A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)

Size: px
Start display at page:

Download "A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)"

Transcription

1 $\bullet$ $\bullet$ $\bullet$ $\prime \mathcal{h}$ A generalized Cartan decomposition for connected compact Lie groups and its application Graguate School of Mathematical Sciences, The University of Tokyo 1 $\sim$ 11. $G$ $H$ $G$ $\Leftrightarrow End_{G}(H)$ $\mathcal{h}$ $ \kappa$ $\mathcal{h}$ [ [ ( ) $U(n)r\vee S^{k}(\mathbb{C}^{n})$ $)$ $(GL_{k}-GL_{n}$ $U(k)\cross U(n)$ cpoly $[M(k, n;\mathbb{c})]$ $L^{2}$ ( ) $GL(n,\mathbb{R})$ $L^{2}(GL(n,\mathbb{R})/O(n))$

2 $\sigma$ $\sigma$ $\sigma$ ( ) ( ) 12. $G$ $D$ $D$ $S$ $G$. $D =G\cdot S$ $D$ id $\sigma _{S}=$ $s$ G-. $D $ $S$ $D$ $G$ $S$ S 2 S $S$ ( ) 2 $D$ $\mathbb{h}$ $S$ $\sqrt{-1}\mathbb{r}+$ $\sigma(z)=-\overline{z},$ $z\in \mathbb{h}$ $\pm(\begin{array}{ll}l *0 1\end{array})\}$ $G=\{$ $G=SO(2)$ ([Ko4])

3 $\bullet$ $\bullet$ $G$ $D$ $\mathcal{v}arrow D$ $G$ $D$ $\mathcal{o}(d, V)$ $G$ 1( ) $G$ $D$ - $S$ 2( ) $+$ compatibility ( [Ko4]) $\ovalbox{\tt\small REJECT}$ $[Ko4]$?? $\sim?$? ( ) ( ) 1.4. $G$ $H,L$ $G/L$ $H$ $G/L$ 3 $G$ $\sigma$ 3 $(G,H, L)$ visible triple $\bullet$ $\sigma$ $H$ $L$ $\sigmag/larrow G/L$ $G=HG^{\sigma}L$ $G^{\sigma}$ $B$ $G=HBL$ $G$

4 $\sigma$ ( ). $G=GL(n,\mathbb{C})$ 3 $(G, H, L)=$ ( $G\cross G$, diag $(G)$, diag $(G)$ ) $G\sim(G\cross G)/diag(G)$ Program visible triple $(G, H, L)$ 2. visible triple $(G, H, L)$ $B$ $G=HBL$ (1) A $G$ $H,$ $L$ $G$ [KO5] (2) $(G, L),$ $(G, H)$ [Fl], $[Ho $, [Mal] visible action $(G, L)$ [Ko6] (1) $G$ $t$ $t$ $H,$ $L$ $t$ Weyl $H,$ $L$ $G$ $G/L,$ $G/H,$ $(G\cross G)/(L\cross H)$ $G^{\sigma}\cdot 0,$ $(G^{\sigma}\cross G^{\sigma})\cdot 0$ $G=HBL$ $($ $G=HG^{\sigma}L)$ 3 $H\sim G/L$, $L\sim G/H$, diag$(g)\sim(g\cross G)/(L\cross H)$ 3 $Ind_{L}^{G}\chi _{H}$, $Ind_{H}^{G}\chi _{L}$, $Ind_{L}^{G}\chi\otimes Ind_{H}^{G}\chi $ ( (triunity theorem for multiplicityheeness property) [Ko2] $\chi,$ $)$ $\chi $ $G=L_{\lambda}BL_{\mu}\Rightarrow m\lambda\otimes n\mu$ M.F. for $\forall m,$ $n\in N$

5 121 $\lambda$ ( $\mu$ $L_{\lambda},$ $L_{\mu}$ $f_{m.f.\rfloor}$ $m\lambda\otimes n\mu$ M.F. for $\forall $G$ (multiplicity-free) ) m,$ $n\in N\Rightarrow??G=L_{\lambda}BL_{\mu}$ $(\text{ ^{}\prime})$ $\sim?$? $\infty$ $(\text{ ^{}l})$? $U(n)$ J. R. Stembridge $GL(n, \mathbb{c})$ ([Stl]) $U(n)$ ( ) 1.7. ( ) [Ko2] A ( ) ( ) $U(n)$ Stembridge ([St2]) $U(n)$ ( ) 1.8. Programl6 ( ) ([Ko5]) $E_{7}$ ( 2.1) 2.1. $G$ $E_{7}$ Dynkin

