2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

Size: px
Start display at page:

Download "2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il"

Transcription

1 1 1.1 Robertson-Walker [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) sin 2 χ = dt 2 + a 2 (t) dχ 2 + χ 2 (dθ 2 + sin 2 θdφ 2 ) = dt 2 + sinh 2 χ a 2 (t) (1 + K 4 r2 ) [d r 2 + r (dθ 2 + sin 2 θdφ 2 )] = dt 2 + a 2 (t) [dx 2 + dy 2 + dz 2 = dt 2 + a 2 (t)γ ij dx i dx j r 2r Kr 2 +1 K = 0 1 (1.1) K(xdx + ydy + ] zdz)2 1 K(x 2 + y 2 + z 2 )

2 2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il γ jk ) (1.3) (3) R = 6K a 2 (t) (1.4) K = ±1 a(t) R curv (t) 1 (1.1) 1.2 (χ 1, 0, 0) d(t) = χ1 0 gχχ dχ = a(t)χ 1 (1.5) v(t) d(t) = ȧ(t)χ = ȧ(t) d(t) H(t)d(t) (1.6) a(t) v = Hd a(t) H H 1 0 H 0 = 100h km/s/mpc h 0.7 1Mpc 1pc = 3.26 Mpc

3 1.3 3 null geodesic ds 2 = 0 (χ 1, 0, 0) t 1 t 0 ds 2 = dt 2 + a 2 (t)dχ 2 = 0 t0 t 1 dt χ1 a(t) = dχ = χ 1 0 t 1 + δt 1 t 0 + δt 0 t0+δt 0 t 1 +δt 1 dt a(t) = χ 1 t0 +δt 0 t 0 dt t1 +δt a(t) = 1 dt t 1 a(t) δt 0 a(t 0 ) = δt 1 a(t 1 ) λ 0 = δt 0 = a(t 0 > 1 if H > 0 (1.7) λ 1 δt 1 a(t 1 ) = z 1 λ 0 λ 1 λ 1 = a(t 0) a(t 1 ) z = a(t 0) a(t) (1.8) 1 + z a(t) z = a(t 0) a(t 1 ) a(t 1 ) ȧ(t 0) a(t 0 ) (t 0 t 1 ) ȧ(t 0 )χ = v(t 0 ) = H 0 d(t 0 ) (1.9) 1.3

4 (luminosity distance) L s energy erg/s d flux F = L s 4πd 2 Minkowski d L L s flux F 0 d 2 L L s 4πF 0 (1.10) δt s δe s (r s, 0, 0) χ r metric δt s δt 0 δe 0 δe 0 = δe s 1 + z, δt 0 = (1 + z)δt s (1.11) L s = δe s /δt s L 0 L 0 = δe 0 L s = δt 0 (1 + z) 2 (1.12) t = t 0 4π(a 0 r) 2 4π metric [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 }{{ dω 2 } flux F 0 = L 0 4π(a 0 r) 2 = L s 4π(a 0 r) 2 (1 + z) 2 = L s 4πd 2 L

5 1.3 5 d L = a 0 r(1 + z) (1.13) luminosity distance (angular diameter distance) D θ d A D θ (1.14) D t s r θ 2π = D 2πa s r d A = a s r = d A = a 0r 1 + z (1.15) d L (1 + z) 2 (1.16) luminosity distance (1.9) d L = z/h 0 d L = 1 [z + 1 ] H 0 2 (1 q 0)z 2 + O(z 3 ) q 0 a 0ä 0 ȧ 2 0 (1.17)

6 6 1 (deceleraton parameter) 2 (1.17) t0 t dt a(t ) z = a 0 a(t) 1 = a 0 a 0 + ȧ 0 (t t 0 ) + ä0 2 (t t 0) 2 1 = ȧ0 a 0 (t 0 t) ä0 2a 0 (t 0 t) 2 + ȧ0 a 0 2 (t 0 t) 2 + = H 0 (t 0 t) + H 2 0 ( q 0)(t 0 t) 2 + = = r 0 t0 t dr = 1 Kr 2 sin 1 r r sinh 1 r 1 [ 1 ȧ0 ] (t t 0 ) dt a 0 a 0 = r + r3 6 r r r3 6 = 1 (t 0 t) + ȧ0 (t 0 t) 2 = r ( ) a 0 2a 2 0 a 0 r = t 0 t + 1 ȧ 0 2 d L = [ z a 0 r(1 + z) = 1 ( H 0 H 0 = 1 [z + 1 ] H 0 2 (1 q 0)z 2 + (t 0 t) 2 = t 0 t + 1 a 0 2 H 0(t 0 t) q ) 0 z z 2] (1 + z) 2 2H 0 q 0 < 0 z

7 ρ(t) p(t) T0 0 = ρ, Ti 0 = 0 ( ) Tj i = pδj i ( ) (1.18) EM T µν = pg µν + (p + ρ)u µ u ν (1.19) u µ = (1, 0, 0, 0) T ν µ = diag( ρ, p, p, p) ρ p 3 R-W [ä (ȧ )2 R = 6 a + + K ] a a 2 (1.20) 00 ii (1.22) (1.21) (ȧ a )2 + K a 2 = 8πG 3 ρ (1.21) (ȧ )2 2ä a + + K = 8πGp (1.22) a a2

8 8 1 { > 0 ρ+3p < 0 ä a = 4πG (ρ + 3p) (1.23) 3 (decelerate) (accelerate) T µν ;ν = 0 ρ = 3(ρ + p)h (1.24) dρa3 dt = p da3 dt de = pdv ρ, p de = T ds pdv (+µ i dn i ) ds = 0 (1.25) P = P (ρ) (1.24) ρ a (1.21) a(t) p = wρ (w = const) (1.24) ρ a 3(1+w) (1.26) w = 1 3 ρ a 4 ρ r (massless ) w = 0 ρ a 3 ρ m (dust) w = 1 ρ = const ρ V

9 1.5 9 (ȧ a )2 + K a 2 = 8πG ρ K = 0 (1.26) 3 a(t) t 3(1+w) 2 e H V t w 1 w = 1 (1.27) (H V = 8πGρ V /3) 1.5 (1.21) H = ȧ/a K a 2 = 8πG 3 ρ H2 (Ω 1)H 2 (1.28) Ω 8πG 3H 2 ρ ρ ρ cr ρ cr = 3H2 9πG ρ cr0 = 3H2 0 8πG = h 2 g/cm 3 Ω i = ρ i Ω r, Ω m = Ω c (CDM) + p cr Ω b (baryon), Ω Λ = λ ρ V Λ Ω i 1 K 0 i Λ = 8πGρ V (1.29) Ω K K a 2 H 2 (1.30)

