Vacuum charge Q N

Size: px
Start display at page:

Download "Vacuum charge Q N"

Transcription

1 Vacuum charge Q N

2 introduction 2 2 free bosonic string old-covariant approach BRST quantization g-loop amplitude 3 3. free bosonic field with vacuum charge Q V N;0 for free bosonic theory V N;g for free bosonic theory A 52 B Cµν, Cµ, 2 C 3, N 56 B. Cµν B.2 Cµ B.3 C B.4 N C Canonical form 62 64

3 introduction bosonic string Tachyon bosonic string bosonic string string string string field theory [9, 0, ] open bosonic string conformal field theory [3, ] string string comformal field theory physical state) vertex operator 2 bosonic string comformal field theory BRST formalism 2

4 (World sheet) [7] g-loop moduli g Dual Resonance Model [2] tree g-loop sewing procedure [8] Vecchia conformal field theory [6] 3 g g-loop N 3

5 2 free bosonic string classical action D Minkowski D x µ (τ) (µ = 0, D) τ τ dτ dx µ = xµ τ dτ dx µ dx µ τ action S = dτ x µ (τ) x µ (τ) (2.) action τ τ D x µ (τ) x µ (τ ) action D (worldsheet) σ, τ X µ (τ, σ) τ σ τ σ X τ X dτ σ dσ 2 Xµ τ dτ X µ σ dσ 2 4

6 * T 2 τ σ action S = T = T dσdτ ( X τ )2 ( X σ )2 + (( X X )( τ σ ))2 dσdτ det( α X β X) (2.2) α β τ σ 0 (2.2) action action S = T dσdτ hh αβ α X β X (2.3) 2 h αβ (σ, τ) world sheet h αβ X h det(hαβ ) det(h αβ ) > 0 (2.3) h αβ h αβ h αβ h αβ h det(h) δ det(h) δh αβ = 2 det(h) δ det(h) δh αβ = 2 h ( det(h)h αβ) = 2 hhαβ (2.4) δs δh αβ = T htαβ 2 T αβ = α X β X 2 h αβh α β α X β X (2.5) T αβ h T αβ = 0 (2.6) (2.5) h αβ = 2 α X β X h α β α X β X (2.7) * D µ 5

7 (2.3) h S = T det( α X β X) dσdτ2 2 h α β α X β X hαβ α X β X = T det( α X β X) (2.8) (2.2) (2.2) (2.3) (2.3) (2.2) local symmetry σ α ˆ σ α (σ) h αβ (σ) ρ(σ)h αβ (σ) world sheet world sheet r (r =, 2 ) (2.3) α β 0 r S = T d r σ hh αβ α X β X 2 action r = 2 T αβ =0 Conformal field theory [] local symmetry h αβ h αβ = ( 0 0 ) (2.9) (2.3),(2.5) S = T 2 = T 2 dσdτη αβ α X β X dσdτ[ ( τ X) 2 + ( σ X) 2 ] T αβ = α X β X 2 η αβη α β α X β X (2.0) 6

8 action (2.0) + coordinate σ + = τ + σ (2.) σ = τ σ (2.3) S = T 2 = T 2 = T 2 dτdσ[ ( X τ )2 + ( X σ )2 ] dσ + dσ [ 2( X X )( σ + σ )] dσ + dσ [η αβ α X β X] (2.2) η + = η + = σ + = σ + (σ + ) σ = σ (σ ) X X ( σ+ σ + ) +X X dσ + dσ ( σ + σ + ) dσ + dσ ((2.2)) ((2.3)) action (2.3) ((2.3)) ( σ + σ ) = e + S = T 2 ( d 2 σ) ( h) (h αβ ) ( α X β X) = T (e d 2 σ)(e h)(e h αβ )(e α X β X) 2 = T d 2 σ(e h)(e h αβ ) α X β X 2 7

9 ((2.3)) 2..2 action (2.0) X X (τ, σ = 0) = (τ, σ = π) (2.3) σ σ X(τ, σ = 0) = X(τ, σ = 2π) (2.4) (2.0) [X σ X] 0 2π [X τ X] τ f τ i D 2 X µ τ 2 2 X µ σ 2 = 0 (2.5) X µ (τ, σ) = x µ + p µ τ + i n αµ n e inτ cos nσ (2.6) n 0 X µ (τ, σ) = 2 xµ + 2 pµ (τ σ) + i 2 n αµ n e 2in(τ σ) n xµ + 2 pµ (τ + σ) + i α n µ e 2in(τ+σ) 2 n n 0 X R + X L (2.7) 8

10 α n α n 2.2 (2.0) X µ lightcone gauge quantization Lorentz covariance QED old covariant quantization QED Gupta-Bleuler BRST quantization FP ghost BRST charge 2.3 old-covariant approach X µ T = π (2.0) P µ (τ, σ) = δs δ X X = µ (τ, σ) π (2.8) 9

11 [X µ (τ, σ), X ν (τ, σ )] = 0 [X µ (τ, σ), P ν (τ, σ )] = iη µν δ(σ σ ) (2.9) (2.6) (2.9) [x µ, p ν = iη µν [ µ α n, α ν ] m = iη µν δ m+n (2.20) X Conformal field theory free String D X µ (τ, σ) τ, σ (τ, σ) X L X R (2.6) X µ (τ, σ) = 2 xµ + 2 pµ (τ + σ) + i 2 n xµ + 2 pµ (τ σ) + i 2 n 0 n αµ n e in(τ+σ) n αµ n e in(τ σ) X(σ + ) + X(σ ) (2.2) action ((2.2)) τ iτ e τ+iσ = e ρ z e τ iσ = e ρ z (2.22) ((2.2)) S = 4π T zz T(z) dzd z z X z X = 2 z X z X T z z T( z) = 2 z X z X (2.23) 0