6 $\alpha_{2}$ 122 $-\infty-\llcorner 0arrowarrow 0$ $\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{7}$ Type $E_{7}$ $H,$ $L$ $\{\alpha_{7}\},$ $\{\alpha_{1}\}$ $(G, H, L)$ visible triple $\tau.\tau $ Proof. Vogan (Figure 1,2) $G$ $\alpha_{2}$ $\alpha_{2}$ $ \llcorner_{-\bullet}$ $arrow-\llcorner 0\mapsto-\circ-0$ $\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{7}$ Figure 1 $\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{7}$ Figure 2 $\tau\tau^{l}$ $g^{\tau\tau }$ $\mathbb{r}\oplus \mathfrak{e}$ $=$ V $\mathfrak{g}^{\tau\tau }$ (6) $\mathfrak{g}^{\tau\tau }=\mathfrak{g}^{\tau,\tau }\oplus \mathfrak{g}^{-\tau,-\tau }$ $=(\mathbb{r}h_{1}\oplus(\sqrt{-1}\mathbb{r}\oplus\epsilon o(10)))\oplus \mathfrak{g}^{-\tau,-\tau }$ $=(\mathbb{r}h_{1}\oplus(\mathbb{r}h_{2}\oplus\epsilon o(10)))\oplus \mathfrak{g}^{-\tau,-\tau }$. $\mathbb{r}h_{1}$ $\mathfrak{g}^{\tau\tau }$ $\mathbb{r}h_{2}$ $\mathbb{r}\oplus$ T so(10) $\sigma$ $a$ $\mathfrak{g}^{-\tau.-\tau }$ Weyl -1 $\mathbb{r}\oplus $(e_{6}$ $\sqrt{}$ $)$, \mathfrak{s}$0(10) $H_{3}\in 5o(10)$ $\sqrt{-1}\mathbb{r}\oplus$ $\mathbb{r}(h_{2}+h_{3})\oplus\epsilon u(4)$ $\mathfrak{a}$ so(10) $Z_{\mathfrak{g}^{\tau.\tau }}(a)=\mathbb{r}h_{1}\oplus \mathbb{r}(h_{2}+h_{3})\oplus\epsilon u(4)$ $\mathfrak{g}^{\tau }=\epsilon u(2)\oplus$ so(12) $\mathfrak{g}^{\tau }=\mathfrak{g}^{\tau,\tau}\oplus \mathfrak{g}^{\tau,-\tau}$ $=(\mathfrak{s}u(2)^{\tau}\oplus so(12)^{\tau})\oplus \mathfrak{g}^{\tau,-\tau}$ $=(\mathbb{r}w_{1}\oplus(\sqrt{-1}\mathbb{r}\oplus \mathfrak{s}o(10)))\oplus \mathfrak{g}^{\tau,-\tau}$ $=$ $(\mathbb{r}w_{1}\oplus (\mathbb{r}w_{2}\oplus so(10)))\oplus \mathfrak{g}^{\tau,-\tau}$. $\mathbb{r}w_{1}=\epsilon u(2)^{\tau}$ so(10) $)$ $\mathbb{r}w_{2}$ $($ $)^{\tau}$ $(\sqrt{-1}\mathbb{r}\oplus$ so 12

7 $\tau^{l}$ $C^{\backslash }$ 123 $G^{l},$ $G $ $G$ $\epsilon u(2)$, so(12) $G^{\tau }$ $G^{\tau }=G G $ ( 22) $G=G^{\tau}\exp(a)G G $. (1) 2.2. (B.Hoogenboom, T.Matsuki) $G$ $\tau $ $\tau,$ $G$ $H,$ $L$ $\tau,$ $a$ $\mathfrak{g}^{-\tau,-\tau }$ $\tau\tau $ $\mathfrak{g}$ $G$ $G=H\exp(a)L$. \mathbb{r}w_{1})$ $(\mathfrak{g}^{l}, 22 $G =\exp(\mathbb{r}w_{1})\exp(a )\exp(\mathbb{r}w_{1})$ $a $ $\sigma$ $\mathfrak{g}^{l}=\epsilon u(2)$ 1 $\mathbb{r}w_{1}\oplus \mathbb{r}w_{2}=\mathbb{r}h_{1}\oplus \mathbb{r}h_{2}$ $a,$ $b\in \mathbb{r}$ $W_{1}=aH_{1}+bH_{2}$ $b\neq 0$ $(\exp(\mathbb{r}w_{1})\exp(a^{l})\exp(\mathbb{r}w_{1}))g $ $=(\exp(\mathbb{r}(ah_{1}+b(h_{2}+h_{3})))\exp(\mathfrak{a} )\exp(\mathbb{r}w_{1}))g $ (1) $G=G^{\tau}\exp(a)G G $ $=G^{\tau}\exp(a)(\exp(\mathbb{R}W_{1})\exp(a^{l})\exp(\mathbb{R}W_{1}))G^{l\prime}$ $=G$ $\exp(a)\exp(\mathbb{r}(ah_{1}+b(h_{2}+h_{3})))\exp(a^{l})\exp(\mathbb{r}w_{1})g $ $=G^{\tau}\exp(\mathbb{R}(aH_{1}+b(H_{2}+H_{3})))\exp(a)\exp(a )\exp(\mathbb{r}w_{1})g $ $=G^{\tau}\exp(a)\exp(a )\exp(\mathbb{r}w_{1})g $. $G^{\tau}=H$ $\exp(\mathbb{r}w_{1})g =L$ $M$ $G^{\tau }$ $c^{g}$ $L$ $H$