10 10 1 Ω m + Ω r + Ω Λ }{{} λ = +Ω K = 1 (1.31) Λ 3H 2 (1.27) Ω K = Ω Λ = Ω r = 0, Ω m = 1 Einstein de Sitter a(t) t 2 3 H = 2/3t (1.21) t 0 = 2 3H 0 66 (1.32) a dt t(z) = 0 da da = dz z (1 + z)h(z) = 1 dz H 0 z (1 + z) [Ω m0 (1 + z) 3 + Ω r0 (1 + z) 4 + Ω K0 (1 + z) 2 + Ω Λ0 ] 1/2 z = 0 t 0 Ω r = 0 Ω K = 0 (1.33) t 0 = 1 H 0 0 dx (1 + z) 1 Ω m0 }{{} Ω Λ0 +Ω m0 (1 + z) 3 (1.34) Ω Λ Einstein de Sitter

11 r dr t0 dt da z = 0 1 Kr 2 t }{{} s a(t) = aȧ = dz 0 H(z)a 0 K sinh 1 ( Kr) = 1 z dz a 0 H 0 0 [Ω m0 (1 + z) 3 + Ω r0 (1 + z) 4 + Ω K0 (1 + z) 2 + Ω Λ0 ] 1/2 (1.35) t s : { 1 ΩK z } dz a 0 r = sinh H 0 ΩK 0 [Ω m0 (1 + z) 3 + Ω r0 (1 + z) 4 + Ω K0 (1 + z) 2 + Ω Λ0 ] 1/2 1 H 0 S K (z) (1.36) d L (z) = 1 H 0 S K (z)(1 + z), d A (z) = S K(z) H 0 (1 + z) (1.37) 1.6 CMB Ω r0 = Ω γ0 + Ω ν0 = Ω m0 = 0.27 a eq a = 1 z eq = T > T eq = 9197K = eV

12 z = (ρ V /ρ m0 ) = 0.47 z eq = T β 1 f BF (ω) = 1 e β(ω µ) 1 n ρ B, F n = g ρ = g d 3 q (2π) 3 f(ω) = q 2π 2 d 3 q (2π) 3 ωf(ω) = E = ω = m 2 + q 2 g 2π 2 m m q (1.38) def(e)e(e 2 m 2 ) 1 2 (1.39) def(e)e 2 (E 2 m 2 ) 1 2(1.40) x =const v x = q x /ω 2q x p = g q x>0 d 3 2q 2 x q 2 (2π) 3 ω f(ω) = g 3ω f(ω) = g 6π 2 Ξ(β, µ) Ω = T ln Ξ = pv = T V g m d 3 q (2π) 3 ln [1 e β(ω µ) ] 1 def(e)(e 2 m 2 ) 3 2(1.41) d 3 q p = ±gt ln[1 ± f(ω)] (1.42) (2π) 3 = ± g (E 2 m 2 ) 1 2 E ln [1 e β(e µ) ] de β = ± g [ (E 2 m 2 ) 3 ] 2 ln [1 e β(e µ) ] de 3β

13 = g (E 2 m 2 ) 3 e β(e µ) 2 de 3 1 e β(e µ) = (1.41) Gibbs µ = 0 G = E T S + P V = µn (1.43) s = β(ρ + p µn) (1.44) T ds = de + pdv = d(ρv ) + pdv = ρdv + V dρpdv = (ρ + p)dv + V dprho ρ = ρ(t ) T ds = ρ + p T dv + V T S V = ρ + p T = 1 T dp dt = ρ + p T dρ dt dt, S T = 1 T ( ρ + p ) = ( V T V T dρ dt + 1 T dρ dt dρ ) = 1 dt T dp dt ρ + p T 2 S = V (ρ + p) T ds = ρ + p T = ρ + p T dv V ρ + p T 2 dt + V T dv V ρ + p T 2 dt + 1 T ( dρ dt + dp ) dt dt (ρ + p)dv dt dt + V (ρ + p)dt T 2

14 14 1 = 0 OK V = a 3 d Q = de + pdv = V dρ + 3V ρ da a + 3V pda = 0 (1.45) a dρ 1 (1.24) = 3(ρ + p)da dt dt a (1.46) d Q = T ds f(ω) = e β( µ) ( mt ) 3 2 n = g e β(m µ) (1.47) 2π ρ = (m + 3 ) 2 T n (1.48) P = nt ρ (1.49) ε = ρ n = m T (1.50) ( m µ s = + 5 ) n T 2 = m µ n (1.51) T (k B T mc 2 ) µ T n B = ζ(3) π 2 gt 3, n F = 3 ζ(3) 4 π 2 gt 3 (1.52) ρ B = π2 30 gt 4, ρ F = π gt 4 (1.53) ρ n ε B = π4 30ζ(3) T 2.70T, ε F = 7π4 180ζ(3) T 3.15T(1.54) P = 1 3 ρ (1.55) s = ρ + P T = 4ρ 3T (1.56)

15 B F ζ(3) = 1 2 n 3 n=1 ρ r = π2 30 g (T )T 4, g (T ) = 0 i boson g i x 2 dx e x 1 = = j ferumion g j (1.57) s = 4π2 90 g (T )T 3 (1.58) 3 (T 100GeV) g = T i ρ r = π2 30 g (T )T 4 g (T ) = i b s = 4π2 90 g s(t )T 3 g s (T ) = i b g g s ( )4 Ti g i + T j f ( )3 Ti g i + T j f T T eq ρ tot = ρ r = π2 g 30 T 4, a(t) t 1 2 ( )4 Tj g j (1.59) T ( )4 Tj g j (1.60) T ( 1 H 2 = = 2t)2 8πG 3 ρ r = 8π3 g (T ) 90M 2 pl T 4 M pl = GeV t = 1 ( 90 ) 2 M ( pl T ) 2 32π 3 g T 2 sec (1.61) 1MeV M pl = 1 2 c 5 2 G 1 2 = G 1 2 = GeV = g

16 16 1 t pl = 1 2 G 1 2 c 5 2 = sec l pl = 1 2 G 1 2 c 3 2 = cm ρ pl = c 5 1 G 2 = g/cm 3 = M 4 pl (1.62) 1.8 Γ H (1.63) τ 2t (1.64) Γ 2 = nσc NT 3 π 2 α 2 N Γ 2 T T 2 (1.65) H T 2 T Γ 2 < H Γ H ( T α 2 ( N ) ( g ) ) 2 GeV (1.66)

17 (i) (kinetic equilibrium) (eγ eγ ) Boson Bose Fermion Fermi f(ω) = 1 e (ω µ)/t 1 (1.67) i µ i (ii) (chemical equilibrium) abc ijk µ a + µ b + µ c + = µ i + µ j + µ k + f(ω) = 1 e (ω µ i)/t 1 (iii) (Thermal equilibrium) 0 0 f(ω) = (asymmetry) µ + µ = 0 1 e ω/t 1 fermion n q n q = g 2π 2 m (1.68) q q γγ E(E 2 m 2 ) 1 [ 1 2 de e ( E µ)/t ] e ( E + µ)/t + 1

18 18 1 = gt 2 [π 2 µ ( µ ) 3 ] 6π 2 T + (T m ) T ( mt ) 3 2 2g e m ( m ) T sinh (T m ) 2π T (1.69) 1.9 f(p µ, x µ ) = f(e, t) = f(p, t) Boltzmann eq. ˆL[f] = C[f] (1.70) ˆL:Liouville ˆL NR = D Dt = t + dx dt + dp dt p = t + v + F m v ˆL R = dxα dτ = p α x α + dpα dτ p α x α Γ βγp α β p γ p α = E t Hp2 E n(t) = g τ : Affine parameter E = m 2 + p 2 (1.71) d 3 p (2π) 3 f(p) 1 E L[f] = 1 E C[f]