12 X ((2.2)) X(z, z) = X(z) + X( z) = x µ ip µ log z + i n αµ n z n n 0 + x µ ip µ log z + i n αµ n z n (2.24) (2.23) conformal invariance * 2 action σ+ f (σ + ), σ f (σ ) f (σ + ) = e (τ+iσ) Energy momentum Tensor T T well difined ((2.6)) n 0 (2.25) state physical state T(z) T(z) = T ψ> = 0 (2.25) + n= L n z 2 z n (2.26) L n (2.23) L n = T(z)z n+ z=0 = z X z Xz n+ (2.27) 2 z=0 (2.27) (2.24) L n = 2 m= α n m α m (2.28) α 0 p L n well difined n 0 L 0 * 2 (2.23) z ρ (2.23)

13 L 0 = 2 m= α m α m (2.29) α m normal order α m (m > 0) 2 m= α m α m = α m α m + α m α m + α 0 α m=<0 m=>0 = α m α m + 2 p2 + m m= L 0 L 0 normal ordered product physical condition (2.25) L n m= L n ψ> = 0 (2.30) Gupta-Bleuler L 0 L n ψ> = 0 (n > 0) (2.3) (L n a) ψ> = 0 (2.32) a Operator X(z)X(z ) z = e τ+iσ t > t z > z T Radial ordered product X z > z X(z; +) ip log z + i X(z; ) x i n= n= n α nz n n α nz n (2.33) R(X(z)X(z )) = [X(z; +) + X(z; )][X(z ; +) + X(z ; )] = X(z; +)X(z ; +) + X(z; )X(z ; +) + X(z; )X(z ; ) + X(z; +)X(z ; ) (2.34) 2

14 (2.34) normal ordering X(z; +)X(z ; ) = [ ip log z + i n= n α nz n ][x + i = X(z ; )X(z; +) log z + (2.34) z > z n= m= n ( z n ) z m α nz m ] = X(z ; )X(z; +) log z log( z z ) = X(z ; )X(z; +) log(z z ) (2.35) R(X(z)X(z )) = log(z z )+ : X(z)X(z ) : (2.36) z > z log(z z) Wick (2.36) X(z) X(z ) Wick contraction X(z) X(z ) normal ordered z = z X Wick contraction X R R( f (X)g(X)) α (2.20) (2.36) α n L n [α n, α m ] = i 2 = i 2 = i 2 z=0 z=0 z=0 z =0 z =0 z =0 α n = i dzz n z X(z) (2.37) z=0 dzdz z n z m [ z X(z), z X(z )] dzdz z n z m z X(z) z X(z ) z=0 dzdz z n z m R( z X(z) z X(z )) z=0 z =0 (2.38) dzdz z n z m z X(z ) z X(z) (2.39) dzdz z n z m R( z X(z) z X(z )) z z z > z z > z R dz dz f (z z ) = dz dz f (z z ) + dz dz f (z z ) z>z z >z z 0 3 z =0

15 f (z z ) z = z pole [α n, α m ] = i 2 dz dzz z =0 z=z n z m R( z X(z) z X(z )) = i 2 dz dzz z =0 z=z n z m z z[ log(z z ) + (regular at z = z )] = dz nz n z =0 = nδ n+m,0 (2.20) energy momentum tensor T(z) X(z) T αβ (2.3) h αβ generator T αβ comformal gauge σ + = f (σ + ) σ = g(σ ) T(z) [ dz ϵ(z )T(z ), X(z)] = ϵ(z) z X(z) (2.40) ϵ(z) z = 0 (2.38) (2.40) (2.23) z dz R(T(z )X(z))ϵ(z ) R(T(z )X(z)) = 2 z X z z( log(z z)) 2 = z X z z (2.4) T normal ordered T contraction [ dz ϵ(z )T(z ), X(z)] = = z dz z X(z ) z z ϵ(z ) dz z X(z) z z z ϵ(z) = ϵ(z) z X(z) (2.42) ϵ X z z z = z ϵ(z ) = ϵ(0) + ϵ (0)z + + ϵ (n) (0) n! z n z n 4

16 [ dz z n+ T(z ), X(z)] = [L n, X(z)] = z n+ z X(z) L n δz = z n+ generator [L n, L m ] α (2.27) [L n, L m ] = dz dz R(T(z)T(z )) (2.43) z 0 T contraction 2 contraction contraction 2 2 z X z X = 2 (z z ) 4 (2.44) 4 4 z X z X : z X z X : = : z X z X : (z z ) 2 = : ( z X + 2 z X(z z ) + ) z X : (z z ) 2 = : z X z X : (z z ) 2 : 2 z z X : (z z ) = 2T(z ) (z z ) 2 + z T(z ) (z z ) (2.45) R(T(z)T(z )) = D 2 (z z ) 4 + 2T(z ) (z z ) 2 + z T(z ) (z z ) + (regular atz = z ) (2.46) comformal ϕ(z) R(T(z)ϕ(z )) = + hϕ(z ) (z z ) 2 + z ϕ(z ) (z z + (reg) (2.47) ) ϕ comformal weight h z = z X(z) c.w 0,T(z) c.w 2 (2.4) 5

17 ,(2.46) (2.42) [ dz ϵ(z )T(z ), ϕ(z)] = dz ϵ(z )R(T(z )ϕ(z)) z = z + ϵ(z) z = ϵ(z) ϕ(z) + h ϵ(z)ϕ(z) (2.48) ϕ(z) ( z z )h ϕ(z ) (2.49) comfomal dimension h naive conformal gauge h action conformal gauge confomal z = z + ϵ(z) h (2.49) f (z, z) z z z z conformal T L n (2.43) [L n, L m ] = (n m)l n+m + D(m3 m) δ m+n,0 (2.50) 2 Virasoro Lie string L n conformal generator (2.50) anomaly α n poisson braket T normal ordering anomaly (2.46) comfomal (2.50) anomaly α (2.50) 6

18 2.3. free string spectrum vertex operator free spectrum Hamiltonian H = dσ : ( xp L) : = dσ : ( x 2 + X 2 ) : 2 = : α n α n : 2 = 2 p2 + α n α n = L 0 (2.5) (2.32) L 0 ( 2 p2 + α n α n a) ψ> = 0 (2.52) p 2 = M 2 p 2 mass operator L 0 on shell M 2 ψ> = (2a α n α n ) ψ> (2.53) 0; 0 > α n 0; 0 > = 0 (n > 0) p 0; 0 > = 0 p 0; k> = e ik x 0; 0 > Hamiltonian α n (n < 0) Fock (α µ i )ni (α µ j 2 )n j p; 0> (2.54) physical state L 0 a = 0 state L n = 0 7