8 124 ( ) $(G, H, L)=$ $(SO(2n+1), U(n), U(n))$ $SO(2n+1)\supset SO(2n)\supset U(n)$ $(SO(2n+1), SO(2n))$ so $(2n+1)$ so $(2n)$-module $\epsilon o(2n+1)=\epsilon o(2n)\oplus q$ $(SO(2n), U(n))$ $= u(n)\oplus\bigcup_{g\in U(n)}Ad(g)(a)\oplus q$ $a$ $(SO(2n), U(n))$ Weyl ( ) $= u(n)\oplus\bigcup_{g\in U(n)}Ad(g)(a\oplus q_{0})$ qo $q$ ( ) Weyl $\dim(a)+\dim$(qo) $=n$ $G=H\exp(a+$ qo $)L$ quiver ([Ko5]) $G$ $(H, L)$ $G$ $\sigma$ $G$ Weyl $H\cross G^{\sigma}\cross Larrow G$ $g\in G$ $Hg\cap G^{\sigma}L=\emptyset$ ( ) $G$ $GL(N, \mathbb{c})$

9 $\bullet$ $\bullet$ 125 Weyl block diagonal $L$ $R\in$ $M(N, \mathbb{r})$ $G$ Ad $(G^{\sigma}L)R\subset M(N, \mathbb{r})$ $Ad(Hg)J\cap M(N, \mathbb{r})=\emptyset$ (2) $g\in G$ $H$ $G(n)=U(n),$ $SO(2n+1),$ $Sp(n)$ or $SO(2n)$ $n$ $n=n_{1}+\cdots+n_{k}$ $G(n)$ $U(n_{1})\cross\cdots\cross U(n_{k-1})\cross G(n_{k})$ $X$ $G(n)$ $H$ $X=(X_{ij})_{1\leq i,j\leq k}$ $G(n)$ $A$ $n=n_{1}+\cdots+n_{k}$ block $G(n)$ $B$ $2n+1=$ $n_{1}+\cdots+n_{k-1}+(2n_{k}+1)+n_{k-1}+\cdots+n_{1}$ $C,$ $D$ $2n=n_{1}+\cdots+n_{k-1}+2n_{k}+n_{k-1}+\cdots+n_{1}$ block $i_{*}\in\{1,2, \ldots, k\},$ $i_{*}\neq i_{*+1},$ $r\geq 2$ $i_{0}arrow i_{1}arrow\cdotsarrow i_{r}=i_{0}$, $A_{i_{O}\cdots i_{r}}(x)$ $=X_{i_{O}i_{1}}X_{i_{1}i_{2}}\cdots X_{i_{r-1}i_{r}}$ (3) ( 23 ) $H$ ( block diagonal ) $A_{i_{0}\cdots i_{r}}$ $(Ad$ $(h)x)=h_{i_{o}}a_{i_{0}\cdots i_{r}}(x)h_{i_{0}}^{-1}$ (4) block $h_{s}$ $h\in H=U(n_{1})\cross\cdots\cross U(n_{k-1})\cross G(n_{k})$ $s$ $H$ $A_{i_{\text{ }}\cdots i_{r}}(x)$ (quiver ) (2) $g\in G(n)$ $A_{i_{O}\cdots i_{r}}([x, R])$ $i_{0}arrow\cdotsarrow i_{r}$ $G(n)$ $X$ 2.3. (3)