19 dn dt + 3Hn = g d 3 p (2π) 3 C[f] (1.72) E 5 (1.71) (1.72) ψ ψ + a + b + + d i + j + + l (1.72) g d 3 p ψ (2π) 3 C[f] = E ψ dπ ψ dπ a dπ d dπ i dπ l (2π) 4 δ 4 (p ψ + p a + + p d p i p j p l ) [ M 2 f ψ f a f b f d (1 ± f i )(1 ± f j ) (1 ± f l ) ] M 2 f i f j f l (1 ± f ψ ) (1 ± f d ) (1.73) M 2 transition amplitude s matrix element T invariance M 2 = M 2 (1 ± f s) a s n >= 1 ± ns n s + 1 > induced emission Pauli blocking dπ s = g d4 (2π) 4 2πδ(p2 s m 2 s) = g d3 p 1 (2π) 3 (1.74) 2E p f s (E s ) = 1 e β(e s µ s )/T 1 1 ± f s = f s e β(es µs) (1.72) (1.73) ṅ ψ + 3Hn ψ = dπ ψ dπ a dπ d dπ i dπ l M 2 f ψ f a f d f i f l (2π) 4 δ 4 (p ψ p a + p i p l ) [ e β(e ψ µ ψ ) e β(ea µa) e β(e d µ d )

20 20 1 ] e β(e i µ i) e β(e l µ l ) (1.75) E ψ + E a + + E d = E i + + E l µ ψ + µ a + µ d = µ i + µ j + + µ l 1 ± f i Boltsmann eq. ṅ ψ + 3Hn ψ = dπ ψ dπ a dπ d dπ i dπ j dπ l (2π) 4 δ(p ψ + p a + + p d p i p l ) M 2 [f ψ f a f b f d f i f j f l ] (1.76)

21 1.10 Freeze out of pair annihiration Decoupling Freeze out of pair annihiration Decoupling ψ ψ χ χ χ χ (e.g. ) f eq χ = fχ eq 1 = e βex 1 (CPT ) ( )ψ: neutrino χ: charged lepton (1.84) n ψ + 3Hn ψ = dπ ψ dπ ψdπχdπ χ(2π) 4 δ 4 (p ψ + p ψ p χ p χ ) M 2 [f ψ f ψ (1 ± f eq χ )(1 ± f eq χ ) f eq χ f eq χ (1 ± f ψ )(1 ± f ψ)] ψ ψ kinematic equilibrium dπ (1.87) ψ ψ kinetic equilibrium dπ (1.87) dn ψ dt σ ψ ψ χ χ v = + 3Hn ψ = σ ψ ψ χ χ v (n 2 ψ n eq2 ψ ) (1.78) 1 n eq ψ dπ ψ dπ ψdπ χ Π χ (2π) 4 δ 4 (p ψ + p ψ p χ p χ ) M 2 e Eψ/T E e ψ /E σ ann v n ψ (1.77)

22 22 1 dn ψ dt + 3Hn ψ = σ ann v (n 2 ψ n eq2 ψ ) (1.79) Y ψ n ψ /s x m ψ /T (1.78) x Y eq dy ψ dx = Γ ann H [( Y ψ Y eq ) 2 1] (1.80) Γ ann n eq ψ < σ ann v > ( ) 45ξ(3) g 1 Boson Y eq (x) = 2π 4 g 3/4 Fermion 45 2π 4 (π 8 ) 1 g 2 x 2 3 e x g T m ψ T m ψ (1.81) T m ψ n eq ψ T 3 σ ann v T 1 Γ ann T 2 T, Γ ann /H < 1 hot dark matter, ν Γ ann > H freeze out n eq ψ Γ ann Γ ann < H σ ann v freeze out < σ v > CDM ( )SUSY dark matter Γ = H x x f

23 1.10 Freeze out of pair annihiration Decoupling 23 x x f Y eq x x f Y eq (x f ) (1) hot relics x f z Y Y (x ) Y eq (x f ) = g ( 1 Boson g s 3/4 Fermion s 0 = cm 3 ( ) n ψ0 = s 0 Y = g ( 1 g s 3/4 ρ ψ0 = 8.1 g ( 1 g s 3/4 Ω ψ0 = 0.15 ( g 1 g s (x f ) 3/4 ) cm 3 ) ( m ) evcm 3 1eV ) ( m ) 1eV (1.82) ) 3 Ω ν0 h 2 = 94.1eV i m νi (2) cold relics x f 3 σ ann v ( ) x = x f ( Γ ann = n eq 8π ψ σ π 2 ) 1 ann v = H = 3Mpl 2 90 g Tf 4 2 (1.83)

24 24 1 Y (x f ) = neq ψ (x f ) = s(x f ) 90 4πg s T 3 f H σ ann v = ( 45g ) 1 2 x f π g s σ ann v M pl m ψ (1.84) x f (1.92) x f = ln[0.038 g g 1/ ln{ln[0.038 g M pl m ψ σ ann v ] f 1/2 n ψ0 = g 1/2 x f σ ann v cm 3 g s M pl m ψ ρ cro = evcm 3 M pl m ψ σ ann v ]} ( ρcro = g/cm 3 1eV = g x f Ω ψ0 = m ψn ψ0 = 2.0g1/2 ρ cro g M pl σ ann v ev 1 = g1/2 x ( f σ ann v g s cm 3 /s ) 1 m ψ! (1.85) 1.11 Distribution function after decoupling Γ H: Γ < H

25 1.11 Distribution function after decoupling 25 RW u du dt = Hu p massless T dec T dec f(p, t dec ) = 1 e p/t dec 1 p(t) = p(t dec ) a(t dec) a(t) m a 3 f(p, t) = d3 n dp 3 = f(p a a dec, t dec ) = T = T dec a dec a 1 pa exp( ) 1 (1.86) T dec a dec ( ) ( f(e) exp E µ ) dec T dec (1.87) a 2 a 3 T (t) = ( a a dec ) 2 Tdec, (1.88) ( a ) 2 µ(t) = m + (µ dec m) a dec (1.89)

26 26 1 (1.87) 1.12 decoupling ν Z 0 G F = GeV 2 Γ G 2 F T 5 H = 5.4 T 2 M pl Γ ( H = T 1.5MeV )3 (1.90) T < 1.5MeV ν decooupling (1.86) T 0.5MeV(= 511keV) e + e ( ) L e ± 9 R 8 = = a 3 (before)10.75t 3 νaa 3 = (after)2t 3 γaa T 3 ν a 3 T νb = T νa ν decouple e ± heat up T 3 νba 3 = T 3 νaa 3 T νa = ( 4 ) 1 3 Tγa (1.91) 11 ( 4 ) 1 3 T ν0 = 2.73 = 1.95K 11