19 (2.54) (2.54) QED D metric 0 α n 0; 0 0 > L n = 0 Physical State α 0; k µ > physical state condition (L 0 a) ψ> = 0 L 0 2 p2 + α n α n L n ψ> = 0 (n > 0) L n α n m α m (2.55) 2 m= k 2 = 2a 0; p µ > physical state 0; p µ > (k 2 = 2a) ζ α 0; k> state L 0 L physical state condition k 2 = 2a 2 k ζ = 0 (2.56) a = ζ polarization vector massless ζ ζ ζ ζ k ζ k k 2 k 2 k 2 > 0 (a > ) k µ = (0, h, 0, 0 ) k 2 = 0 (a = ) k µ = (h, h, 0, 0 ) k 2 < 0 (a < ) k µ = (h, 0, 0, 0 ) k ζ D a > nagative norm,positive norm (ζ = (, 0, )) a = zero norm,positive norm (ζ = (,, 0, )) 8

20 a < positive norm (ζ = (0,, 0 )) negative norm a a = ζ µ = ck µ a = a = 0; k> k 2 = 2 = M 2 a = superstring m 2 < 0 string m 2 < 0 X(z) m 2 < 0 D massless X µ (τ, α) (conformal field theory) m 2 < 0 Targrt spase (D dim Minkowshki space) mass X(z) mass vertex operator physical state physical state physical state confomal field confomal weight h primary fileld (2.47) R(T(z)ϕ(z )) = hϕ(z ) (z z ) 2 + z ϕ(z ) (z z + (reg) (2.57) ) L n ϕ(z) (2.42) [L n, ϕ(z)] = (n + )z n hϕ(z) + z n+ z ϕ(z) (2.58) 9

21 ϕ(z) physical state ϕ(z) 0; 0 > physical state [L n, ϕ(z)] = 0, n > 0 (2.59) [L 0, ϕ(z)] = ϕ(z) L normal ordered L n 0; 0 >= 0 (2.58) ϕ(0) [L n, ϕ(0)] = 0, n > 0 (2.60) [L 0, ϕ(0)] = hϕ(0) comfomal weight V(z) V(0) 0; 0 > physical state (2.60) h = vertex operator V(z) 0; k> vertex opreator V 0 (k, z) =: e ik X(z) := e ik X (z) e ik X+ (z) (2.6) T R((X(z)) n : e X(z ) :) = [R(X(z)X(z )] n : e X(z ) : (2.62) R(T(z)V 0 (k, z )) = k 2 2 V 0(k, z ) (z z ) 2 + z V 0(k, z ) (z z ) (2.63) k 2 = 2 V 0 comformal weight V 0 (k, 0) 0; 0 > physical state 0; k> = e ik x 0; 0 > V 0 (k, 0) (2.6) V 0 (k, z) = e ik x e k p log z e ik α n n z n e ik αn n z n (2.64) n z = 0 0; 0 > α p z = 0 x V 0 (k, 0) 0; 0 >= e ik x 0; 0 >= 0; k> (2.65) vertex operator 0; k> 20

22 vertex operator vertex operator V (k, z) =: ζ z X(z)e ik X(z) : (2.66) R(T(z)V (k, z )) = ik ζ : eik X(z) : (z z ) 3 + k (z z ) 2 V (k, z ) + z V (k, z ) (z z ) (2.67) k 2 = 0, k ζ = 0 V vertex operator V (k, 0) 0; 0 > normal ordiring z X(0) α V (k, 0) 0; 0 >= ζ α 0; k> 2.4 BRST quantization 2.4. b,c ghost system action h X µ S[h, X] = d 2 σ hh αβ α X β X (2.68) Z = DhDXe is[h,x] (2.69) h Dh = Dh ++ Dh Dh +, ((2.)) + coordinate action h ++ = h = 0 h h World sheet ξ +, δh αβ = α ξ β + β ξ α (2.70) δh ++ = 2 + ξ + δh = 2 ξ (2.7) 2

23 h αβ = h α β + δh α β Z Z = = Dh DXe is[h,x] DXDh ++Dh Dh + DXe is[h,x] S h ++, h h ++, h h 0 ++, h 0 (2.70) h ++, h ξ +, ξ Dh ++ = det( δh ++ δξ )Dξ + (2.72) = det( δ +ξ + (σ) δξ + (σ ) )Dξ + = det(2 + δ(σ σ ))Dξ + det( + )Dξ + Z Z = DXDh + Dξ + Dξ det( + )det( )e is[h +,h++ 0,h0,X] (2.73) ξ ++, h++ 0 = h 0 = 0 ξ h + = e ϕ Z = DXDh + det( + )det( )e is[h +,X] (2.74) = DXDϕdet( + )det( )e is[x] S[X] Flat Worldsheet action (2.0) ϕ Dϕ factorize [5] det( + ) = det( ) = Dc(σ )Db(σ )e i d 2 σc(σ ) + b(σ ) Dc(σ + )Db(σ + )e i d 2 σc(σ + ) b(σ + ) 22 (2.75)

24 Z = S[X, c, b] = = DXDcDbe is[x,c,b] (2.76) d 2 σ[ + X X + c(σ + ) b(σ + ) + c(σ ) + b(σ )] d 2 σ[ + X X + c(σ + ) b(σ + ) + c(σ ) + b(σ )] + coodinate z, z S[X, c, b] = d 2 z[ 2 z X z X + c(z) z b(z) + c( z) z b( z)] (2.77) (2.77) X /2 b, c normalization /2 classical (2.77) S c b c conformal weight λ b conformal weight ( λ) λ b c conformal weight c b c(z) = c n z n λ (2.78) b(z) = n= n= b n z n +λ {b(z), c(w)} = δ(z w) (2.78) {b n, c m } = δ n+m,0 (2.79) operator product expansion (2) R[b(z)c(w)] = c[b(z)c(w)]+ : b(z)c(w) : (2.80) c[b(z)c(w)] R z = w normal ordering c[b(z)c(w)] 23

