) 2 (2X+4)-3X 2 = < 0

111 Hill (α0) Κm

112 Toggle switch Pitchfork

113 Toggle switch Pitchfork x LacI (x) λci (y) y ẋ = ẏ = a 1+y 2 x a 1+x 2 y Gardner et al. (2000) : x y

114 y ẏ = 0 Pitchfork y y ẋ = 0 x a=2 a>2 x Stable Unstable pitchfork Stable a

115 : 1. Toggle switch a Stable Node 3 Stable Node 2 Unstable Node 1

116 : 3. y x x x 5 - ax 4 + 2x 3-2ax 2 + (1 + a 2 )x - a = x x 5 - ax 4 + 2x 3-2ax 2 + (1 + a 2 ) x - a = 0 (x 3 + x - a)(x 2 - ax + 1) = 0

117 : (1/2) 5. x 3 + ax + b = 0 3 D = - 4a 3-27b 2 D > 0 3 D = 0 D < x 3 + x - a x 3 + x - a = 0 1 a

118 : (2/2) 6. x 2 - ax + 1 x 2 - ax + 1 = 0 a > 2 2 a = 2 1 a < x (x 3 + x - a)(x 2 - ax + 1) = 0 (x 3 + x - a) 1 (x 2 - ax + 1) a = Toggle switch 0 < a < 2 a = 2 a > 2 a = 2

119 : (1/2) 8. Toggle-switch ( 1 2ay 2ax (1+x 2 ) 2 (1+y 2 ) a > 2 x 2 - ax + 1 = 0 ( a ± a 2 4 (i), a ) a ) (ii) 2 ( : Δ )

120 : (2/2) 10. x 3 + x - a = 0 x (a ) ( ) a 2 3 x = a ( 2 + a ) 2 ( ) 3 3 x (i) (ii) a = 2 x = 1 x a 0 < a < 2 0 < x < 1 a > 2 x > 1 0 < x < 1 0 < a < 2 Δ > 0 x > 1 a > 2 Δ < 0

121 : Pitchfork a x 0<a<2 a=2 a>2 x 3 + x - a = Node x 1 x 2 - ax + 1 = 0 0 x 3 + x - a = x 2 - ax + 1 = 0 1 x 3 + x - a = Node x 2 x 2 - ax + 1 = 0 2 Saddle x 1

122 1 (1/2) ẏ = 0 y = 0 (1 + x2 ) a 2x (1 + x 2 ) 2 = 2ax (1 + x 2 ) 2 x 1 3 y - y = a 1+x 2 y = 2a(1 + x2 ) 2 ( 2ax) 2(1 + x 2 ) 2x (1 + x 2 ) 4 y a = 2a(1 + x2 ){(1 + x 2 ) 2x 2x} (1 + x 2 ) 4 = 2a(1 + x2 )(1 3x)(1 + 3x) (1 + x 2 ) 4 y y 1 3 ẏ = 0 x

123 1 (2/2) ẋ = 0 y = x 2 y a ẋ = 0 y = x a ẏ = 0 x

124 2 y ẋ = 0 y a ẏ = 0 a x y ẋ = 0 x a ẏ = 0 a x

125 3 x = a y = a 1+y 2 1+x 2 x = = a ( 1+ ) 2 a 1+x 2 a(1 + x 2 ) 2 (1 + x 2 ) 2 + a 2 (1 + x 2 ) 2 x + a 2 x = a(1 + x 2 ) 2 x +2x 3 + x 5 + a 2 x = a +2ax 2 + ax 4 x 5 ax 4 +2x 3 2ax 2 + (1 + a 2 )x a =0

126 4 (x 3 + x a)(x 2 ax + 1) = 0 x 5 ax 4 + x 3 + x 3 ax 2 + x ax 2 + a 2 x a = 0 x 5 ax 4 +2x 3 2ax 2 + (1 + a 2 )x a = 0

127 x 3 + x - a = 0 D = a 2 < x 2 - ax + 1 = 0 D = a 2-4 a > 2 D > 0 2 a = 2 D = 0 1 a < 2 D < <a<2 a=2 a>2 x 3 + x - a = x 2 - ax + 1 = 0 0 x 3 + x - a = x 2 - ax + 1 = 0 1 x 3 + x - a = x 2 - ax + 1 = x=1

128 ẋ = ẏ = a 1+y 2 x 8 a 1+x 2 y xẋ = 1 y ẋ = 2ay (1 + y 2 ) 2 y ẋ = 2ax (1 + x 2 ) 2 ( 1 2ay 2ax (1+x 2 ) 2 y ẏ = 1 (1+y 2 ) 2 1 )

129 =1 = 1 4a 2 xy (1 + x 2 ) 2 (1 + y 2 ) 2 4a 2 xy (1 + x 2 + y 2 + x 2 y 2 ) 2 9-(ii) xy = (a ± a 2 4)(a a 2 4) 4 =1 =1 = 1 = 1 4a2 a 4 4a 2 (2 + x 2 + y 2 ) 2 4a 2 (2 + 4a2 8 4 ) 2 = 1 4 > 0 ( a>2) a2 τ<0, Δ>0, τ 2-4Δ>0 2

130 10 (i) 0 < a < 2 x x a = 0 x = 0 a = 2 x = 1 x a 0 < a < 2 x < x < 1 (ii) y=x =1 4a 2 xy (1 + x 2 ) 2 (1 + y 2 ) 2 = 1 4a2 x 2 (1 + x 2 ) 4 d dx =1 8a2 x(1 + x 2 ) 3 (x 1) 2 (1 + x 2 ) 4 Δ x a = 0, x = 0 Δ = 1 a = 2, x = 1 Δ = 0 0 < a < 2 1 > Δ > 0 a > 2 Δ < 0