10 126 A $u(n)=\{x\in \mathfrak{g}\mathfrak{l}(n, \mathbb{c})$ $r+x=o\}$ B $\mathfrak{s}o(2n+1)=\{x\in 5[(2n+1, \mathbb{c})$ ${}^{t}xj_{2n+1}+j_{2n+1}x=o,$ $\overline{x}+x=o\}$ C $s\mathfrak{p}(n)=\{x\in 5[(2n, \mathbb{c})$ ${}^{t}xj_{n}^{l}+j_{n}^{l}x=o,{}^{t}\overline{x}+x=o\}$ D $so$ $(2n)=\{X\in\epsilon 1(2n, \mathbb{c}){}^{t}xj_{2n}+j_{2n}x=o, \ulcorner X^{-}+X=O\}$ X A $\tilde{x}_{ij};=\{\begin{array}{ll}x_{ij} (i<j),x_{\overline{ji}} (i>j)\end{array}$ $B$ $\tilde{x}_{ij}=\{\begin{array}{ll}x_{ij} (i+j\leq 2k),J_{n_{1}}^{t}X_{2k-j,2k-i}J_{n_{j}} (i+j>2k, i,j\neq k),j_{2n_{k}+1^{t}}x_{2k-j.k}j_{n_{j}} (i=k,j>k),j_{n_{i}}{}^{t}x_{k,2k-i}j_{2n_{k}+1} (i>k,j=k)\end{array}$ $cg^{i\rfloor}$ $\tilde{x}_{ij}=\{\begin{array}{ll}x_{ij} (i+j\leq 2k),J_{n_{i}}{}^{t}X_{2k-j,2k-i}J_{n_{j}} (i+j>2k, i,j\neq k),j_{n_{k}} {}^{t}x_{2k-j,k}j_{n_{j}} (i=k,j>k),j_{n_{i}}{}^{t}x_{k,2k-i}j_{n} k (i>k,j=k)\end{array}$ D $\tilde{x}_{ij};=\{\begin{array}{ll}x_{ij} (i+j\leq 2k),J_{n_{l}}{}^{t}X_{2k-j,2k-i}J_{n_{j}} (i+j>2k, i,j\neq k),j_{2n_{k}}{}^{t}x_{2k-j,k}j_{n_{j}} (i=k,j>k),j_{n_{i}}{}^{t}x_{k,2k-i}j_{2n_{k}} (i>k,j=k)\end{array}$

11 $.\cdot\cdot$ $01$ $\Pi^{\prime l}$ 127 $(n_{2k-i}=n_{i},$ $1\leq i\leq k-1$ $)$ $A_{i_{0}\cdots i_{r}}(x)$ $=\tilde{x}_{i_{o}i_{1}}\tilde{x}_{i_{1}i_{2}}\cdots\tilde{x}_{i_{r-1}i_{r}}$ $O$ $J_{m};=[_{1}$ $1]\in GL(m, \mathbb{r})$, $\underline{m}$ $\underline{m}$ $J_{m} ;=$ $[_{-1}O.$ $-1$ 1 $\dot{o}$ $1]\in GL(2m, \mathbb{r})$ (4) 222 Stembridge 3 $G$ $t$ $G$ $\sigma$ $G$ Weyl $t$ $\Pi$ $\Pi,$ $\Pi$

12 l}$ 128 $L_{\Pi },$ $L_{\Pi }$ $\Pi,$ $\Pi $ $G$ $\Pi^{l}=\Pi$ $L_{\Pi }=G$ $(\Pi )^{c}=\pi\backslash \Pi $ $L_{\Pi }$ 1 ( ) $G=L_{\Pi }G^{\sigma}L_{\Pi }$ $(\Pi^{l}, \Pi^{ll})$ ( $G$ $\Pi $ $\Pi^{Jl}$ ) $(L_{\Pi }.L_{\Pi })$ $G$ [Ko6] ( polar ([Her]) polar $K\ddot{a}$hler visible polar ) $A_{n}$ 3.1 ([Ko5]) $\ovalbox{\tt\small REJECT}arrow\infty---\cdots\cdots\cdot$ $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $- \frac{-}{}c----$ $\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ Type A $\alpha_{n-2}\alpha_{n-1}$ $\alpha_{n}$ I. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $(\Pi^{l\prime})^{c}=\{\alpha_{j}\}$. $1\leq i,j,$ $k\leq n$ I. $(\Pi^{l})^{c}=\{\alpha_{i}, \alpha_{j}\}$, $(\Pi )^{c}=\{\alpha_{k}\}$, $\min.\{p, n+1-p\}=1$, $p=i,g$ or $i=j\pm 1$. I. $(\Pi )^{c}=\{\alpha_{i}, \alpha_{j}\}$, $(\Pi )^{c}=\{\alpha_{k}\}$, $\min\{k, n+1-k\}=2$. anything, $i=1$ or. $n$ $m$. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $\Pi^{\prime $m$ $(\Pi^{l/})^{c}$ $B_{n}$ $-arrowarrow\cdots\cdot\cdots\cdot\cdot\cdot$ $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$$ =$ $\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ Type $B$ $\alpha_{n-2}$ $\alpha_{n-1}$ $\alpha_{n}$ I., $(\Pi^{l})^{c}=\{\alpha_{1}\}$ $(\Pi^{l\prime})^{c}=\{\alpha_{1}\}$. I., $(\Pi^{l})^{c}=\{\alpha_{n}\}$ $(\Pi )^{c}=\{\alpha_{n}\}$. If. $(\Pi )^{c}=\{\alpha_{1}\}$, $(\Pi )^{c}=\{\alpha_{i}\}$, $2\leq i\leq n$.