25 normal ordering normal ordering b, c c.w λ ϕ ϕ(z) = a n z n λ (2.8) n= lim z=0 ϕ(z) 0>, t = (in-state) (2.8) z 0 a n 0> = 0, (n λ + ) (2.82) 0> <0 lim z= <0ϕ(z) t (out-state) z <0 a n = 0, (n λ ) (2.83) <0 a λ [4] [3] a n 0> = 0 <0 a n = 0 a n 0> 0 <0 a n 0 (2.82) { an 0> = 0, n λ + <0 a n = 0 n λ (2.84) (2.84) b, c 24

26 { cn 0> = 0, n λ + <0 c n = 0 n λ { bn 0> = 0, n λ <0 b n = 0 n λ (2.85) normal ordered product z > w R(b(z)c(w)) = b n z n ( λ) c m w m λ (2.86) n m = (normal ordered pert) + = : b(z)c(w) : + n λ m λ n λ m λ = : b(z)c(w) : + z n ( λ) w n λ n λ = : b(z)c(w) : + ( w z )n ( z w )λ z n λ = : b(z)c(w) : + ( w z )n z n 0 = : b(z)c(w) : + z w b c contractionc[b(z)c(w)] b n c m z n ( λ) w m λ (2.87) δ n+m,0 z n ( λ) w m λ (2.88) c[b(z)c(w)] = z w (2.89) b, c OPE(Operator Product Expansion) b, c local (2.89) b, c T bc (z) T bc (z) =: ( λ)( z c(z))b(z) λc(z)( z b(z)) : (2.90) (2.90) T bc b, c T bc 25

27 (2.89) R ( λ)b(w) R[T bc (z)b(w)] = (z w) 2 + wb(w) z w + (2.9) R[T bc (z)b(w)] = λc(w) (z w) 2 + wc(w) z w + (2.92) (2.47) (2.9) b, c conformal weight λ, λ primary field T bc R[T bc (z)t bc (w)] = A (z w) 4 + 2T bc(w) (z w) 2 + wt(w) z w + (2.93) A A = 6λ( λ) (2.94) (2.93) X (2.46) T(z) X b, c T X (z) + T bc (z) conformal (2.94) λ = T X (z) + T bc (z) D/2 + A D = 26, λ = 0 λ = BRST bosonic string BRST symmetry 2.4. BRST action (2.77) BRST [5] X(z) BRST c(z) δ X(z, z) = ηc(z) z X + ηc( z) z X (2.95) η (2.95) 26

28 δ δx(z, z) = c(z) z X + c( z) z X (2.96) δ Grassman Odd c delta δ 2 = 0 δ 2 X = 0 δc(z) = c(z) z c(z) (2.97) c( z) (2.97) z z b(z) δs[x, b, c] = 0 (2.77) BRST [ ] δs[x, b, c] = ( z c(z)) 2 z X z X (c(z) z b(z) + 2 z c(z)b(z)) + δb(z) [ ] + ( z c( z)) 2 z X z X (c( z) z b( z) + 2 z c( z)b( z)) + δb( z) action BRST (2.98) δb(z) = T X (z) + T bc (z) T(z) (2.99) δb( z) = T X ( z) + T bc ( z) T( z) (2.99) T X (z) (2.23) T zz T bc (2.90) λ = (2.96) c z z + ϵ(z) ϵ(z) = ηc(z) z conformal weight - λ = BEST BRST current J B (2.96),(2.97),(2.99) J B J B (z) = : c(z)[t X (z) + 2 T bc(z)] : (2.00) J B ( z) (2.00) z z BRST R (2.00) normal oreder (2.86),(2.36) R[J B (z)x(w)] = c(w) w X(w) + z w R[J B (z)c(w)] = c(w) wc(w) + z w R[J B (z)b(w)] = T(w) z w + c(w)b(w) (z w) 2 + (2.0) 27

29 (2.0) BRST J B BRST charge Q B Q B ϕ(w) d 2 z(j(z) + J( z)) (2.02) z > w z > w ϕ(w) X, c.b (2.0) Q B ϕ(w) = δϕ(w) (2.03) BRST δ 2 = 0 BRST (2.03) δ 2 = 0 (2.03) δ 2 = 0 Q 2 B = 0 J B (z) R D = 26 Q 2 B = 0 [4] Q B phys> = 0 BRST bosonization 2.4. b(z), c(z) bosonization [5] ϕ(z) ϕ(z) = x + N log z + n 0 α n n z n (2.04) [α n, α m ] = nδ n+m,0, [x, N] = (2.05) ϕ(z) b(z), c(z) c(z) =: e ϕ(z) :, b(z) =: e ϕ(z) : (2.06) (2.06) b(z), c(z) [b(z), c(w)] = δ(z w) R (2.86) (2.06) vertex operator (2.6) (2.62) R[b(z)c(w)] = R[: e ϕ(z) :: e ϕ(w) :] = z w + (2.07) 28

30 T bc (2.90) λ = T bc (z) =: c(z)( z b(z)) + 2( z c(z))b(z) : (2.08) (2.08) (2.06) (2.08) : c(z)( z b(z)) : = lim w z : c(w)( z b(z)) : (2.09) = lim w z [R[c(w) z b(z)] C[c(w)][ z b(z)]] C[c(w)][ z b(z)] c(w) z b(z) contraction w > z R (2.08) (2.09) (2.06) T bc =: 2 ( zϕ)( z ϕ) z ϕ : (2.0) λ = λ T bc =: 2 ( zϕ)( z ϕ) + 2λ z 2 ϕ : (2.) 2 j(z) =: b(z)c(z) : T bc j(z) = lim z w b(w)c(z) dz j(z) = z=0 j(z) = z ϕ(z) (2.2) z=0 dz ϕ(z) = N (2.3) N (2.04) ϕ(z) fermion ghost (2.90) (2.) T f ermion bc T boson bc = : 2 c( b) + 2λ ( c)b + ( bc) : (2.4) 2 2 = : 2λ ( ϕ)( ϕ) + ( ϕ) :

