Size: px
Start display at page:

Download ""

Transcription

1 D 2009 A * 1 ( ) *1 ( )

2 D D D D D D M1 6 D D M1 M2 D D 1

3 D D 6 1/2 π D D 6 M1 M1 D2 D M1 D3 string field theory 6 D chiral perturbation D D D 90 M1 2

4 95 D 15 D D D, (, 2006), ( BP, 2009) 5, (, 2007), (, 2005) A First Course in String Theory, Barton Zwiebach (Cambridge University Press, 2004) 1, 2, Joseph Polchinski, (, 2005, 2006) society

5 3 100 D 5 10 Zwiebach A first course in string theory D 3 D A first course in string theory D Polchinski String theory 1 Becker-Becker-Schwarz 4

6 D D D D D D 1 D 2 D 1 5

7 1 30 6

8 30 7

9 m m GeV 8

10 coupling e sector e, µ, τ e µ τ u c t d s b 9

11 10 4 order naturalness consistent naturalness Naturalness coupling naturalness naturalness naturalness [1, 2, 3] ( ) (1)

12 ( ) (2) naturalness 11

13 Randall N N

14 Newton F = G m 1m 2 r 2 m 1, m 2 r G c = 1, = 1 2 M pl = 1 G [GeV] 10 2 [GeV] 1 13

15 ϕ 4 1-loop Einstein Einstein 1-loop matter [4] *2 loop [8] *2 Einstein 1-loop Veltman Les Houches [5] Einstein-Maxwell [6] Einstein-Yang-Mills [7] 1-loop 14

16 Feynman graphical t = t 0 ϕ(t 0, x i ) t = t 1 ϕ(t 1, x i ) A = e is[ϕ] = Dϕe is[ϕ]/ (3) A amplitude 2 t = t 0 t = t 1 e is[ϕ] A 2 ϕ(t 0, x i ) ϕ(t 1, x i ) 15

17 δs δϕ = 0 eis[ϕ] X i (t = t 0 ) X i (t = t 1 ) δs δϕ = 0 *3 D *3, (, 2008) 16

18 ϕ 3 λ ϕ ϕ 3 λ λ λ order graph Feynman graph ϕ 3 λ A = Dϕe i ( ϕ ϕ+λϕ 3 ) ( = Dϕe i ϕ ϕ 1 + i ) λϕ 3 + (4) (5) graph 17

19 Feynman 18

20 λ coupling λ λ { ϕ(x) Zϕ(x) Z = 1 + c1 λ + c 2 λ 2 + λ Zλ Z = 1 + c1 λ + c 2 λ 2 + Einstein Einstein (6) 19

21 10 20

22 ( ) 21

23 22

24 23

25 λ λ α = e2 4πϵ 0 c = order (α s 1) 24

26 α α 25

27 u,d λ ϕ amplitude coupling 26

28 27

29 pure Yang-Mills mass gap Yang-Mills 28

30 L 1 L QCD L QCD QCD QCD 29

31 QCD 2 m 2 = 1 α J 1/α - 1/α α origin 30

32 QCD 5 31

33 bound state 32

34 X i (t) (i = 1, 2, 3) t d 2 dt 2 Xi (t) = 0 (7) 0 t X i (t) = a i t + b i, (a i, b i ) (8) 33

35 ( 1 S = dt 2 m d d ) dt Xi dt Xi + X i (t)f i (t) (9) d 2 X i /dt 2 (dx i /dt) 2 m X i F i F i i X i (t) 0 ( ( ) ) 2 1 d S = dt 2 m dt Xi + e dxi dt A i(x i (t)) A i (X i (t)) X i (t) A i (X i ) X i e e (10) 34

36 t t τ τ σ (τ, σ) (τ, σ) X µ X µ (τ, σ) (τ, σ) world sheet ( ) X µ X µ X µ µ d µ 0 d 1 (τ, σ) parametrization X µ trajectory sweep trajectory world sheet τ τ X 0 parametrization 35

37 σ boundary condition σ 0 2π σ = 0, 2π X µ σ 0 σ X µ σ=0,2π = 0 (11) fix fix D X µ (τ, σ + 2π) X µ (τ, σ) t 2 X µ = 0 (12) world sheet Lorentz σx 2 µ 0 t 2 X µ + σx 2 µ = 0 (13) 36

38 X µ = X µ L (τ + σ) + Xµ R (τ σ) (14) boundary condition X µ = x µ + l 2 sp µ τ + il s n Z,n 0 1 n αµ ne inτ cos nσ (15) l s l s cos nσ α n µ µ µ n = 1 cos (1 σ) n = 2 n = 3 µ µ µ *4 *4 Polchinski 37

39 τ ls 2 ( ) α n µ ( m 2 (= p µ p ν η µν ) = 1 ls ) nn n (16) n>0 p µ p ν η µν flat metric contract 1 l 1 + summation nn s 2 n N n n N n 0 [11] N massless state massless state N 1 α µ 1 µ µ A µ (x) 38

40 massless identify consistent 39

41 N1 L N 1 R 1 0 L R τ + σ τ σ α µ 1 left mover αµ 1 right mover 1 0 (µ, ν) g µν massless massless m m massless boundary condition hadron effective 40