13 $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $C_{n}$ $ arrow\cdots\cdot\cdot$ $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $-\mapsto=$ $\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ Type $C$ $\alpha_{n-2}\alpha_{n-1}$ $\alpha_{n}$ I. $(\Pi )^{c}=\{\alpha_{n}\}$, $(\Pi^{lJ})^{c}=\{\alpha_{n}\}$. I. $(\Pi )^{c}=\{\alpha_{1}\}$, $(\Pi^{ll})^{c}=\{\alpha_{i}\}$, $1\leq i\leq n$. 3.4 $D_{n}$ $-arrow 0-\cdot\cdot\cdots\cdots\cdot$ $\cdot\cdot$ $ 0\nearrow\alpha_{n}$ $\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ Type $D$ $\alpha_{n-3}\alpha_{n-}\backslash _{2}$ $\circ\alpha_{n-1}$ I. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $(\Pi )^{c}=\{\alpha j\}$, $i,j\in\{1, n-1, n\}$. I. $(\Pi^{l})^{c}=\{\alpha_{1}\}$, $(\Pi^{l\prime})^{c}=\{\alpha_{j}\}$, $j\neq 1,$ $n-1,$ $n$ IF. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $(\Pi^{ll})^{c}=\{\alpha_{j}\}$, $i\in\{n-1, n\},$ $j\in\{2,3\}$. $m$. $(\Pi )^{c}=\{\alpha_{i}\}$, $(\Pi )^{c}=\{\alpha_{j}, \alpha_{k}\}$, $i\in\{n-1, n\},$ $j,$ $k\in\{1, n-1, n\}$. IV. $(\Pi )^{c}=\{\alpha_{i}\}$, $(\Pi )^{c}=\{\alpha_{j}, \alpha_{k}\}$, $i\in\{n-1, n\},$ $j,$ $k\in\{1,2\}$. V. $(\Pi )^{c}=\{\alpha_{1}\}$, $(\Pi )^{c}=\{\alpha_{j}, \alpha_{k}\}$, $j\in\{n-1, n\}$ or $k\in\{n-1, n\}$. VI. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $(\Pi^{\prime l})^{c}=\{\alpha_{2}, \alpha_{j}\}$, $n=4,$ $(i,j)=(3,4)$ or (4, 3). 3.5 E6 $\alpha_{2}$ $-arrow\llcorner_{0}$ $\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ Type $E_{6}$ I. $(\Pi )^{c}=\{\alpha_{i}\}$, I., $(\Pi^{l})^{c}=\{\alpha_{i}\}$ I. $(\Pi^{l})^{c}=\{\alpha_{i}\}$, $(\Pi^{l\prime})^{c}=\{\alpha_{j}\}$, $i,j\in\{1,6\}$. $(\Pi^{\prime l})^{c}=\{\alpha_{1}, \alpha_{6}\}$, $i=1$ or 6. $(\Pi^{l\prime})^{c}=\{\alpha_{j}\}$, $i=1$ or 6, $j\neq 1,4,6$.

14 E7 $\alpha_{2}$ $ \llcorner 0arrow-0$ $\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{7}$ Type $E_{7}$ $(\Pi )^{c}=\{\alpha_{7}\}$ I., $(\Pi^{l/})^{c}=\{\alpha_{7}\}$. I. $(\Pi )^{c}=\{\alpha_{7}\}$, $(\Pi )^{c}=\{\alpha_{i}\}$, $i=1$ or E8,F4,G2 LII $G=L_{\Pi }G^{\sigma}$ $G$ $(L_{\Pi }, L_{\Pi })$ 4 $\mu\otimes\nu$ $\omega_{*}$ (Dynkin ) $a,$ $b,c$ P. Littelmann [Li] J. R. Stembridge [St2] 4.1 $A_{n}$ ([Ko5]) $1\leq i,j,$ $k\leq n$ I. $\mu=a\omega_{i}$, $\nu=b\omega_{j}$. I. $\mu=a\omega_{i}+hv_{j}$, $\nu=c\omega_{k}$, $\min_{p=i,j}\{p, n+1-p\}=1$, or $i=j\pm 1$. I. $\mu=a\omega_{i}+b\omega_{j}$, $\nu=c\omega_{k}$, $\min\{k, n+1-k\}=2$. $m$. $\mu=a\omega_{i}$ $\nu$, anything, $i=1$ or. $n$ $m$ $\nu$ 1