31 (2.4) ϕ bc b(z) c(z) ϕ(z) ϕ(z) 3 action S[b, c] S[b, c] d 2 z [c(z) z b(z) + c( z) z b( z)] (2.5) (2.06) (2.5) (2.) action S[ϕ] = d 2 σ [ h h αβ α ϕ β ϕ + 2λ ] R (2) ϕ 4 (2.6) action (2.6) h (2.) 30

32 3 g-loop amplitude [6] g-loop object boson ϕ vacuum charge Q b, c bosonization b, c g-loop amplitudes Q = 0 X loop vacuum charge Q operator product expansion Q (2) fermion number g-loop amplitude tree vertex [8, 7] tree amplitude physical state g-loop amplitude tree vertex prime form,g abelian differential,vector Riemann constant,period matrix Schottky 3

33 3. free bosonic field with vacuum charge Q vacuum charge Q S[ϕ] = d 2 σ h[h αβ α ϕ β ϕ 2π Σ 4 QR(2) ϕ] (3.) h metric R ( 2) R (2) = hαµ h βν (h αν,βµ h αµ,βν + h βµ,αν h βν,αµ ) (3.2) 2 Σ R 2 ϕ Q (2.0) T zz (++ ) ghost number current p R T(z) =: 2 [ zϕ(z) z ϕ(z) Q z z ϕ(z)] : (3.3) j(z) = z ϕ(z) (3.4) R[ϕ(z)ϕ(w)] = log(z w)+ : ϕ(z)ϕ(w) : (3.5) (3.5) OPE T(z)T(w) = [ 3Q2 ]/2 (z w) T(w) (z w) 2 + wt(w) + (nomal ordered) (3.6) z w Q T(z)j(w) = (z w) 3 + j(w) (z w) 2 + w j(w) + (nomal ordered) z w j(z)j(w) = + (nomal ordered) (z w) 2 Q T central charge /2 [ 3Q 2 ]/2 j primary field 32

34 ϕ ϕ(z) = x + N log z + bosonic string n 0 α n n z n (3.7) [α n, α m ] = nδ n+m,0, [x, N] = (3.8) (3.6),(3.7),(3.8) L n j n L n,j n T(z),j(z) conformal weight z (2) L n = : α m α n m : 2 2 Q(n + )α n (3.9) m j n = α n [L n, L m ] = (n m)l n+m + 2 ( 3Q2 )n(n 2 )δ n+m,0 [L n, j m ] = mj n+m 2 Qn(n + )δ n+m,0 [j n, j m ] = nj n+m δ n+m,0 Q = 2λ b(z)(conformal weight λ) c(z) ϕ b, c (2.06) j(z) j(z) = : b(z)c(z) : (3.0) (3.7) N N = dz j(z) = j 0 (3.) boson ϕ b, c boson N (2.85) N L 0 (3.9) L 0 = α m α m + 2 α 0(α 0 Q) (3.2) m 0 33

35 L 0 = L 0 α 0 = α 0 α 0 = α 0 + Q α 0 = N N α 0 = α 0 + Q (3.3) N + N + Q = 0 (3.4) N N q> q > < q q >= δ(q + q + Q) (3.5) q> vertex oparator q> = lim z 0 : e qϕ(z) : 0> (3.6) N q T(z) OPE T(z) : e qϕ(w) := 2 q(q + Q): eqϕ(w) : (z w) 2 + w : e qϕ(w) : + (3.7) (z w) : e qϕ(z) : conformal weight 2 q(q + Q) primary field (3.3) L 0 q> = q(q + Q) q> (3.8) 2 L n q> = 0 n > V N;0 for free bosonic theory (3.) tree level ( world-sheet N V qi (z i ) : e q i ϕ(z i ): N T(z ; q z N ; q N ) = <q = 0 R[ V qi (z i )] q = 0> (3.9) i= 34

36 N g-loop N (3.9) vertex function vertex function DS vertex [7, 8] W i = <n i, O a : exp[ dzϕ( z) z ϕ i (z)] : (3.20) n i 0 ϕ i ϕ (auxilialy field) <n i, O a N i n i (3.6) q = n i n i W i primary field α> i auxilialy field z = W i lim z 0 V i (z) 0> i = V() (3.2) V i (z) = V[ϕ i (z)], V(z) = V[ϕ(z)] (3.2) i auxilialy space vertex operator q i > (3.2) W i q i > i = W i lim z 0 : e q i ϕ(z) i : 0> i (3.22) = : e q i ϕ() : W i ( ) n dzϕ( z) z ϕ i (z) : = dz( n ϕ()z n )( 0 0 n! n=0 ( ) n = n ϕ()αn i n! n=0 + m= α i mz m ) (3.23) q i > N i = α i 0 n > 0 αi n q i > = 0 35

37 W i q i > = <n i, O a : e n=0 ( ) n n! nϕ() : q i > (3.24) n i = <n i, O a : e q i ϕ() : q i > n i = : e q i ϕ() : primary field : e qϕ(z) : Q = 0 vertex operetor vertex operator (3.2) Q primary field W i z = primary field z = z i primary field conformal V i (z) V i (0) = z i conformal mapping( V i (z) z = 0 conformal weight λ Φ V i V i Φ(V i (z)) = ( V i z ) λ Φ(z) (3.25) z = V i (z) Φ(z V ) = ( i (z ) z ) λ Φ(V i (z )) (3.26) (3.24) W i q i > = Φ(), q i > = lim z 0 Φ(z) 0> (3.27) conformal z γ i (z) γ i z i γ i (z) = V i ( z) γ i, γ i (3.27) γ i W i γi V i (z i ) q i > = ( z ) λ Φ(z i ) (3.28) γ i W i γi V i ( z ) λ q i > = Φ(z i ) V i W i ( z ) λ q i > = Φ(z i ) 36