42 2.2 world sheet world sheet ( ) ( ) 2 41

43 consistent [12, 13] 1-loop 42

44 Feynman ϕ ψ ϕ ψ λ 1, λ 2, λ 3 assign ϕ ψ Feynman coupling coupling g s g s g string g s coupling constant 43

45 boundary condition 2 Feynman deformation Feynman parameter region parameter region coupling constant Feynman g s (o) o open string g s (c) coupling constant coupling g s (c) c closed string coupling constant (g s (o) ) 2 = g s (c) (17) coupling constant Feynman 44

46 consistent (duality) tree diagram consistent electron coupling, coupling top quark coupling coupling constant constraint coupling loop momentum Feynman deform class worldsheet Feynman Feynman loop loop momentum worldsheet 45

47 QCD QCD loop QCD loop QCD QCD consistent loop loop QCD 46

48 2.3 critical dimension Lorentz Lagrangian 3 2 Lagrangian Lagrangian Lagrangian

49 X µ bosonic consistent X µ ψ µ Lagrangian critical dimension N = 2 critical dimension 4 4 N = 2 d =

50 Lorentz M µ ν Lorentz M ρσ generator M µ ν generator exp Lorentz generator M µν µ, ν ϵ ρσ Lorentz M µν Lorentz generator [ M µν, M ρσ ] = i(η µρ Mνσ η νρ Mµσ η µσ Mνρ + η νσ Mµρ ) (18) M ν µ M σ ρ M Lorentz Lorentz X µ µ Lorentz Lorentz M x M x x (19) X α n µ α n µ Lorentz anomaly Lorentz anomaly Lorentz critical dimension 49

51 critical dimension parameter M µν 0 X µ 50

52 x 1, x 2 x x 2 x 2 + 2πR x 2, 51

53 ϕ 2 x 1 x 2 ϕ(x 1, x 2 ) = ϕ(x 1, x 2 + 2πR) (20) Kaluza-Klein KK KK Kaluza-Klein

54 R R R R 53

55 10 critical dimension 10 ϕ(x µ ) ( ) ϕ(x µ ) = 0, (µ = 0,, 9) (21) 4 x 4 x 9 x i x i + 2πR i (i = 4,..., 9) [ 9 ( ϕ(x µ ) = ϕ s4...s 9 (x 0, x 1, x 2, x 3 si x i ) ] ) cos + c i (22) R i s 4,...s 9 Z,s 4,...s 9 0 ϕ(x µ ) x i x i + 2πR i ( si x i ) cos + c i (23) R i c i s i s i 1, 2, 3,... ϕ s4...s 9 x 0,..., x 3 s i s i s i 0 i=4 54

56 4 µ s i i=4 R i s i s 4 s 9 10 ϕ(x µ ) ϕ s4...s massless particle s i 0 1 R 4 R 9 R i R 1 R Kaluza-Klein 1 R 55

57 4 1 R 1 R 1 R 0 Kaluza-Klein LHC 1[TeV] Tera electron Volt [m] Kaluza-Klein 10 56

58 ( ) Kaluza-Klein 1 R 1 R ( ) 1 R x 1 R 2 1 R 57

59 Kaluza-Klein 1 R 10 g MN M, N = 0, 1,..., 9 4 M, N µ, ν g µν M, N i, j g ij µ, i g µi i, j i, j bi-gravity Higgs LHC Higgs R Kaluza-Klein LHC 58

60 spherical harmonics

61 S = 1 gs 2 d 10 x gr 1 (l s ) 8 (24) 1/(l s ) 8 d 10 x 10 gr 2 1/(l s ) 8 dimensionless 1/(l s ) 8 l s Einstein-Hilbert action S = 1 d 4 x gr G ( ) G G 1 g 2 s 1 (l s ) 8 V 6 = 1 G V 6 10 S = 1 g s (25) (26) d 10 sf µν F µν 1 (l s ) 6 (27) 60

62 1 g s 1 g s 2 1 g s open string coupling 2 closed string 1 g s F µν mass dimension 2 1 l 1 s 8 l s 6 4 coupling 1 e g s ls 6 V 6 = 1 e 2 (28) 2 l s V 6 61

63 l s ( ) 3 ( GV6 e 2 ) 4 V 6 = (29) g 2 s g s V 6 V 6 = G3 g 2 se 2 (30) V 6 R V 6 (2πR) 6, R R = 1 ( ) 1 G 3 6 2π gse 2 8 (31) G g s coupling constant g s 1 g s 1 coupling constant e 1 g s order estimate 1 G Plank 1 G Plank [GeV] order 0 order fluctuation 62

64 1 R 1 G 1 G Plank [GeV] LHC 10 Kaluza-Klein Kaluza-Klein Kaluza-Klein 63

65 10 1 D 64

66

67 2 solitary particle. 66

68 h x, y h = h(t, x, y) h [ 1 ( 2 ( ) 2 ( ) ] 2 v t) h + (h ) 0 (32) x y h 2 ϕ 4 h h kinetic term x, y, t argument 67