27 g 0 = ( ) = 3.36 (1.92) g s0 = = (1.93) ((1.59),(1.60) ) 1.13 (recombination) 13.6eV 16 K n γ n B p + e H + γ T < m i (1.47) ( mi T ) 3 i 2 n i = g i e m i µ i T 2π i = p, e, H µ p + µ e = µ ψ n H = g ( ) H me T 3 2 n p ne e B T g p g e 2π B = m p + m e m H = 13.6eV (1.94) n p = n e n p + n h = n b n b = ηn γ (η ) X e n p /n b 1 X e X 2 e = 4 2ζ(3) ( T ) 3 2 B η e T (1.95) π m e decoupling (1.72) (1.78)

28 28 1 n n e + 3Hn e = σv (n eq e n eq p H n γ n eq H nrq γ n e n p ) σv recombination cross section p + e H + γ ( 2 σv 1 ( ) 0 ) = n σv (n eq e n eq ) p H n eq n 2 e H = ( met ) 3 2 n b σv [(1 X e ) e B T Xe 2 n b ] 2π (1.96) dx e = β(1 X e ) α (2) n b Xe 2 (1.97) dt ( me T ) 3 2 β σv e B T ionization rate 2π α (2) σv recombination rate α (2) (n = 1) n = eV γ (excited state) α (2) = 9.78 α2 ( B ) 1 2 ( B ) ln m 2 e T T (1.98) decoupling γ H γ : n e σ T = X e n b σ T σ = cm 2 Thomson n e σ T = XeΩ b h 2 ( a a 0 ) 3 cm 1

29 n e σ T H ( Ωb h 2 ) ( Ωm h 2 = 113X e ) 1 2 ( 1 + z 1000 ) 3 2 [ ( 1 + z 1000 ) ( Ωm h ) 1 ] 1 2 (1.99) X e 10 2 decoupling z dec = (WMAP7) (1.100) cf(1.99) X e = 1 n eσ e H 2 ( 0.02 ) 3 ( Ω m h z = 43 Ω b h < 1 z ) 1 3 (1.101) γ

30 ) particle horizon d h (t) t ( ) ( r H ) ds 2 = dt 2 + a 2 dr 2 (t) 1 Kr 2 = 0 (null) d H (t) }{{} rh 0 grr dr = a(t) rh 0 dr t = a(t) dt 1 Kr 2 t i a(t ) (2.1) a(t) t m d H (t) = t [ 1 1 m ( ti )1 m] = t t 1 m (m < 1 ) (2.2) 2) ( ) t H 1 H 1 = ȧ a = t m for a(t) tm (2.3) m < 1 t a(t) t m

31 2.15 ( ) 31!: 2.15 ( ) (ȧ a ) + K }{{} a 2 = 8πG 3 ρ = 8π 3M 2 ( ρ γ + ρ m + ρ pl }{{}}{{}}{{} Λ a 2 a 4 a 3 a 0 ) z > 0.47 MD RM a ρ K/a 2 K/a2 ρ a or a 2 Ω = (WMAP7+BAO+H 0) K a 2 = H2 (Ω 1) (1.28) R curv = a(t) = H0 1 Ω tot H0 1 K a Ω tot (t) 1 = 1 8πGρ / K 0 a 0 3 a ( a(t) )2 ( aeq ) ( a0 ) 2 1 a eq a m a m (2.4) a m (DM) (ΛD) Ω(t pl ) (2.5)

32 32 2 R curv (t pl ) l pl 2.16 High temperature symmetry restoration and phase transitons SU(3) SU(2) U(1) Higgs SU(2) ϕ L = 1 2 ( ϕ)2 V [ϕ] (2.6) }{{} V [ϕ] = λ 4 (ϕ2 µ2 λ )2 = g µν µ ϕ ν ϕ }{{} = ϕ a 2 ( ϕ)2 RW = λ 4 ϕ4 1 2 µ2 ϕ 2 + µ4 4λ = ϕ 2 + ( ϕ) 2 }{{} δl δϕ = 0 ϕ V [ϕ] }{{} = 0 (2.7) = λϕ 3 µ 2 ϕ ϕ σ ϕ φ ϕ = σ + φ φ = 0 (2.8)

33 2.16 High temperature symmetry restoration and phase transitons 33 δl δϕ = 0 σ + µ 2 σ λ (σ + φ) 3 = σ + µ 2 σ λ (σ 3 + 3σ 2 φ + 3σφ 2 + φ 3 ) φ(x, t) = σ (λσ 2 µ 2 )σ 3λ φ 2 σ 3 φ 3 = 0 (2.9) d 3 k 1 [ φ(x, t) = ak e ikx iωkt + a (2π 3/2 k ) e ikx+iω kt ] (2.10) 2ωk [ ak, a ] k = δ(k k ), ω k = k 2 + m 2 ϕ (m ϕ; ϕ = σ mass) φ 3 operator 3 ( coherent state coherent ) φ 2 = d 3 k 1 (2π) 3 (2 a k 2ω a k k }{{} occupation +1) (2.11) = 0 (vacuum) occupation 0 = 0 φ 2 φ 3 σ =const translational invariance respect σ = 0, ± µ λ σ = 0 σ = ± µ λ = β (β = T 1 ) (

34 34 2 ) ( ) T m ϕ β φ 2 β = (2.9) β a k a k β = 1 e βω k 1 (2.12) d 3 k 1 2 (2π) 3 2ω k e βω T 2 k 1 12 (2.13) σ (λσ 2 + λ 4 T 2 µ 2 )σ = o (2.14) T > sµ λ σ =const σ = 0 : }{{} ϕ ϕ λ 8 T 2 ϕ 2 (T 4 ϕ ) ϕ = 0 ϕ = σ = ± µ λ ( ) T 2µ λ T c H 1 c ± µ λ ( 8πG π 2 ) g Tc 4 2 ϕ = ϕ(x, t) ϕ = + µ λ µ λ ϕ = 0 (V (ϕ = 0) = µ4 ) 4λ

35 2.16 High temperature symmetry restoration and phase transitons 35 ± µ λ U(1) ( U(1) ) ( ) U(1) Π 0 (M) 1 U(1) Π 1 (M) 1 U(1) Π 2 (M) 1 SU(2) Π 3 (M) 1 Π n (M), n = 0: 1: 2: M M : SU(3) SU(2) U(1) cf ( h + ) H = h 0 H = 0 V [H] = µ 2 H + H + λ(h + H) 2 + const µ 2 < 0 L Higgs = ( σ ) a µ ig 2 W aµ 2 ig 2 1B µ V [H] + f l L ij i Hl j + f D Q ij i Hq j i,j=e,µ,τ i.j=d,s,b

36 36 2 H = iσ 2 H L = ( ) ν e + f U Q ij i Hqj i,j=u,c,t h 0 = L ( ) u, Q = d M 2 4λ, h = 0 L, (2.15) m = f h 0, M w = g 2 2 h 0, M 2 = 1 2 g g2 2 h2 2.17? (historical background) 1970 M GUT = GeV M pl = GeV 3 ρ = V [0] =const (ȧ a )2 + K a 2 8πG 3 ρ = 8πG 3 V (0) = H2 inf (2.16) a e H inft K a