15 $ $, $\mathfrak{a}$, $B_{n}$ I. $\mu=a\omega_{1}$, $\nu=b\omega_{1}$. I. $\mu=a\omega_{n}$, $\nu=b\omega_{n}$. I. $\mu=a\omega_{1}$, $\nu=b\omega_{i}$, $2\leq i\leq n$. 4.3 $C_{n}$ I. $\mu=a\omega_{n}$, $\nu=b\omega_{n}$. $l\ovalbox{\tt\small REJECT}=b\omega_{i}$ I. $\mu=a\omega_{1}$,, $1\leq i\leq n$. 4.4 $D_{n}$ I. $\mu=a\omega_{i}$, $\nu=b\omega_{j}$, $i,j\in\{1, n-1, n\}$. I. $\mu=a\omega_{1}$, $\nu=b\omega_{j}$, $j\neq 1,$ $n-1,$ $n$ I. $\mu=a\omega_{i}$, $\nu=b\omega_{j}$, $i\in\{n-1, n\},$ $j\in\{2,3\}$. $m$. $\mu=a\omega_{i}$, $\nu=b\omega_{j}+c\omega_{k}$, $i\in\{n-1, n\},$ $j,$ $k\in\{1, n-1, n\}$. IV. $\mu=a\omega_{i}$, $\nu=b\omega_{j}+c\omega_{k}$, $i\in\{n-1, n\},$ $j,$ $k\in\{1,2\}$. V. $\mu=a\omega_{1}$, $\nu=b\omega_{j}+c\omega_{k}$, $j\in\{n-1, n\}$ or $k\in\{n-1, n\}$. VI. $\mu=a\omega_{i}$, $\nu=b\omega_{2}+c\omega_{j}$, $n=4,$ $(i,j)=(3,4)$ or (4, 3). 4.5 E6 I. $\mu=a\omega_{i}$. I. $\mu=a\omega_{i-}$, $\nu=b\omega_{j}$, $\nu=b\omega_{1}+c\omega_{6}$, $i,j\in\{1,6\}$. $i=1$ or 6. I. $\mu=a\omega_{i}$. $\nu=b\omega_{j}$, $i=1$ or 6, $j\neq 1,4,6$. 4.6 E7 I. I.. $\mu=a\omega_{7}$, $\nu=b\omega_{7}$. $\mu=a\omega_{7}$, $\nu=b\omega_{i}$, $i=1$ or ( ). (1) [Ok]

16 132 A $i+j=n$ B I. C $D$ $i,j\in\{n-1, n\}$ - minor summation formula $([rw])$ (2) [Al] [ [Al] H. Alikawa, Multiplicity-free branching rules for outer automorphisms of simple Lie algebras. J. Math. Soc. Japan, 59, 2007, no. 1, [Fl] M. Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal., 30, 1978, no. 1, [Hel] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Pure and Appl. Math. New York, London Academic Press, [Her] R. Hermann, Variational completeness for compact symmetric spaces, Proc. Amer. Math. Soc., 11, 1960, [Ho] B. Hoogenboom, Intertwining functions on compact Lie groups, CWI Tract, 5. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, [IW] M. Ishikawa and M. Wakayama, Minor summation formulas of Pfaffians, Linear and Multilinear Algebra, 39, 1995, [Kn] A. W. Knapp, Lie groups beyond an introduction, 2nd ed., Progr. Math. 140, Birkh\"auser, Boston, [KO] [Kol] Multiplicity free theorem in branching problems of unitary highest weight modules, 1997 ), 1998, (

17 133 [Ko2] T. Kobayashi, Geometry of multiplicity-free representations of GL $(n)$, visible actions on flag varieties, and triunity, Acta Appl. Math., 81, 2004, [Ko3] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci., 41, 2005, , special issue commemorating the fortieth anniversary of the founding of RIMS. [Ko4] T. Kobayashi, Propagation of multiplicity-freeness property for holomorphic vector bundles, Progr. Math., Birkh\"auser, 2012 (in press), math. RT/ [Ko5] T. Kobayashi, A generalized Cartan decomposition for the double coset space $(U(n_{1})\cross U(n_{2})\cross U(n_{3}))\backslash U(n)/(U(p)\cross U(q))$, J. Math. Soc. Japan, 59, 2007, [Ko6] T. Kobayashi, Visible actions on symmetric spaces, Thransform. Groups, 12, 2007, [Ko7] T. Kobayashi, Multiplicity-free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, in Representation Theory and Automorphic Forms, Progr. Math., Birkh\"auser, Boston, 2007, , math. RT/ [KTl] K. Koike and I. Terada, Young diagrammatic methods for the representation theory of the classical groups of type $B_{n},$ $C_{n},$ $D_{n}$, J. Algebra, 107, 1987, [KT2] K. Koike and I. Terada, Young Diagrammatic Methods for the Restriction of Representations of Complex Classical Lie Groups to Reductive Subgroups of Maximal Rank, Adv. Math., 79, 1990, [Li] P. Littelmann, On spherical double cones, J. Algebra, 166, 1994, [Mal] 2 involution II, ( 1994), No. 895, 1995, [Ma2] T. Matsuki, Double coset decomposition of algebraic groups arising $hom$ two involutions. I, J. Algebra, 175, 1995, [Ma3] T. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra, 197, 1997,