38 V i SL(2, C) V i (z) = A iz + B i C i z + D i, A i D i B i C i =, A i, B i, C i, D i C (3.29) W i [ W i = <n i, O a exp ] dz ϕ i (z)(α0 i 2 Q) log[v i (z)] n i 0 [ ] : exp ϕ[v i (z)]ϕ i (z) : (3.30) 0 V conformal ( z ) (3.28) (3.30) q i > q i > W i [ ] W i q i > = <n i ; O a exp 2 N i(n i + Q) log[v i (0)] : exp[n i ϕ(z i )] : q i > (3.3) n i [ ] = exp 2 q i(q i + Q) log[v i (0)] : exp[q i ϕ(z i )] : ( V ) (z i ) 2 q i (q i +Q) = : exp[q i ϕ(z i )] : z i W i N tree vertex function V N;0 = <q = 0 N W i q = 0> (3.32) i= q = 0>, <q = 0 auxiliary field V N; 0 (i = N) normal orderd N N <q = 0 : e A i : q = 0> = <q = 0 : e A i :: e A j : q = 0> (3.33) i= i<j <q = 0 : e A i :: e A j : q = 0> = e <q=0 A i A j q=0> 37

39 (3.32) V N;0 = [ N [<n i, O a ]] exp i= [ 2 N i= dz ϕ i (z)(α i 0 Q) log[v i (z)] ] N <q = 0 : dzϕ[vi (z)]ϕ e i (z) :: dyϕ[vj (y)]ϕ e j (y) : q = 0> i<j (3.34) auxilialy field (3.33) = N <q = 0 : dzϕ[vi (z)]ϕ e i (z) :: dyϕ[vj (y)]ϕ e j (y) : q = 0> (3.35) i<j [ = exp i<j dz ] N dy log[v i (z) V j (y)]ϕ i (z)ϕ j (y) δ( N i + Q) 0 z > y auxilialy field N i α i vertex V N;0 = [ N <n i, O a ]e 2 i= [ exp i<j dz Ni= dz ϕ i (z)(α0 i Q) log[v i (z)] (3.36) i= ] N dy log[v i (z) V j (y)]ϕ i (z)ϕ j (y) δ( N i + Q) (3.29) (3.36) [ N <n i, O a ] exp 2 i= N i, j=,i j n,m=0 i= and i nm (U i V j )am j N δ( N i + Q) (3.37) i= (3.37) a n α n normalization a 0 = α 0 N, α n = na n, n > 0 (3.38) U i (z) V i (z) Γ(z) = z U i(z) Γ Vi (z) 38

40 D nm (V(z)) D nm (V) = lim z=0 m! m n m z [V(z)] n n m (3.39) D n0 (V) = lim n [V(z)] n n 0 z=0 D 0m (V) = lim z=0 D 00 (V) = lim z=0 2 log[v (z)] m 2m! m z log[v (z)] m 0 (3.36) (3.37) D nm (V V 2 ) = D nl (V )D lm (V 2 ) + D n0 (V )δ mo + D 0m (V 2 )δ no (3.40) l= D nm (ΓV Γ) = D mn (V) (3.4) (3.37) D nm (U i V j ) ((3.40)) D(ΓV i ) D(V j ) D (3.36) ((3.40)) n, m 0 D nm (V) SL(2, C) tree-level N V N;0 α α N N <q = 0 N N : e q i ϕ(z i ) : q = 0> = V N;0 q i > i (3.42) i= i= N δ( q i + Q) (z i z j ) q i q j (3.43) i= (3.3) q i > i z = z i primary field q i > i lim [ V z zi i = lim [ V z zi i i<j (z)] q i(q i +Q) : exp q i ϕ i [V i (z)] : 0> i (3.44) (z)] q i(q i +Q) : exp[q i ϕ i (0)] : 0> i exp (3.36) Q : exp[ϕ(0)] : 0> i N i, α n : exp[ϕ(0)] : 0> i = 0 (3.43) 39

41 3.3 V N;g for free bosonic theory 3.2 N vertexv n;0 g-loop N vertexv n;g tree vertex vertex (N + 2g) g g g N V N;g tree vertex V N+2g N 2g i = N 2g 2µ 2µ µ = g 2g V N+2g;0 (2µ) 2µ <n 2µ n 2µ >, N 2µ N 2µ, a2µ n a n 2µ (3.45) vertex V N+2g;0 2µ 2µ sewing operatorp(x µ ); (µ = g) x u P(x µ ) 2µ an 2µ z P(x µ )[z] P(x µ ) =: exp [ n,m=0 a 2µ n D nm (P(x µ ))a 2µ m + n= a 2µ n a 2µ n ] : (3.46) V N+2g;0 V V i V i P g-loop N g V N;g Tr (2µ,2µ) V N+2g;0 µ= g P(x µ ) µ= (3.47) (3.47) (α n, n 0) [a, a ] = 40

42 ψ> ψ> exp(ψa 0>) = n=0 λ n n! n> (3.48) ψ n> a a ψ> a (3.48) I = d 2 z ψ>e ψ 2 <ψ (3.49) O Tr(O) = d 2 ψ<ψ O ψ>e ψ 2 (3.50) Tr (2µ,2µ) (O) = d 2 ψ n n= < ψ n O ψ n >e n= ψ n 2 (3.5) r µ > Tr2µ,2µ 0 (O) = < r µ Q O r µ > (3.52) r µ (3.5) < r µ Q r µ >= r µ (3.5),(3.52) V N;g V N+2g;0 n= 4

43 N V N+2g;0 = [ <n i, O a ] exp N a i= n i 2 nd i nm (U i V j )a j m (3.53) i, j=,i j n,m=0 g [ <n 2µ, O a ]δ N g N i + [N 2µ + N 2µ ] + Q µ= n 2µ i= µ= N g exp an[d i nm (U i V 2µ )am 2µ + D nm (U i V 2µ )a 2µ m ] i= µ= n,m=0 g exp an 2µ D nm (U 2µ V 2ν )am 2ν + a n 2µ D nm (U 2µ V 2ν )a 2ν m µ,ν= n,m=0 g exp a n 2µ D nm (U 2µ V 2ν )a 2ν g m [ n 2µ, O a >] µ,ν= n,m=0 µ= n 2µ (3.53) D nm D nm (U I V J ) = D mn (U J V I ) (3.54) (3.53) µ, ν µ = ν tree vertex (3.37) µ = ν D nm (U 2µ V 2µ ) = D nm (U 2µ V 2µ ) 0 (3.55) P(x µ ) V N;g * V 2µ Ṽ 2µ V 2µ P(x µ ) (3.56) U 2µ Ũ 2µ Γ[V 2µ P(x µ )] (3.47) g V N;g Tr (2µ,2µ) V N+2g;0 µ= g P(x µ ) µ= = g µ= ] Tr (2µ,2µ) [Ṽ N+2g;0 (3.57) * C 42