37 t dt d H (t) = a(t) t i a(t ) = 1 H eh(t t i) (2.17) ρ =const ρ a n a(t) t 2 n (1.27) n = 3(1 + w) n < 2 (2.2) a(t) ρ total = ρ inf (t) + ρ m (t) + ρ γ + (2.18) ρ inf (t) ρ γ (t): Fiedmann (a 2 ) ρ inf (t) Hot Big Bang Cosmology r = 2π k 2 t k k t k ρ inf t s t f ( )

38 38 2 ρ inf ( T R ρ inf = ρ r = π2 ( 30 g TR 4 g ) 60 TR 4 (2.19) 200 g T 3 a 3 g s0 = 3.91, T CMBO = 2.735K a 0 = T ( R g ) 13 ( g ) 1 3 T R = 3.7 (2.20) a R T CMB T CMB H 1 inf L 0 H 1 inf eh inf(t f t s ) a 0 a R ( = g ) 1 ( ) 4 H 1 inf 2 e H inf (t f t s ) GeV 1 GeV ( = g ) 1 ( ) 4 H 1 inf 2 e H inf (t f t s ) Mpc (2.21) GeV ( 8πGρinf ) 1 2 H inf = L 0 500H 1 0 e N N N H inf (t f t s ) > ( 2 ln Hinf ) N min (2.22) GeV

39 (1.28) K a 2 = H2 (Ω 1) Ω(t 0 ) 1 ( )2 Ω(t s ) 1 = a(ts )H inf 1 = a 0 H 0 (L 0 H 0 ) 2 (2.23) < Ω(t 0 ) 1 < Ω(t s ) 1 (2.24) Ω(t s ) 1 Ω ρ inf (t) ρ γ 2 ρ inf (t) 3 CMB ( ) 2 1

40 ρ inf (t) ϕ V (ϕ) ϕ (i) Higgs (ii) (iii) S = d 4 x gl ϕ = d 4 x ( g 1 ) 2 gµν µ ϕ ν ϕ V [ϕ] (2.25) RW ϕ t ϕ + V (ϕ) = ϕ + 3H ϕ + V (ϕ) = 0 (2.26) ϕ = 1 µ (g µν g ν ϕ) g (2.27) (00 ) (ȧ a )2 = H 2 = ρ ϕ 3MG 2, ρ ϕ = 1 2 ϕ 2 + V (ϕ). (2.28) ρ ϕ T µν = 2 δs ( 1 ) g δg µν = µϕ ν ϕ g µν 2 gαβ α ϕ β ϕ + V [ϕ] (2.29)

41 (δg = gg µν δg µν ) (2.30) ρ ϕ = T0 0 = ϕ ( ϕ ) 2 + V [ϕ] = 1 2 ϕ 2 + V [ϕ] (2.31) ( P ϕ δj i = Tj i = δj i 1 2 ϕ ) 2 + V [ϕ] = 1 2 ϕ 2 V [ϕ] (2.32) T µν = P g µν + (ρ + P )u µ u ν u µ u ν = 1 T 0 0 = ρ T i j = P δi j u µ = (1, 0, 0, 0)cf(1.19) T µ ν = diag( ρ, P, P, P ) cf (2.26) d(p ϕ V ) = P ϕ dv (1.23) (V = a 3 ) ( ϕ ϕ + V (ϕ) ϕ)a 3 + 3a 2 ȧ( 1 2 ϕ 2 + V ) = 3a 2 ȧ( 1 2 ϕ 2 V ) ȧ a ϕ + 3H ϕ + V (ϕ) = 0 = 4πa 1 ( 1 (ρ + 3P ) = 3 6MG 2 2 ϕ 2 + V ϕ ) 2 3V 1 = (V (ϕ) ϕ 2 ) (2.33) 3M 2 G V (ϕ) > ϕ 2 = ϕ (2.26) ϕ (2.28) 1 2 ϕ 2 3H ϕ + V (ϕ) = 0 (2.34) (ȧ )2 = H 2 = V (ϕ) a 3MG 2 (2.35) ε M 2 G 2 ( V )2 (ϕ) V (ϕ) η MG 2 V (ϕ) V (ϕ) (2.36)

42 ( ) ϕ ϕ (i)new inflation GUT Coleman-Weinberg (1 loop radiative correction symmetry breaking ) [ ( ϕ V CW [ϕ] = Aϕ 4 2 ) ln v 2 1 ] + B(T )ϕ 2 + A 2 2 v4 + C(T ) (2.37) ϕ = 0 V CW [ϕ] A 2 v4 A ϕ 4 (A > 0) (2.38) A ϕ 4 Av 4 (t i ϕ i ) 3H ϕ + V CW[ϕ] = 0 H 2 1 = A 2 v4 ϕ(t) 2 = 3M 2 G [ 1 ϕ 2 i 4A ] 1 3H (t t i) (2.39) ϕ small field model ( ) (ii) large field model mass term V (ϕ) = 1 2 m2 ϕ 2

43 ϕ+ 3 H ϕ + m 2 ϕ = 0 (2.40) [ 1 ( 1 H = 3MG 2 2 ϕ m2 ϕ 2)]1/2 > mϕ 6MG friction term m (2.41) (2.42) ϕ 6M G ϕ 3H ϕ + m 2 ϕ = 0, H 2 m2 ϕ 2. (2.43) 6M 2 G ϕ(t) = 2 ϕ i 3 mm G(t t i ) (2.44) [ mϕi a(t) = a i exp (t t i ) m2 6MG 6 (t t i) 2] (2.45) [ 1 ] = a i exp (ϕ 2 i ϕ 2 (t)) 4M 2 G ϕ ϕ ϕ ȧ = H slow-roll a ϕ ϕ = 2 mm G 3 ϕ = mϕ 6MG = H ϕ = 2M G = ϕ f N = 1 4MG 2 (ϕ 2 s ϕ 2 f ) = ϕ2 s 4MG ϕ s 3.4 8πM G = 3.4M pl N 70 t = t pl = M 1 pl

44 44 2 L ϕ = 1 2 ( ϕ)2 V [ϕ] ϕ 2 M 4 pl, V [ϕ] M 4 pl V [ϕ s ] Mpl 4 ϕ s Mpl 2 /m coherent domain L ϕ 2 ϕ2 s L 2 M pl 4 m 2 L 2 M pl 4 L 1 m l pl horizon ϕ (iii) small-field inflation L ϕ = 1 2 ( ϕ)2 V [ϕ], V [ϕ] = λ 4 (ϕ2 v 2 ) 2 (2.46) ϕ ((2.6) v 2 = M2 λ = ±v ) 16 domain wall ϕ = ±v ( ) λ ϕ(x) = v tanh 2 vz (2.47) 2 1 d 0 λ v (( ϕ) 2 ( v d 0 ) 2 Vc ) 1/2 vvc, V c = λ 4 v4 ( ) 1 V 0 Hc 1 Vc 2 ( 3 )1/2 = = 3MG 2 MG V c v M G d 0 Hc 1 V V c