69 h h h h ϕ ( ) h(x, y, t) x y y x y 68

70 ϕ ϕ 3 kinetic term term λ λ ϕ ϕ ϕ 1/λ ϕ ϕ = 1 λ ϕ λ S = 1 λ 2 d 4 x( µ ϕ µ ϕ + ϕ3 ) (33) 1/λ 2 λ action overall λ 1/λ 2 action 1/λ 2 69

71 70

72 (1 + 1) ϕ explicit ϕ 4 V (ϕ) = λ 4 ) 2 (ϕ 2 + m2 (34) λ ϕ 4 ϕ 2 ϕ 4 ϕ 2 m 2 ϕ 4 λ ( ) ϕ = 0 ϕ = 0 ϕ ϕ 4 ϕ 2 ϕ ϕ ϕ ϕ 71

73 72

74 ϕ ϕ = 0 73

75 m 2 m 2 m m 2 (p57 ) ϕ = m m λ ϕ = λ ϕ ϕ 2 2 ϕ 2 ϕ ϕ 74

76 m 2 m 2 = E 2 p 2 m 2 m 2 < 0 p 2 = 0 v = p E m 2 2 ϕ ϕ = m λ + ϕ (35) ϕ m 2 consistent 75

77 x 0 ϕ cl (x 1 ) x 1 x 1 = p57 x 1 = + configuration x 1 = X 1 ( p59 ) x 1 ϕ ( p59 ) ϕ x 1 76

78 W x 1 -ϕ p59 p59 p59 77

79 ϕ cl tanh tanh argument x 1 X 1 tanh 1 +1 interpolate ( ) ( ) 78

80 x 1 Ax 1 + Bx 0 A B A 2 B 2 = 1 x 1 = X 1 exp M1 ( ) ( ) 79

81 ( ) ( ) λ QCD N = 2 SQCD [14, 15] constraint λ 80

82 (1 + 1) x 1 (1 + 2) x 1 y 1 y (1 + 3) x 1 x 2 x 3 81

83 ϕ 4 (1 + 1) trajectory (1 + 0) (1 + 2) sweep (1 + 1) (1 + 3) p62 membrane sweep (1 + 2) world volume( ) (1 + 4) (1 + p + 1) p p world sheet world volume (1 + p) p p p 1 + (p + 1) (1 + 4) p = 3 (1 + 3) 3 82

84 Kaluza-Klein Kaluza-Klein Kaluza-Klein R Kaluza-Klein

85 1 + 4 Kaluza-Klein ϕ cl = m [ ] m λ tanh (x 4 X 4 ) 2 x x 4 x 0 x 3 x 4 x 4 X x 4 x 0 x 3 ϕ cl X 4 X 4 x 0 x 3 kinetic term m X 4 ϕ cl m X 4 ϕ cl X4 =0 tanh X 4 (36) 84

86 [ ( 0 ) 2 + ( 1 ) 2 + ( 2 ) 2 + ( 3 ) 2] X 4 (x 0, x 1, x 2, x 3 ) = 0. (37) X 4 x 0 x 1 x 2 x massless particle massless moduli approximation massless X 4 85

87 X 4 X 4 ( ) x X 4 = X 4 (x 0, x 1, x 2, x 3 ) ( ) x 0 x 3 3 X 4 X 4 X 4 ϕ cl = m [ ] m λ tanh (x 4 X 4 ) (38) 2 X 4 X 4 tanh ϕ cl = m λ tanh m 2 x 4 m 2 2λ 1 [ ]X 4 + (39) cosh 2 m 2 x 4 X 4 = 0 tanh cosh 2 x 4 = 0 86

88 X 4 cosh 2 x 4 = 0 X 4 0 X 4 ϕ X 4 massless ϕ 4 massless massless X 4 X 4 massless global massless particle massless 87

89 D D D Kaluza-Klein Kaluza-Klein C 88

90 ϕ X 4 massless massive [16] ϕ cl δϕ δϕ cosh 2 sinh cosh 2 ψ ψ ϕ 4 3 m = 2 m massless massive ψ ψ [ ] [ ] ϕ = ϕ cl + δϕ sinh m 2 x 4 / cosh 2 m 2 x 4 *5 D *5 δϕ(x 0, x 1, x 2, x 3, x 4 ) = Y (x 4 )ψ(x 0, x 1, x 2, x 3 ) Y (x 4 ) 1 Schrödinger 89

91 constraint 90

92 D massless ϕ vortex

93 {, } ϕ { m, m } λ λ (40) x 1 ± {+, } {( ), ( )} ϕ x 1 non trivial + x x 2 2 = r r S 1 S 1 92

94 ϕ 4 x 1 x 2 ϕ ϕ 1 ϕ 2 λ m 2 ϕ 1 ϕ 2 ϕ 1 ϕ 2 V (ϕ 1, ϕ 2 ) = λ 4 ) 2 ((ϕ 1 ) 2 + (ϕ 2 ) 2 + m2 (41) λ m 2 (ϕ 1 ) 2 + (ϕ 2 ) 2 = ( ) S 1 S 1 S 1 93