44 Ṽ N+2g;0 V N+2g;0 (3.56) (3.5),(3.52) < ψ µ 2µ, ψ µ > 2µ, < r µ Q 2µ, r µ > 2µ an 2µ, a n 2µ, a 2µ 0, a 2µ 0 Ṽ N+2g;0 an 2µ ψ n µ (3.58) a n 2µ ψn µ a 2µ 0 r µ a 2µ 0 r µ + Q ψ n V N;g = [ N N <n i, O a ]δ( i= n= µ= i= g [d 2 ψ n µ ] exp N i + Q) [ (B, B 2 ) exp(a) (3.59) r µ ( ) ψ ψ ( )] ψ 2 (ψ, ψ)( H) ψ (3.59) (X, X 2 ) ( Y Y 2 ) g µ= n= ( (X ) µ n(y ) µ n + (X 2 ) µ n(y 2 ) µ n) H ( ) H nm µν Dnm (U = 2µ Ṽ 2ν ) D nm (U 2µ V 2ν ) D nm (Ũ 2µ Ṽ 2ν ) D nm (Ũ 2µ V 2ν ) (3.60) (3.6) 43

45 A A = N N i, j=,i j n,m=0 g i= ν= n=0 g µ,ν=,µ ν g µ,ν=,µ ν a i nd nm (U i V j )a j m (3.62) an[d i n0 (U i Ṽ 2ν )r ν D n0 (U i V 2ν )(r ν + Q)] r µ D 00 (Ũ 2µ Ṽ 2ν )r ν + g µ,ν= (r µ + Q)D 00 (U 2µ V 2ν )(r ν + Q) r µ D 00 (Ũ 2µ V 2ν )(r ν + Q) B r µ g (B I ) ν m = ( ) I r ν [D 0m (Ũ 2ν V I ) D 0m (U 2ν V I )] + ( ) I N i= n=0 ν= and i nm (U i V I ) + ( ) I Q I =, 2 V = Ṽ 2µ, V 2 = V 2µ (3.63) g D 0m (U 2ν V I ) (3.64) (3.59) ψ n ( ) ψ (B, B 2 ) + ( ) ψ 2 2 (ψ ψ 2, ψ )K ψ 2 = ψ 2 [[(ψ 2, ψ ) + (B, B 2 )K ][( /2 ) ( ) (B, B 2 )K B ] B 2 ψ 2 ν= ( ) + K /2 B ] B 2 (3.65) (3.66) ( ψ ) ψ = K /2 ( ψ ) 2 ψ 2, K = H ψ ψ [det(k)] /2 (3.59) 44

46 N N V N;g = [det( H)] /2 [ <n i, O a ]δ[ N i (g )Q] (3.67) i= n i i= [ exp A + ( )] 2 (B, B 2 )( H) B2 B r µ (3.67) ( H) H H H l (3.68) (3.68) (3.67) [ exp A + ( ) ] 2 (B, B 2 ) H l B2 (3.69) B H l (A) ( (H l ) µν Dnm (U 2µ Σ l nm = (, )Ṽ2ν ) D nm (U 2µ Σ l Σ l=0 l=0 D nm (Ũ 2µ Σ l (+, )Ṽ2ν ) (+, ) D nm ( Σ l (+, ) ) = α:n α =l (,+) V 2ν) D nm (Ũ 2µ Σ l (+,+) V 2ν) ) (3.70) D nm ( T α ) (3.7) T α S µ = Ṽ 2µ U 2µ, (µ = g) A (3.7) order l S µ S ν (3.55) (3.64) B (B I ) µ m = ( ) I ( ) I s= ν= l,s= i= δ I, QD 0m (V I ) g r ν [D 0s (Ũ 2ν ) D 0s (U 2ν )]D sm (V I ) r µ D 0m (V I ) (3.72) N a i l D ls(u i )D sm (V I ) + ( ) I Q 45 s= ν= g D 0s (U 2ν )D sm (V I )

47 (B I ) µ m = ( ) I ( ) I s= ν= l,s= j= δ I, QD m0 (U I ) g D ms (U I )[D s0 (Ṽ 2ν ) D 0s (V 2ν )]r ν r µ D m0 (U I ) (3.73) N D ms (U i )D sl (V I )a j l + ( )I Q s= ν= g D ms (U I )D s0 (V 2ν ) I 2 V = Ṽ 2µ, V 2 = V 2µ, U = Ũ 2µ, U 2 = U 2µ (3.72),(3.73) (3.55) (3.59) B B 2 (3.72) B B 2 (3.73) (3.59) (3.59) (3.70),(3.72),(3.73) r µ V N;g N N V N;g = [ <n i, O a ]δ[ N i (g )Q] (3.74) i= n i i= = N exp[ g g r µ C µν () r ν + r µ C µ (2) + C (3) ] 2 r µ µ,ν= (3.74) N, C () µν, C (2) µ, C (3) * 2 C() µν, C µ (2), C (3), N B µ= * 2 A 46

48 C () µν = 2πiτ µν (3.75) C µ (2) = 2πi[ N Vi dz ϕ (i) (z) (z)[ ω µ ] Q( z 0 µ + 2πi 0 z 0 2 ) C (3) = N i= N i, j=,i<j 0 0 N i, j= 0 + N 2 Q i= i= dz ϕ (i) (z) log[v i (z)]α(i) 0 dz dy ϕ (i) (z) log[v i (z) V j (y)] ϕ (j) (y) 0 dz dy ϕ (i) (z) log E(V i(z), V j (y)) 0 V i (z) V j (y) ϕ(j) (y) 0 dz ϕ (i) (z)(log[v i (z)] + 2 log σ[v i(z)]) N = (det( H)) /2 = α ( kα) n 2 (3.76) (3.75) τ µν, ω µ, z 0 µ, E(z, y), σ(z) Σ g A (3.75) (3.74) V N;g N N V N;g = N [ <n i, O a ]δ[ N i (g )Q] (3.77) i= n i i= ( exp N ) dz ϕ (i) (z)[α0 i Q] log[v i 2 (z)] i= exp N 2 i, j= exp N n= dz dy ϕ (i) (z) log E(V i(z), V j (y)) 0 V i (z) V j (y) ϕ(j) (y) dz dy ϕ (i) (z) log[v i (z) V j (y)] ϕ (j) (y) 0 i, j=,i<j ( Θ [ N dz 2πi 0 i= ( N ) exp Q dz ϕ (i) (z) log σ[v i (z)] i= 0 ) Vi ϕ (i) (z) (z)[ ω µ ] Q( z 0 µ + z 0 2 )] τ 47