45 ϕ ( ) xy wallϕ = 0 ϕ(x, t c ) λ 2 v2 z k 0 z V [ϕ] V c 1 2 µ2 ϕ 2, µ 2 = λv 2 µ 2 Hc 2 slow-roll [ µ 2 ] ϕ(x, t) = kz exp (t t c ) 3H c a(t) = a c e Hc(t tc) ϕ = ϕ Z (t) z (t) = k 1 ϕ exp [ H2 ] (t t c ) 3H c L(t) = a(t)z (t) = a c k 1 exp [(1 µ2 ) ] H c (t t c ) 3H 2 c z slow-roll inflation ϕ H ϕ ϕ = 0 m ϕ ( k = 0 ) ϕ + 3H ϕ + m 2 ϕ = 0 ϕ [ d 1 dt 2 ϕ ] 2 m2 ϕ 2 }{{} = 3H ϕ 2 }{{} = ρ ϕ = ρ ϕ ( ) (2.48)

46 46 2 d dt ρ ϕ = 3H }{{} ρ ϕ (2.49) ρ ϕ a 3 ϕ g2 2 ϕ2 χ 2 χ χ + (g 2 ϕ 2 + m 2 χ)χ = 0 (2.50) ϕ fϕ ψψ Yukawa coupling Γ ϕ = f 2 dρ ϕ dt dρ r dt 8π m = 3Hρ ϕ Γ ϕ ρ ϕ (2.51) = 4Hρ r + Γ ϕ ρ ϕ (2.52) decay product thermalize t Γ 1 ϕ H 2 = 1 3MG 2 (ρ ϕ + ρ r ) ( a(t) ρ ϕ (t) = ρ ϕ (t f ) a(t f ) ρ r (t) = Γ ϕ t t f ) 3 e Γ ϕ(t t f ) (2.53) ( a(t) ) 4 ρ ϕ (τ)dτ (2.54) a(t f )

47 H 2 = ρ r 3M 2 G = 1 π 2 g 3MG 2 30 T R 4 }{{} = a t 1/2 ( 1 = 2t)2 ( )2 Γϕ 2 1 ( 200 ) 2 ( 1 T R 0.3 MG Γ ϕ ) 4 ( Γ ) 1 ϕ 2 GeV (2.55) g g 10 5 GeV

48 Robertson Walker ds 2 = dt 2 + a 2 (t)dx 2 φ a(t) 1 a(t) = e Ht (H:const) gd [ 1 S = 4 xl φ = dtd 3 xa 3 (t) 2 φ2 1 ] 2a 2 ( φ)2 V (φ) (3.1) V [φ] = 1 2 m2 φ 2 π(x, t) φ(x, t) = π(x, t) = δs δ ϕ = a3 (t) φ(x, t) (3.2) [φ(x, t), π(x, t)] = iδ 3 (x x ) (3.3) d 3 k (2π) 3/2 ( ak φ k (t)e ikx + a k φ k(t)e ikx) (3.4)

49 d 3 k (2π) 3/2 ˆφ k(t)e ikx ( ˆφ k (t) = a k φ k (t) + a k φ k(t) ) ( + m 2 )φ = 0 k [ d 2 dt 2 + 3ȧ d a dt + k2 a 2 + m2] φ k (t) = 0 (3.5) 2 (ϕ 1, ϕ 2 ) = i {ϕ 1 (x) t ϕ 2(x) ( t ϕ 1 (x))ϕ 2(x)}a 3 (t)d 3 x i ϕ 1 t ϕ 2a 3 (t)d 3 x φ (φ k (t)e ikx, φ k (t)e ik x ) = (2π) 3 δ 3 (k k ) φ k (t) φ k(t) φ k (t)φ k(t) = i a 3 (t) (3.6) (3.3) [ ak, a ] k = δ(k k ) (3.7) [a k, a k ] = [ a k, ] a k = 0 [ϕ(x, t), π(x, t)] = = = d 3 k d 3 k (2π) 3/2 (2π) 3/2 a3 (t) [ ak φ k e ikx + a k ψ ke ilx, a k φ k e ik x + a k φ x ] k e ik d 3 k d 3 k (2π) 3/2 (2π) 3/2 a3 (t){[a k, a k ] φ k φ k eikx ik x + [ a k, a ] k φ k φ k e ikx+ik x } d 3 k (2π) 3/2 a3 (t)(φ k φ k φ k φ k)e ik(x x ) = iδ(x x )

50 50 3 Minkowski φ k (t) = e iω kt 2ωk, ω k = k 2 + m 2 (3.8) i t φ k = ω k φ k positive frequency mode ȧ a = H =const,a = eht (3.4) [ d 2 dt 2 + 3H d dt + k2 e 2Ht + m2] φ k (t) = 0 (3.9) ds 2 = a 2 (η)( dη 2 + dx 2 ) = dt 2 + a 2 (t)dx 2 conformal time η t d dt = 1 d a dη = Hη d dη ( d 2 dη 2 2 η dt a(t) = 1 He Ht = 1 (< 0) (3.10) Ha d dη + k2 + m2 ) H 2 η 2 φ k (η) = 0 (3.11) III,p.161 ( η) 3 2 H ν (1) ( kη) ( η)h ν (2) ( kη), ν = 3 [1 4m2 ] 2 9H (3.6)(conformal time φ k (η)φ k (η) φ k (η)φ k (η) = i a 2 ) 1 (η) 1 2

51 φ k (η) = π 4 H( η) 3 2 H (1) ν ( kη) (3.12) kη = k Ha kη 1 (1) (2) Hν (z) φ k (η) Hη 2k e 2 2ν+1 πz ei(±z 4 π) (1) (2) 2ν+1 2ν+1 ikη i 4 π e ikη i 4 π = 2ka(t) dt = a(η)dη a =const φ k (η) = e ikη 2ka = k e i a t 2 k a a 3 2 = e ik physt 2k phys a 3 2 = φ k (t) (3.13) Minkowski (3.8) (3.6) H ν (1) ( kη) ( ) η = MG 2 V V = m2 3H 2 1 massless 2 φ 2 (x, t) = ( H 2π )2 Ht (3.14)

52 52 3 ( ) m 2 (3.12) ν = 3 2 π φ k (t) = 4 H( η) 3 2 H (1) 3 ( kη) = ih (1 + ikη) 2 2k 3 e ikη (3.15) ϕ 2 (x, t) 0 φ 2 (x, t) 0 = φ k (t) = d 3 k (2π) 3 φ k(t) 2 (3.16) ih ( 1 i k ) e i k Ha ih [ ( a + O ( k 2k 3 Ha 2k 3 Ha )2)] (3.17) k k 3 φ k (t) 2 H2 2k 3 (3.18) d3 k (2π) 3 (3.14) (3.18) (3.16) (super horizon modes) φ 2 (x, t) = He Ht H φ k (t) 2 d3 k He Ht (2π) 3 = H 2 4πk 2 dk ( H )2 H 2k 3 (2π) 3 = Ht 2π (3.19) t = 0 k = Ha cut off H 1,1step ± H 2π (2 t )