95 ϕ 2 ϕ 1 + iϕ 2 ϕ 1 ϕ 2 action ϕ 1 = ( ), ϕ 2 = 0 (42) W 94

96 0 S 1 S 1 S

97 ϕ 4 anti-vortex 96

98 tanh 0 static kinetic term term ϕ 0 ϕ notation ( ( 1 ) 2 + ( 2 ) 2) ϕ λϕ ) ( ϕ 2 + m2 = 0 (43) λ ansatz ansatz ϕ(r, θ) = f(r)e iθ (44) ϕ r f(r) e iθ { x1 = r cos θ x 2 = r sin θ (45) n e inθ f(r) f(r) r 97

99 f(0) = 0 r = 0 0 ϕ r f(r) e iθ e iθ θ ϕ S 1 S 1 minimize θ linear e iθ 98

100 θ 2 r 2 θ 2 ansatz f f + 1 r f 1 ( ) r 2 f f f 2 + m2 λ = 0 (46) tanh mathematica tanh 99

101 ( r ϕ) 2 ( θ ϕ) 2 θ 1/r 2 ϕ θ ϕ e iθ θ 0 1/r 2 ϕ r r 1/r 2 r 1/r r log r ϕ φ φ φ(x) ϕ couple ϕ µ ϕ φ µ ϕ(x) µ ϕ(x) iea µ (x)ϕ(x) (47) 100

102 A µ (x) A µ (x) A µ (x) + µ φ (48) combination D µ ϕ φ φ(x) A µ (x) A µ (x) ϕ 4 couple couple 101

103 propagate ( 1 S = d 3 x 4 F µνf µν + 1 ) 2 (D µϕ) D µ ϕ + V (ϕ) ϕ 4 ( θ ϕ) 2 ( θ ia θ )ϕ θ A θ A θ boundary condition φ A θ A θ r 0 (49) 102

104 A θ 0 A θ θ r 0 θ A θ r 0 A θ r A θ r F 12 nonzero F 12 F rθ rθ A θ r A θ r 103

105 A θ r r 0 r nonzero F 12 x 3 3- nonzero 104

106

107 Z µ Z µ massless Z µ Z µ ϕ ϕ ϕ kinetic term ϕ ϕ = m λ A µ mass term Z µ Z µ ϕ LHC ϕ (Higgs) Z µ ϕ Z Z fluctuation δϕ 106

108 ϕ 107

109 QCD QCD electric-magnetic duality dual Meissner effect 108

110 QCD ( ) mass finite ( ) 1/r log r log r = 0 r ϕ A µ log r ϕ log r consistent particle 109

111 3.4 ϕ magnetic monopole

112 ϕ ϕ 1, ϕ 2, ϕ 3 V (ϕ 1, ϕ 2, ϕ 3 ) = λ 4 ) 2 ((ϕ 1 ) 2 + (ϕ 2 ) 2 + (ϕ 3 ) 2 + m2 (50) λ m 2 S 1 S 2 3 S π 2 (S 2 ) = Z 111

113 ϕ ϕ(x) S 2 action 2 non-abelian 112

114 M

115 ϕ 1, ϕ 2, ϕ 3 M ϕ 1, ϕ 2, ϕ 3 M SO(3) SO(3) SO(3) M T M det M ϕ 1 + iϕ 2 e iϕ ϕ e iϕ 1 + iϕ M 1 + i 114

116 M M = 1 + iϵt M T T T T + T = 0, trt = 0 M real M T M = 1 det M = 1 T T T 1, T 2, T 3 M 1 M 2 M 2 M 1 exponential [T i, T j ] iϵ ijk T k couple W ±, Z 115

117 S 2 0 S 2 116

118 GUT W ± Z

119 118

120 coupling [GeV] anti- 119

121 g 1/e e g e g 120

122 D ( ) divergence 0 Maxwell ( ) divergence 0 ( ) 1 121

123 4 D 4.1 D ϕ 4 Einstein-Hilbert Maxwell g µν (x) 10 µ, ν 0 9 ( ) g µν η µν (x) 122

124 123

125 10 [17] 124

126 i E i = 0 E i exi r 3 r = 0 F i0 E i 0 A 0 = e r 125

127 Einstein-Hilbert Einstein Einstein matter ( g 00 = 1 2Gm ) r, g rr = ( 1 2Gm ) 1 (51) r g 00 A 0 1 r Schwarzschild g 00 1 r 126

128 r ±1 r 1 r r = 2Gm g 00 = 0 r Schwarzshild 127

129 128

130 2Gm 10 2 kg G G = [m 3 s 2 kg 1 ] Gm Gm 10 8 [m 3 s 2 ] 1 Gm c [m] Gm c 1[cm] 1cm 2 129

131 130

132 4.2 D D D D D *6 10 µ fix c µ X µ (τ, σ) σ 0 2π c µ 2 D *6 Polchinski Ref.[18] D 131

133 D D artificial 132

134 10 Neumann Dirichlet µ 0 p p p x i x i = c i D D Dirichlet D membrane Dirichlet Dirichlet D p D Dp Dp p p (pea) (brain) p p Dp 133

135 D D 10 A µ 10 µ D D x 0,, x p p + 1 A µ x 0 x 9 x 0 x p A µ µ µ 0 p p p Kaluza-Klein Kaluza-Klein reduction A µ 10 A µ p