18 134 [Ok] S. Okada, Applications of minor summation formulas to rectangularshaped representations of classical groups, J. Algebra, , [Sal] A. Sasaki, A characterization of non-tube type Hermitian symmetric spaces by visible actions, Geom. Dedicata, 145, 2010, [Sa2] A. Sasaki, Visible action on irreducible multiplicity-free spaces, Int. Math. Res. Not. IMRN, 2009, no. 18, [Sa3] A. Sasaki, A generalized Cartan decomposition for the double coset space SU $(2n+1)\backslash$ SL $(2n+1,\mathbb{C})/$ Sp $(n,\mathbb{c})$, J. Math. Sci. Univ. Tokyo, 17, 2010, [Stl] J. R. Stembridge, Multiplicity-free products of Schur functions, Ann. Comb., 5, 2001, [St2] J. R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory, 7, 2003, [Wo] J. A. Wolf, Harmonic Analysis on Commutative Spaces, Mathematical Surveys and Monographs, Amer. Math. Soc., yuichiro@ms.u-tokyo.ac.jp

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r 1960 70 Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta theta ( ) Λ ( ) August 9, 2000 Theta lifting of representations

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Bruhat

Bruhat SGC - 77 Bruhat ([22]) 3 3.11 2010 4 ii 1 1 1.1... 1 1.2... 5 1.3... 8 1.4 1... 11 1.5 2... 14 2 18 2.1... 18 2.2... 25 2.3... 30 3 36 3.1... 36 3.2... 42 3.3... 49 3.3.1... 49 3.3.2... 50 3.3.3... 52

More information

情報教育と数学の関わり

情報教育と数学の関わり 1801 2012 68-79 68 (Hideki Yamasaki) Hitotsubashi University $*$ 1 3 [1]. 1. How To 2. 3. [2]. [3]. $*E-$ -mail:yamasaki.hideki@r.hit-u.ac.jp 2 1, ( ) AND $(\wedge)$, $OR$ $()$, NOT $(\neg)$ ( ) [4] (

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

直交型三重旗多様体の軌道分解の一例 (表現論と調和解析における諸問題)

直交型三重旗多様体の軌道分解の一例 (表現論と調和解析における諸問題) 1770 2011 119-130 119 (Toshihiko Matsuki) Faculty of Letters, Ryukoku University $P_{1},$ $P_{k}$ $\ldots,$ - $\mathcal{m}=(g/p_{1})\cross\cdots\cross(g/p_{k})$ $\cong(g\cross\cdots\cross G)/(P_{1}\cross\cdots\cross

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

可約概均質ベクトル空間の$b$-関数と一般Verma加群

可約概均質ベクトル空間の$b$-関数と一般Verma加群 1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

超幾何的黒写像

超幾何的黒写像 1880 2014 117-132 117 * 9 : 1 2 1.1 2 1.2 2 1.3 2 2 3 5 $-\cdot$ 3 5 3.1 3.2 $F_{1}$ Appell, Lauricella $F_{D}$ 5 3.3 6 3.4 6 3.5 $(3, 6)$- 8 3.6 $E(3,6;1/2)$ 9 4 10 5 10 6 11 6.1 11 6.2 12 6.3 13 6.4

More information

Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas

Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas Reductive Dual Pair Weil compact (kyo@math.h.kyoto-u.ac.jp) Weil Howe duality non-compact pair Sp(n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kashiwara-Vergne] [Howe4, Howe6] 3 (?) x7 Gelfand-Kirillov

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

数理解析研究所講究録 第1977巻

数理解析研究所講究録 第1977巻 1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

数理解析研究所講究録 第1955巻

数理解析研究所講究録 第1955巻 1955 2015 158-167 158 Miller-Rabin IZUMI MIYAMOTO $*$ 1 Miller-Rabin base base base 2 2 $arrow$ $arrow$ $arrow$ R $SA$ $n$ Smiyamotol@gmail.com $\mathbb{z}$ : ECPP( ) AKS 159 Adleman-(Pomerance)-Rumely

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ e-mail: ikeka@math scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$