53 Hubble timeh 1 H 1 δφ H 2π (3.1) (3.4) ˆφ k (t) S = [ 1 dtd 3 ka 3 (t) 2 ˆφ k (t) 2 k2 2a 2 ˆφ k(t) m2 ˆφ k (t) 2] ˆφ k (t) ˆπ k (t) = a 3 (t) ˆφ k (t) (3.17) φ k φ k(t) ˆφ k (t) φ k (t) ( a k a ) k ˆπ k (t) a 3 (t) φ k (t) ( a k a ) k operator decaying mode( ) ˆφ k ˆπ k 3.21 ds 2 = dt 2 + a 2 (t)dx 2 = a 2 (η)( dη 2 + dx 2 ) (3.20) ds 2 = (1 + 2A)dt 2 ab j dtdx j + a 2 (δ ij + 2H L δ ij + 2H T ij )dx i dx j i, j = 1, 2, 3 (3.21) 3 B j = j + B j, j Bj = 0 (3.22) rotation free divergence free ( p.225) H T ij H T ij = ( i j δ ij 3 2) H T + i HT j + j HT i + H T T ij (3.23)

54 54 3 j HT j = 0, J H T T ij = 0, trh T T ij = 0 H T T :transverce-traceless 3 ( ) ( 1 ) ( 2 ) A, B, H L, H T : B j, H T j : ( ) H T T ij : ds 2 = (1 + 2A)dt 2 a j Bdtdx j ( +a [δ 2 ij + 2H L δ ij + 2 i j δ ] ij 3 2) H T dx i dx j (3.24) }{{} i, j δ ij A B H L H T : (Lapse) : (shift) : : RW ( ) A, B x µ A, B, H L, H T x µ Ā, B, H L, H T

55 x 0 = x 0 + δx 0 = x 0 + T x i = x i + δx i = x i + i L (3.25) δx i i L ḡ µν ( x) = xα x β x µ x ν g αβ x ḡ µν ḡ µν (x) = xα x µ x β x ν g αβ(x δx) = g µν (x) (δx α ),µ g αν (x) (δx β ),ν g µβ (x) g µν,λ δx λ (3.26) (3.25) T, L 1 g 00 = g 00 2T g 00 + ġ 00 T + g 00,i L,i }{{} 2 Ā = A T ḡ 20 = g 20 2 T g 00 2 Lg22 a 2 B = a 2 B + 2 T a 2 2 L B = B 1 a T + a L ḡ 22 = g 22 ( i L),2 g i2 ( i L),2 g 2i g 22,0 T = g Lg 22 T g 22,0 [ a H L + 2 ( ] 3 2) HT [ = a H L + 2 ( ] 3 2) H T 2a 2 2 2L 2aȧT ḡ 11 + ḡ 22 + ḡ 33 H L = H L 2 L HT 3

56 56 3 ḡ 23 = g 23 ( 3 L),2 g 33 ( 2 L),3 g 22 = g La 2 2a HT = 2a H T 2a L H T = H T L Ā = A T B = B 1 a T + a L H L = H L L HT (3.27) H T = H T L (3.27) 4 ( ) generatort, L 2 Φ A = A (ab) a 2 (ḦT + 2HḢT ) (3.28) Φ H = H L 2 3 H T ȧb aȧḣt (3.29) L, T T µν = pg µν + (ρ + p)u µ u ν, g µν u µ u ν = 1 (3.30) ρ ρ + δρ p p + δp ( 1 A, ) i a 2 V u µ (i, j δ ij ) g µν u µ u ν = 1 g µν u µ g ν = (1 + 2A)(1 A) 2 +

57 = 1 + O(2 ) u 0 = g 0ν u ν = (1 + 2A)(1 A) = (1 + A) u i = g iν u ν = g i0 u 0 + g ij u j = a i B(1 A) i V = i (V + ab) u µ = ( 1 A, i (V + ab)) δt 0 0 = δρ ρδ δ δρ ρ δt j 0 = (ρ + p) j a V δtj 0 = (ρ + p) j (V + ab) a δtj i = p [π L δ ij + 1 ( 2 ) ] a 2 i j δ ij π T 3 (3.31) ( ) π T 0 π L = δρ ρ nonminimal coupling π T = 0 δ, V, π L, π T ϕ(x, t) = ϕ 0 (t) + δϕ(x, t) ϕ( x) = ϕ(x) ϕ(x) = ϕ(x δx) = ϕ(t T, x i i L) δϕ = δϕ ϕ 0 T = ϕ 0 (t T ) + δϕ(t T, x i i L) = ϕ 0 (t) ϕ 0 (t)t + δϕ(x) = ϕ 0 (t) + δϕ(x)

58 58 3 ϕ δϕ (ab a 2 Ḣ T ) ϕ 0 (3.32) T, L H T = 0 L = H T B = 0 T (3.28) A = Φ A (3.29) H L = Φ H 2 ds 2 = (1 + 2Φ A )dt 2 + a 2 (1 + 2Φ H )dx 2 (3.33) (longitudinal) ϕ = δϕ δ v 3.22 δg 0 0 = 8πGδT 0 0 δg µ ν = 8πGδT µ ν (3.34) 6H 2 Φ A 6H Φ H a 2 Φ H = 8πGρδ (3.35) δg j 0 = 8πGδT j 0 δg i j = 8πGδT i j [ ( 2 H 2 + ä a 1 ( 2 a 2 i j δ ij 3 HΦ A + Φ H = 4πG(ρ + p)v (3.36) ] a 2 (Φ A + Φ H ) [π L δ ij + 1 ( 2 a 2 i j δ ij ) Φ A + 2H Φ A 6H Φ H 2 Φ H ) (Φ A + Φ H ) = 8πGp 3 δ ij ) π T ] (3.37)

59 (3.37) (3.35)+6H (3.36) Φ A + Φ H = 0 (3.38) +2 2 a 2 Φ H = 8πGρδ 24πG(ρ + p)hv 2 a 2 Φ H = 4πGρ, δ + 3(1 + w)hv Poisson 2 a 2 Φ A = +4πGρ (3.39) δt µ ν;µ = 0 0 i 3Hw = (1 + w) 2 V (3.40) a2 V = 1 ρ + p (pπ L G 2 ρδ + c 2 sρ ) + Φ A (3.41) c 2 s = dp dρ (3.42) ṗ = 3(1 + w)hρ (3.36) (3.38) Φ H + HΦ H = 4πG(ρ + p)v = 3 2 H2 (1 + w)v 3 (1 + w)hυ 2 (3.43) Υ HV Υ (1 + w)hυ = HΦ H + Γ 1 p (δp c2 sδρ) = 0 H 1 + w (c2 s + wγ ) (3.44) p(ρ) =