136 A µ Φ i D Φ i Φ i Dp 10 Φ i ( p)φ 2 i = 0 i Dp X 4 X 4 4 i x 0 x 3 Φ x 0 x p 135

137 D D D D D D D D Dp p p p p 1 p 0 Polchinski [19] 136

138 Polchinski D D Polchinski D D D D D D 137

139 4.3 D D D D D Dp A µ Φ i x 0 x p Maxwell d p+1 x p + 1 Dp 138

140 D D D Dp σ = 0 2π A µ Φ i A (1,1) µ, A (2,1) µ, D 139

141 F µν F µν A µ 1, σ 1, σ 2, σ 3 140

142 [ 1 2 σ i, 1 2 σ j] = iϵ ijk 1 2 σ k SO(3) σ 1, σ 2, σ 3 D p + 1 SO(3) + Maxwell + D consistency [ 1 4 F µνf µν + ] D 1 1, ,

143 Φ i Φ i D Φ i A µ A µ Φ i 10 Dirichlet A µ Φ i Gauge-Higgs unification consistency D 142

144 143

145 5 D section section 2 elementary C 144

146 5.1 D contribute D D D D D large extra dimension model 10 [20] 145

147 m 1, m 2 1 r 2 1 r 1 r divergence 0 harmonic function r 1 r 1 r r 4 + n n+1 M pl(4+n) 4 + n n + 2 V (r) 1 1 r n+1 M pl(4+n) n + 2 n = 0 4 reduce 2 consistent n (extra dimension) Kaluza-Klein R 146

148 R r R 4 r R 4 1 r 1 r n+1 consistent V (r) = m 1m M pl(4+n) R n r 1 r n+1 1 R n 1 r r = R r 1 r 2 (52) M 2 pl = M n+2 pl(4+n) Rn (53) (52) 2 147

149 W weak 10 2 [GeV] [GeV] (53) M pl(4+n) weak M pl 10 3 [GeV] LHC M pl(4+n) M pl(4+n) 10 3 [GeV] (53) R R n 19 [m] (54) GeV 148

150 n = effective n = 1 R [m] n = r 10 3 [m] [22] * [m] 1[mm] 10 3 [m] 1[mm] *7 Extra Dimensions O(10 1 ) [mm] 149

151 1[mm] bound improve 1[mm] 1[mm] D D D D matter mm 150

152 drastic LHC LHC LHC LHC 10 2 [kg] 1[cm] Planck Planck 10 3 [GeV] Schwarzschild 151

153 Gm combination G Planck 10 3 [GeV] Planck 2 1 G 3 Schwarzschild Schawarzschild Schwarzschild 1[cm] 3 Schwarzschild LHC Schwarzschild Schwarzschild 152

154 153

155 matter Hawking Hawking [21] Hawking LHC Schwarzschild matter LHC Hawking Hawking Hawking Hawking Hawking 154

156 Hawking LHC ( ) ( ) ( ) ( ) assign ( ) D D ( ) D D matter D 155

157 Planck weak mm mm 10 4 [ev] M pl M pl 2 R 10 4 [ev] weak 1 - [23, 24] 1 n 1 x 4 x

158 5 5 g MN (x µ, x 4 ) = e 2kx4 e 2kx4 e 2kx4 e 2kx4 1 (55) x 4 1 x 0 x 3 x 4 exponential entry 5 Einstein 5 5 Einstein-Hilbert Kaluza-Klein - matter x 4 matter x 4 = const x 4 = const

159 x 4 = c matter Higgs S = d 4 x(dx 4 ) [ det(g) δ(x 4 1 c) 2 gmn M ϕ N ϕ 1 ) 2 ] (ϕ 4 λ 2 + m2 λ 2 (56) δ x 4 = c matter consistent contract volume δ δ localize 158

160 x 4 δ ϕ = ϕe kc ϕ canonical normalize 1/2 det(g) det(g) g MN ϕ 1/2 normalize 1/2 normalize potential term ϕ m2 λ factor ϕ = m λ e k ( ) factor factor warp factor warp exponential exponential exponential exponential k 1 c kc 10 exponential e kc factor ϕ weak Planck exponential 159

161 log exponential 2 D motivate matter

162 A µ D D D D 161

163 D x 1, x 2, x 3 x 4, x 5,, x 9 extra dimension S 1 Kaluza-Klein 3 shrink matter 3 2 singlet matter bifundamental bifundamental matter 2 ( (i) ) 3 ( (ii) ) 162

164 (i) (ii) (i) 2 (ii) 3 bifundamental 2 D D bifundamental matter matter bifundamental matter D 1 Higgs A,B,C 3 3 string string tension string 2 string sweep string 3 matter content D 5 consistent consistency 1 D ( ) - 2 warp factor suppress suppress ( ) confusing 1 1 matter matter matter matter Planck matter matter matter 163