More information

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot 外力項付常微分方程式の周期解および漸近周期解の初期 Title値問題について ( 力学系 : 理論から応用へ 応用から理論へ ) Author(s) 野原, 勉 ; 有本, 彰雄 Citation 数理解析研究所講究録 (2011), 1742: 108-118 Issue Date 2011-05 URL http://hdl.handle.net/2433/170924 Right Type Departmental

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$ Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion

More information

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin) 教科専門科目の内容を活用する教材研究の指導方法 : TitleTeam2プロジェクト ( 数学教師に必要な数学能力形成に関する研究 ) Author(s) 青山 陽一 ; 中馬 悟朗 ; 神 直人 Citation 数理解析研究所講究録 (2009) 1657: 105-127 Issue Date 2009-07 URL http://hdlhandlenet/2433/140885 Right

More information

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理) 1725 2011 1-14 1 (Nobuhisa Fujita) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 1. (Dirac peak) (Z-module) $d$ (rank) $r$ r $\backslash$ (Bravais lattice) $d$ $d$ $r$

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or 1218 2001 15-25 15 BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $oro$ $\mathbb{c}$-vector space Vir $=\oplus \mathbb{c}l_{n}n\in

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1: 得点圏打率 盗塁 併殺を考慮した最適打順決定モデル Titleについて : FA 打者トレード戦略の検討 ( 不確実性の下での数理モデルとその周辺 ) Author(s) 穴太, 克則 ; 高野, 健大 Citation 数理解析研究所講究録 (2015), 1939: 133-142 Issue Date 2015-04 URL http://hdl.handle.net/2433/223766

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺)

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺) 数理解析研究所講究録第 2016 巻 2017 年 142-147 142 単純パラエルミート対称空間の等長変換群について 東京理科大学大学院理学研究科 Dl 下川拓哉 Takuya Shimokawa Graduate School of Science Mathematics Tokyo University of Science 1 初めに 本稿の内容は杉本恭司氏 ( 東京理科大学大学院理学研究科

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4

Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4 Part 4 2001 6 20 1 2 2 generator 3 3 L 7 4 Manin triple 8 5 KP Hamiltonian 10 6 n-component KP 12 7 nonlinear Schrödinger Hamiltonian 13 http//wwwmathtohokuacjp/ kuroki/hyogen/soliton-4txt TEX 2002 1 17

More information

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la , 2000 pp.19-32 1950 Mackey Dixmier = 50 Pukanzsky, Duflo, Pedersen $\text{}$ 60 Kirillov Dixmier = Mackey 62 Kirillov Auslander-Kostant 1 Pukanzsky 1 70 $ $) $-$ = = Corwin, Pedersen - $-$ 19 \S 1. $g$

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1 高階線型常微分方程式の変形におけるvirtual turning Titlepointの役割について (II) : 野海 - 山田方程式系のnew S curveについて ( 線型微分方程式の変形と仮想的変わり点 ) Author(s) 佐々木 俊介 Citation 数理解析研究所講究録 (2005) 1433: 65-109 Issue Date 2005-05 URL http://hdlhandlenet/2433/47420

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic 1575 2008 73-87 73 BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medicine 1 BORSUK-ULAM, Borsuk-Ulam Borsuk-Ulam 11 (Borsuk-Ulam

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

MSRI(Einsenbud professor) Newton Institute Brazilian Topology meeting Surveys in Geometry,

MSRI(Einsenbud professor) Newton Institute Brazilian Topology meeting Surveys in Geometry, . 1964 2 23 / : 606-8502 tel/fax: 075-753-2662 kfujiwara@math.kyoto-u.ac.jp 2017 4 1986 3 : 1988 3 : 1993 3 :. Laplacian on graphs ( ) 1990 4-1996 3 : 1996 4-1998 3 : 1998 4-2007 3 : / 2007 4-2012 3 2012

More information

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad 1. GL(n GL(n Lie GL(n, C Lie 1 Lie G = GL(n, R GL(n, C G G X M(n, C ϕ(x d dt ϕ(xetx t=0 = d dt ϕ(x + txx t=0 M(n, C C (i, j 1 0 E ij ( n ν, µ=1 x νµe νµ E ij = n ν=1 x νie νj (1.1 E ij = Lie n x νi x ν=1

More information

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx

}$ $q_{-1}=0$ OSTROWSKI (HASHIMOTO RYUTA) $\mathrm{d}\mathrm{c}$ ( ) ABSTRACT Ostrowski $x^{2}-$ $Dy^{2}=N$ $-$ - $Ax^{2}+Bx Title 2 元 2 次不定方程式の整数解の OSTROWSKI 表現について ( 代数的整数論とその周辺 ) Author(s) 橋本 竜太 Citation 数理解析研究所講究録 (2000) 1154 155-164 Issue Date 2000-05 URL http//hdlhandlenet/2433/64118 Right Type Departmental Bulletin Paper

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information