60 (3.43) (3.44) d dt (ΦΥ H) = Hc2 s 1 + w = + 2c2 sh 3(1 + w) superhorizon k ah Φ H Υ (3.43) Φ H = Υ = Φ H + 2 a 2 H 2 Φ H (3.45) 2 3(1 + w) (Φ H + H 1 ΦH ) ζ R c =const. = c 1 (3.46) k ah Bardeen ζ comoving curvature perturbation (3.46) Φ H Φ H = c 1 ( 1 H a t const a(t )dt ) (3.47) ( ) t Φ H = c 1 Ḣ a + H2 a(t )dt c 1 H a [ 3 = c 1 2 (1 + w)h2 + H 2] 1 t a(t )dt c 1 H ζ = Φ H + = 3 2 H(1 + w)c H 1 a = 3 2 H(1 + w)c H 1 a a t ( a(t )dt c 1 H 1 H a t a(t )dt HΦ H 2 3(1 + w) (Φ H + H 1 ΦH ) t a(t )dt )

61 ζ = c 1 ( 1 H a t ) a(t )dt H t + c 1 a(t )dt = c 1 (3.48) a (3.47) H a const. (3.43)(3.44) Φ H (3.47) 1 w = p ρ = 2 const. a(t) t 3(1+w) Φ H = c 1 [1 + ] 1 2 = 3(1 + w) 2 3 c 1 RD 3 5 c 1 MD (3.49) Φ H 9/10 R c = ζ 3.23 (2.29) ( 1 ) T µν = µ ϕ ν ϕ g µν 2 gαβ α ϕ β ϕ + V [ϕ] (2.29) longitudinal gauge (ϕ = ϕ 0 + δϕ) δt0 0 = ρ ϕ δ ϕ = ϕ 0 δϕ ϕ 2 0Φ A + V [ϕ 0 ]δϕ (3.50) δtj i = p ϕ δπ Lϕ δj i = ( ϕ 0 δϕ ϕ 2 0Φ A V [ϕ]δϕ) δj i (3.51)

62 62 3 (3.36) (3.52) δt j 0 = (p ϕ + ρ ϕ ) j a 2 V = + ϕ j ϕ a 2 = 1 a 2 ϕ j δϕ (3.52) (3.50) (3.52) g jµ T µ0 = a 2 ϕ j ϕ Φ H + HΦ H = 4πG ϕδϕ (3.53) Υ ϕ = HV ϕ = H ϕδϕ = Ḣ δϕ (3.54) ρ ϕ + p ϕ ϕ ρ ϕ ϕ = ρ ϕ δ ϕ + 3(ρ ϕ + p ϕ )HV ϕ }{{} ϕ 2 = ϕ δϕ ϕδϕ ϕ 2 Φ A (3.55) 2 a 2 Φ H = 4πGρ ϕ ϕ Ṙc ( Ṙ c = Φ H Υ = Φ Ḣ ) H ϕ δϕ = HΦ H 4πG ϕδϕ Ḣδϕ ϕ = 4πG( ϕ δϕ ϕδϕ + ϕ 2 Φ H ) (3.56) H δϕ + H ϕδϕ δ ϕ 2 = Ḣ ϕ ρ H 2H ϕ ϕ = + 2 4πGa 2 ϕ 2 2 Φ H = 3(1 + w) a 2 H 2 Φ H (3.57) (3.45) c 2 s = 1 R c 2 ϕ 2 V [ϕ] w 1 2

63 R c = Φ H Υ ϕ = Hδϕ ϕ (3.58) R c k 2 (3.18) ( ) Ḣ 2 ( ) Ḣ 2 R ck 2 = δϕ k 2 H 2 = ϕ ϕ 2k 3 (3.59) 4πk3 (2π) 3 r = 2π k 2 2 R ( Ḣ 2 R(r) = ϕ ) 2 H 2 4πk 3 ( H 2 ) 2 2k 3 (2π) 3 = 2π ϕ (3.60) 3H ϕ = V (ϕ) ( 3H 2 2 R = 2πV (ϕ) )2 = V (ϕ) 3 12π 2 M 6 G V (ϕ) 2 = V (ϕ) 24π 2 εm 4 G = H2 8π 2 εm 2 G (3.61) ε 2 R (r = 2π k ) kn 1 n n 1 = d ln 2 R (r) d ln k = 3M 2 G ( V V )2 + 2MG 2 V V 6ε + 2η (3.62) n = 1 Harrison-Zel dovich running α dn d ln k = 16εη 24ε2 2ξ (3.63) ξ MG 4 V (ϕ)v (ϕ) V 2 (ϕ) R c RD MD

64 64 3 Φ H = 2 3 R c RD 3 5 R c MD k (3.39) k 2 a 2 Φ H = 4πGρ = 3 2 H2 = 2 ( k )2 Φ H 3 Ha k CMB 3.24 (3.21)(3.23) H T T ij h ij ds 2 = dt 2 + a 2 (t)(δ ij + 2h ij )dx i dx j (3.64) ij δ ij h ij = 0 2 +, h ij h ij = d 3 k [ ] h (2π) 3/2 +k (t)e+ ij (ˆk) + h k (t)e ij (ˆk) e ikx (3.65) e A ij (ˆk)e A ij ( ˆk) = δ AA (3.66) ˆk x > 0 e + ij (ˆk) = 1 (û i û j ˆv iˆv j ) e ij (ˆk) = 1 (û iˆv j + ˆv i û j ) 2 2 ˆk, û, ˆv 3 x < 0 x > 0 ˆk ˆk

65 S = 1 16πG [ 1 gd 4 xr 1 d 3 ka 3 (t) 8πG (2π) 3 2 ḣ+k (t) 2 + k2 a 2 h +k (t) ḣ k (t) 2 + k2 a 2 h k (t) 2 ] (3.67) massless scalar 2 φ A k (t) = 1 h 8πG Ak (t) ( d 2 dt 2 + 3H d dt + k2 ) a 2 φ A k = 0 a(t) = e Ht φ A k (t) 2 = H2 2k 3 k ah H 1 δφ = H 2π 8πGH h = = H +, 2π 2πM G ( H (ϕ(f)) )2 h 2 (f) 2 h ij h ij = 4 = V [ϕ] 2πM G 3π 2 MG h (3.68) a(t) t p 1 3p ( h(f, a) a(t) 2p p J 3p 1 2(1 p) 1 p k ) a(t)h(t) k = 2πfa 0 (3.69)

66 66 3 ω dρ GW d ln f = ω2 32πG h2 t in (f) ω = H (t in (f)), h = h inf dρ GW (f) d ln f = H2 (t in )) 32πG h2 inf = 1 24 ρ cr (t in (f)) 2 h (f) Ω GW (f, t in (f)) = h (f) (3.70) ρ GW a 4 ρ cr = ρ tot w = p/ρ ρ tot a 3(1+w) Ω GW (f, t 0 ) (3.61) (3.68) r = 2 h 2 = 16ε (3.71) R n t = d ln 2 h d ln k = d ln 2 h d ln ah d ln 2 h d ln a 1 d ln 2 h H dt = 2 H (ln H) 1 H (ln V ) = V ϕ HV = V 2 3H 2 V ( V = MG 2 )2 = 2ε (3.72) V CMB

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

29 7 5 i 1 1 1.1............................ 1 1.1.1................. 1 1.1.2............................. 3 1.1.3......................... 4 1.2........................... 9 1.2.1................. 9

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information