165 Planck consistent ( ) Planck 10 3 [GeV] GUT [GeV] ( ) D GUT D matter GUT motivation SU(3), SU(2), U(1) coupling 1 coupling 3 motivation rank matter D matter D GUT coupling unification coupling 1 coupling coupling GUT coupling 1 matter GUT D GUT D GUT matter constraint ( ) D low energy effective theory matter ( ) ( p.124 D ) ( ) (RS ) ( ) extra dimension 4 ( ) D3 low energy theory Yang-Mills ( ) 164

166 D scalar Kaluza-Klein mode couple covariant (RS) fluctuation - 4 ( ) Yukawa D Yukawa ( ) D matter content naive matter Yukawa Yukawa *8 Yukawa *8 Ref.[25] 165

167 5.2 QCD QCD SU(3) 3 3 Yang-Mills QCD QCD QCD kinetic term commutator 166

168 167

169 2 3 SU(3) singlet singlet 3 3 singlet 3 3 singlet singlet Regge linear Regge trajectory J 2 QCD 168

170 mass string mass ( m 2 = 1 ls ) nn n (57) n>0 N n 0 tachyon 1 α n µ oscillator N = 1 N = 0 scalar N α µ µ µ m 2 Regge trajectory QCD picture 1 α QCD QCD 169

171 2 L L QCD 170

172 linear 1 L linear 171

173 / D / / D / / D D QCD / *9 / QCD section confirm string QCD / D3 D3 N D3 Dirichlet boundary condition SU(N) N N D *9 / Ref.[26] Ref.[27, 28] 172

174 equality D D QCD N = 3 QCD 10 equality 1 2 / statement 10 [29] 1 173

175 * [30, 31] constraint constraint constraint SU(N) N N NgY 2 M λ t Hooft coupling λ constraint constraint coupling constant N N SU(N) N coupling constant λ t Hooft N [34] *10 / [32, 33] 174

176 t Hooft t Hooft λ weak λ QCD QCD 10 N QCD N = 3 N = 3 N = n = 1 n = 2 n = n = 0, 1, statement statement N t Hooft N QCD SU(3) 3 N N spoil N QCD N = 3 QCD QCD N 175

177 3 10 g 00 g 99 0, 1, 2, R4 r r 3 4 x 4 R 3 D N D R 4 N g s l s N SU(N) D3 r 0 f(r) 1 R4 r f(r) 4 g 00 g 33 r2 R 2 g rr R2 r exponential 2 5 D

178 Planck l p 0 Planck 1 l s 1 α α l 2 s l s 0 2 Planck l p Planck 10 1 l = 1 1 p 2 gs 2 l s 8 (i) 3 R l s R R = (4πg s N) 1 4 l S g s gy 2 M open string coupling 2 closed string coupling NgY 2 M (= λ) 1 t Hooft coupling (ii) l p R l p R N

179 anti linear SU(3) 3 3 fundamental 3 D3 D3 string D3 string QCD SU(3) / D3 178

180 string bulk / [35, 36] 3 anti L 1 L 1 1 L SU(3) superpartner QCD QCD 179

181 D3 D4 x 4 D4 effective [37] Kaluza-Klein massless SUSY massless D4 4 anti V (L) L 180

182 / QCD string tension 1 α Regge Regge / N QCD 181

183 / [38, 39, 40, 41, 42] [43, 44] [45, 41] [46, 47] [48, 49, 50] [51, 52, 53] * 11 / SU(3) N N 3 1 N QCD map *11 Ref.[26] Ref.[54] [55] [41] AdS/CFT QGP Ref.[56] Ref.[57] AdS/CFT 182

184 6 D LHC 1 statement 5 ( ) D4 string tension ( ) 183

185 vector ρ mass 1 ( ) non-planar 1 N 90 2 ( ) pure Yang-Mills non-planar 1 N suppress N 1 N correction N 3 3 N 2 [1] P. Minkowski, Mu E Gamma At A Rate Of One Out Of 1-Billion Muon Decays?, Phys. Lett. B 67, 421 (1977). [2] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, In Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, Feb 1979, edited by O. Sawada and A. Sugamoto (KEK ) [3] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors And Unified Theories, in Supergravity, Proceedings of the Workshop, Stony Brook, NY, 1979, edited by P. van Nieuwenhuizen and D. Freedman (North-Holland, Amsterdam, 1979) [4] G. t Hooft and M. J. G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A 20, 69 (1974). [5] M. J. G. Veltman, Quantum Theory Of Gravitation, SPIRES entry In *Les Houches 1975, Proceedings, Methods In Field Theory*, Amsterdam 1976, [6] S. Deser and P. van Nieuwenhuizen, One Loop Divergences Of Quantized Einstein-Maxwell Fields, Phys. Rev. D 10, 401 (1974). [7] S. Deser, H. S. Tsao and P. van Nieuwenhuizen, One Loop Divergences Of The Einstein Yang-Mills System, Phys. Rev. D 10, 3337 (1974). [8] M. H. Goroff and A. Sagnotti, The Ultraviolet Behavior Of Einstein Gravity, Nucl. Phys. B 266, 709 (1986). [9] M. B. Green, J. H. Schwarz and E. Witten, SUPERSTRING THEORY. VOL. 1: INTRODUC- TION, Cambridge, Uk: Univ. Pr. (1987) 469 P. (Cambridge Monographs On Mathematical Physics) [10] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge, UK: Univ. Pr. (1998) 402 P. [11] A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20, 5513 (2005) [arxiv:hep- 184