131 11 x x 2 - ax + 1 = 0 1 x 3 + x - a = 0 x 2 - ax + 1 = 0 2 a Node Saddle

132 ? (Saddle- Node, Pitchfork) (Hopf)

133 Further readings Strogatz, S.H, Nonlinear dynamics and chaos, Perseus Books Publishing, (ISBN ) Borisuk and Tyson (1998) Fall, C.P., Marland, E.S., Wagner, J.M. and Tyson, J.J. Computational cell biology, Springer, (ISBN ) Bendixson Borisuk, M.T. and Tyson, J.J., Bifurcation analysis of a model of mitotic control in frog eggs, J. Theor. Biol. 195:69-85, 1998.

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) ( 2 (bifurcation) Saddle-Node Hopf Pitchfork 2.1 Saddle-Node( ) 2.1.1 Griffith : (bistability) ON/OFF 2 (bistability) (Stable node Stable spiral) 2 Griffith X mrna mrna X Griffith ( x y mrna ) 2.1: Griffith

More information

生化学反応系で見られる 振動現象

生化学反応系で見られる 振動現象 生化学反応系で見られる振動現象 藤井雅史東京大学黒田研 お知らせ 今日使うファイル類は http://kurodalab.bi.s.u-tokyo.ac.jp/class/summer/3/day6/kadai/ に置いてあります ( テキストエンコーディングは SJIS) 慣れてきたら自力で全部書く あるいは これまで作ったプログラムを応用して作るようにして下さい 課題が終わった人は 積極的に発展課題に取り組んで下さい

More information

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á .... R 2009 3 1 ( ) R 2009 3 1 1 / 23 : ( )!, @tkf, id:tkf41, (id:artk ) : 4 1 : http://arataka.wordpress.com : Python, C/C++, PHP, Javascript R : / ( ) R 2009 3 1 2 / 23 R? R! ( ) R 2009 3 1 3 / 23 =

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

day6.pptx

day6.pptx 生 化 学 反 応 系 で 見 られる 振 動 現 象 藤 井 雅 史 東 京 大 学 黒 田 研 お 知 らせ 今 日 使 うファイル 類 は http://kurodalab.bi.s.u-tokyo.ac.jp/class/summer/24/day6/ に 置 いてあります (テキストエンコーディングはSJIS) 慣 れてきたら 自 力 で 全 部 書 く あるいは これまで 作 ったプログラムを

More information

1 c Koichi Suga, ISBN

1 c Koichi Suga, ISBN c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2017

2017 2017 1 2 2 3 3 4 3.1?......................... 4 3.2 [5, 6]........... 5 3.2.1......... 5 3.2.2................... 6 3.2.3....... 9 3.2.4.......... 10 3.2.5....... 11 3.2.6 : phase slip [5, 8]..........

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

p12.dvi

p12.dvi 301 12 (2) : 1 (1) dx dt = f(x,t) ( (t 0,t 1,...,t N ) ) h k = t k+1 t k. h k k h. x(t k ) x k. : 2 (2) :1. step. 1 : explicit( ) : ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) implicit( ) : ξ k+1 = ξ k +h k Ψ(t k,t

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

(time series) ( 225 ) / / p.2/66

(time series) ( 225 ) / / p.2/66 338 857 255 Tel : 48 858 3577, Fax : 48 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru / / p.1/66 (time series) ( 225 ) / / p.2/66 / / p.3/66 ?? / / p.3/66 1.9.8.7.6???.5.4.3.2.1

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

(a) (b) (c) 4. (a) (b) (c) p.2/27

(a) (b) (c) 4. (a) (b) (c) p.2/27 338 8570 255 Tel : 048 858 3577 Fax : 048 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru Copyright (C) 2002, Tohru Ikeguchi, Saitama University. All rights reserved.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

角度統計配布_final.pptx

角度統計配布_final.pptx 01/1/7 1, 1 JST GFP {x 1,x,,,x n } Credit: Elowitz lab {θ 1, θ, θ 3,,, θ n } (+) EB3-GFP π π π θ+π = θ movie Shindo et al., PLoS one, 008 (+) beating Shindo et al., PLoS one, 008 Guirao et al., NCB, 010

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

II Matlab Karel Švadlenka 2018 Contents

II Matlab Karel Švadlenka 2018 Contents II Matlab 2018 5 5 Karel Švadlenka 2018 Contents 1 2 2 1 2 2.1......................................... 2 2.2...................................... 3 2.3................................... 4 2.4.............................

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Lecture note 10: II Osaka Institute of Technology

Lecture note 10: II Osaka Institute of Technology Lecture note 10: II Osaka Institute of Technology , 2002. MATLAB, 1998. 1991. G. Goodwin, et al., Control System Design, Prentice Hall, New Jersey, 2001. Osaka Institute of Technology II 2 ẋ = Ax Bu y

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

http : // ta/mathbio.html

http : //  ta/mathbio.html 2018 1 1 http : //www.f.waseda.jp/atsuko ta/mathbio.html 1 ( [1, 15]) 3 2 6 2.1 -.... 6 2.1.1............ 7 2.1.2... 7 2.1.3................. 8 2.1.4 (Enzyme Kinetics)......... 9 2.1.5 (quasi-steady state

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information