186 th/ ]. [12] S. Mandelstam, The n loop string amplitude: Explicit formulas, finiteness and absence of ambiguities, Phys. Lett. B 277, 82 (1992). [13] N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 0409, 047 (2004) [arxiv:hep-th/ ]. [14] N. Seiberg and E. Witten, Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)] [arxiv:hepth/ ]. [15] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD, Nucl. Phys. B 431, 484 (1994) [arxiv:hep-th/ ]. [16] R. F. Dashen, B. Hasslacher and A. Neveu, Nonperturbative Methods And Extended Hadron Models In Field Theory. 2. Two-Dimensional Models And Extended Hadrons, Phys. Rev. D 10, 4130 (1974). [17] G. T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360, 197 (1991). [18] J. Polchinski, Lectures on D-branes, arxiv:hep-th/ [19] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75, 4724 (1995) [arxiv:hep-th/ ]. [20] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429, 263 (1998) [arxiv:hep-ph/ ]. [21] S. W. Hawking, Particle Creation By Black Holes, Commun. Math. Phys. 43, 199 (1975) [Erratumibid. 46, 206 (1976)]. [22] K. Nakamura et al. (Particle Data Group), Review of particle physics, J. Phys. G 37, (2010) [23] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83, 3370 (1999) [arxiv:hep-ph/ ]. [24] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83, 4690 (1999) [arxiv:hep-th/ ]. [25] T. Higaki, N. Kitazawa, T. Kobayashi and K. j. Takahashi, Flavor structure and coupling selection rule from intersecting D-branes, Phys. Rev. D 72, (2005) [arxiv:hep-th/ ]. [26] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323, 183 (2000) [arxiv:hep-th/ ]. [27] I. R. Klebanov, TASI lectures: Introduction to the AdS/CFT correspondence, arxiv:hepth/ [28] J. M. Maldacena, Lectures on AdS/CFT, arxiv:hep-th/ [29] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arxiv:hep-th/ ]. [30] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428, 105 (1998) [arxiv:hep-th/ ]. [31] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998) [arxiv:hepth/ ]. [32] G. t Hooft, Dimensional reduction in quantum gravity, arxiv:gr-qc/

187 [33] L. Susskind, The World As A Hologram, J. Math. Phys. 36, 6377 (1995) [arxiv:hep-th/ ]. [34] G. t Hooft, A PLANAR DIAGRAM THEORY FOR STRONG INTERACTIONS, Nucl. Phys. B 72, 461 (1974). [35] S. J. Rey and J. T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22, 379 (2001) [arxiv:hep-th/ ]. [36] J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80, 4859 (1998) [arxiv:hep-th/ ]. [37] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505 (1998) [arxiv:hep-th/ ]. [38] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 0307, 049 (2003) [arxiv:hep-th/ ]. [39] E. Witten, Baryons and branes in anti de Sitter space, JHEP 9807, 006 (1998) [arxiv:hepth/ ]. [40] D. J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev. D 58, (1998) [arxiv:hep-th/ ]. [41] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113, 843 (2005) [arxiv:hep-th/ ]. [42] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114, 1083 (2005) [arxiv:hep-th/ ]. [43] K. Hashimoto, Holographic Nuclei, Prog. Theor. Phys. 121, 241 (2009) [arxiv: [hep-th]]. [44] K. Hashimoto, T. Sakai and S. Sugimoto, Nuclear Force from String Theory, Prog. Theor. Phys. 122, 427 (2009) [arxiv: [hep-th]]. [45] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge / gravity duals, Phys. Rev. D 69, (2004) [arxiv:hepth/ ]. [46] G. Policastro, D. T. Son and A. O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87, (2001) [arxiv:hep-th/ ]. [47] D. Teaney, Effect of shear viscosity on spectra, elliptic flow, and Hanbury Brown-Twiss radii, Phys. Rev. C 68, (2003) [arxiv:nucl-th/ ]. [48] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 0607, 013 (2006) [arxiv:hep-th/ ]. [49] S. S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74, (2006) [arxiv:hep-th/ ]. [50] H. Liu, K. Rajagopal and U. A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97, (2006) [arxiv:hep-ph/ ]. [51] C. Csaki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 9901, 017 (1999) [arxiv:hep-th/ ]. [52] R. C. Brower, S. D. Mathur and C. I. Tan, Glueball Spectrum for QCD from AdS Supergravity Duality, Nucl. Phys. B 587, 249 (2000) [arxiv:hep-th/ ]. [53] K. Hashimoto, C. I. Tan and S. Terashima, Glueball Decay in Holographic QCD, Phys. Rev. D 77, (2008) [arxiv: [hep-th]]. [54] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Eur. Phys. J. A 35, 81 (2008) [arxiv:

188 [hep-th]]. [55] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 0206, 043 (2002) [arxiv:hepth/ ]. [56] D. T. Son and A. O. Starinets, Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arxiv: [hep-th]]. [57] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, (2010) [arxiv: [hep-th]]. 187

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T Yang-Mills 50 E-mail: kugo@yukawa.kyoto-u.ac.jp 2004 Yang-Mills 50 2004 Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge Theory O Raifeartaigh [1] I, II, III O Raifeartaigh

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

main.dvi

main.dvi Ver. 1.50 2001 ( ) 1 4 2 Effective Theory 5 2.1 Effective theory... 5 2.2 massless 2-flavor QCD... 5 2.3..................... 9 2.4 Standard model... 10 2.5... 11 2.6... 13 3 Supersymmetry 15 3.1 Supersymmetry...

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

( ) : (Technocolor)...

( ) : (Technocolor)... ( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

余剰次元のモデルとLHC

余剰次元のモデルとLHC 余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

500 6 LHC ALICE ( 25 ) µsec MeV QGP

500 6 LHC ALICE ( 25 ) µsec MeV QGP 5 6 LHC ALICE shigaki@hiroshima-u.ac.jp chujo.tatsuya.fw@u.tsukuba.ac.jp gunji@cns.s.u-tokyo.ac.jp 3 ( 5 ) 5. µsec MeV QGP 98 RHIC QGP CERN LHC. LHC ALICE LHC p+p RHIC QGP ALICE 3 5 36 3, [, ] ALICE [,

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

重力と宇宙 新しい時空の量子論

重力と宇宙 新しい時空の量子論 Summer Institute at Fujiyoshida, 2009/08/06 KEK/ Conformal Field Theory on R x S^3 from Quantized Gravity, arxiv:0811.1647[hep-th]. Renormalizable 4D Quantum Gravity as A Perturbed Theory from CFT, arxiv:0907.3969[hep-th].

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

Muon g-2 vs LHC (and ILC) in Supersymmetric Models Muon g-2 vs LHC (and ILC) in Supersymmetric Models Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) 0.3 0.2 0.1-1.0-0.5

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

スライド タイトルなし

スライド タイトルなし 006 8 (g cm -3 ) 1 ~10-8 cm ~10-1 cm 10 14 (n) 10 15 ~10-13 cm (p) (q) RGB uds... (contd.) 0 ~ fm np nn,pp (contd.) 1 GeV 100 GeV 1 TeV RI FAIR GSI RHIC BNL LHC CERN (contd.) T < 9 ~ 10 K (contd.) (k B

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

non-gaussianities de Sitter space non-gaussianities N. Arkani-Hamed, J. Maldacena [arxiv: v1[hep-th]] T. Noumi, M. Yamaguchi, D. Yokoyama [ar

non-gaussianities de Sitter space non-gaussianities N. Arkani-Hamed, J. Maldacena [arxiv: v1[hep-th]] T. Noumi, M. Yamaguchi, D. Yokoyama [ar 64 2018 8 6 8 11 @ 1 2018 8 7 ( ) 1.1 1 (19:00-22:15) 1.1.1 ( ) 1.1.2 ( ) MSSM MSSM 1.1.3 ( ) ON ANOMALOUS ELECTROWEAK BARYON-NUMBER NON-CONSERVATION IN THE EARLY UNIVERSE (review) ( ) 100 GeV GUT 1.1.4

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

Supersymmetry after Higgs discovery

Supersymmetry after Higgs discovery Supersymmetry after Higgs discovery Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) Congratulations!!! 2012. July 4 2013. October 8 R. Brout (1928-2011) 0.3 0.2 0.1-1.0-0.5 0.5 1.0-0.1-0.2

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

Bose-Einstein Hawking   Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, Bose-Einstein Hawking E-mail: moinai@yukawa.kyoto-u.ac.jp Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, 3] Hawking Hawking 6nK Hawking Hawking 3K Hawking Hawking

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

b.dvi

b.dvi , 0 1 2 1.1 [2, 3] : : : : : : : : : : : : : : : : 3 2, 6 2.1 : : : : : : : : : : : : : : : 7 2.2 : : : : : : : : : : : : : : : : : : : 15 2.3, : : : : 18 3 23 4 31 5 35 6 46 6.1 Borel. : : : : : : : :

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1 LHC Higgs B054347 1 10 W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1 1 4 6.1................... 6.................... 7.3.................. 8.4.......................... 9 3 10 3.1..............................

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0 08 p. 8 4 k B log g() S() k B : Boltzmann T T S k B g g heat bath, thermal reservoir... 4. I II II System I System II II I I 0 + 0 const. (4 85) g( 0 ) g ( )g ( ) g ( )g ( 0 ) (4 86) g ( )g ( 0 ) 0 (4

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

pptx

pptx Based on N. Nagata, S. Shirai, JHEP 1403 (2014) 049. Ø Ø Y. Okada, M. Yamaguchi, T. Yanagida (1991), H. E. Haber, R. Hempfling (1991) J. R. Ellis, G. Ridolfi, F. Zwirner (1991) Scalar Par cles Gravi no

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

nakayama.key

nakayama.key 2017/11/1@Flavor Physics Workshop 2017 Contents CP 1932 10 4 p + p! p + p + p + p P. Blasi, 1311.7346 d d. 10 Gpc 10 0 Cohen, De Rujula, Glashow (1997) d B0 Flux [photons cm -2 s -1 MeV -1 sr -1

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information