49 Θ Θ(z τ) = exp 2πni n µ g µ,ν= 2 n µτ µν n ν + g µ= n µ z µ (3.78) n µ tree vertex V N;0 (3.77) N V N;g = N ˆV N;0 δ[ N i (g )Q] (3.79) i= exp N 2 i, j= 0 ( Θ [ N dz 2πi 0 i= ( N ) exp Q dz ϕ (i) (z) log σ[v i (z)] i= 0 dz dy ϕ (i) (z) log E(V i(z), V j (y)) 0 V i (z) V j (y) ϕ(j) (y) ) Vi ϕ (i) (z) (z)[ ω µ ] Q( z 0 µ + z 0 2 )] τ ˆV N;0 (3.36) V N;0 g-loop vertex primary field N tree vertex (3.42) <q = 0 N N : e q i ϕ(z i ) : q = 0> g V N;g q i > i (3.80) i= i= N = δ[ N i (g )Q]N [E(z i, z j )] q i q j [ Θ i= ( [ 2πi 0 dz i<j N ϕ (i) (z)[ i= Vi (z) N [σ(z i )] q i Q i= z 0 ω µ ] Q( z 0 µ + 2 )] τ )] Q Q b, c Q = 3 c N = q = > b N = q = > N 48

50 b N 2 c N N 2 V N +N 2 ;g i= j= = N N q i = > q j = > (3.8) i, j=;i<j E(z i, z j ) N h,k=;h<k E(y h, y k ) N i= N2 h= E(z i, y h ) δ(n N 2 + 3(g ))Θ ( Ω + Ω 2 3( z 0 µ ) τ ) N2 h= σ(y h) 3 N i= σ(z i) 3 Ω k 2πi 0 N k dz i= zi ϕ (i) (z)[ ω µ ] (3.82) z 0 (3.8) N = N 2 3(g ) X µ (z) (µ = 0,, 25) vertex Q = 0 N (2.24) X g-loop vertex V X N;g = O26 exp [ N [ i= µ= 2 i, j= N X µ (z) = x µ iα µ 0 log z + i ] d D p i <p i ; O a δ 0 [d D k µ ] exp g ˆV N;0 tree vertex N V N;0 ˆ = exp [ exp 2 i ( i= N n 0 α µ n n z n (3.83) p i ) ˆ V N;0 (3.84) dz dy X i (z) log E(V ] i(z), V j (y)) 0 V i (z) V j (y) X j (y) g N g k µ (2πiτ) µν k ν + i dz X i (z) 2 µ= i= µ= i, j=,i<j 0 dz 0 ( Vi (z) dy X i (z) log[v i (z) V j (y)] X j (y) dz X i (z)α i 0 log V i (z) ] 49 z 0 ω µ ) k µ (3.85)

51 3.4 2 bosonic string conformal field theory conformal vertex operator conformal couple Di Vecchia [6] 3 2 Vacuum charge Q g-loop vertex tree vertex g-loop vertex Schottky tree vertex g-loop vertex moduli g-loop vertex N X [6] -loop [2] [3, 2] technical [2] 50

52 5

53 A g-loop vertex (3.79) S(2, C) S µ (z) µ V N;g S µ (z) = a µz + b µ c µ z + d µ, a µ d µ b µ c µ =, a, b, c, d C (A.) (A.) (A.2) S µ (z) η µ S µ (z) ξ µ = k µ z η µ z ξ µ, k µ < (A.2) a µ = η µ k µ ξ µ kµ η µ ξ µ c µ = k µ kµ η µ ξ µ b µ = η µ ξ µ ( k µ ) kµ η µ ξ µ d µ = k µη µ ξ µ kµ η µ ξ µ (A.3) (A.2) z lim n Sn µ(z) = η µ ; lim S n n µ (z) = ξ µ (A.4) η µ, ξ µ S µ, S µ S µ z B µ, B µ B µ, B µ ds µ dz /2 = c µ z + d µ = ; 52 dsµ dz /2 = c µ z a µ = (A.5)

54 z R µ, R µ J µ, J µ R µ = R µ = k µ ξ µ η µ k µ (A.6) J µ = d µ c µ = ξ µ k µ η µ k µ ; J µ = a µ c µ = η µ k µ ξ µ k µ ; (A.7) (A.6),(A.7),(A.4) S µ B µ B µ S µ B µ B µ η µ B ξ B µ B µ, B µ F S µ, S µ B µ, B µ B B S µ, S µ F, B B F F S g S µ (µ = g) T α = S n µ S n 2 µ 2 S n r µ r, r =, 2, µ i =, 2, g (A.8) n i (i =, r) T α G g T α S S T α n α i= n α = n i (A.9) r G g T α SL(2, C) (A.2) η, ξ, k A T = AT A T G g G g G g η, ξ A(η), A(ξ) k G g G g A 2g S µ η µ, ξ µ 2g 3 S µ F B B T α T α B, B 2,, B g B, B 2,, B g H 53

55 S µ B µ B µ B µ B µ F * H g Bµ, B µ g g B µ B µ a µ B µ z B µ S µ(z) B µ * 2 F + (3.75) Cµ 2 ω µ ω µ = (,µ) T α ( ) z T α (η µ ) z T α (ξ µ ) (A.0) (,µ) T α S µ (A.0) ω µ a µ ω µ = ω µ = 2πiδ µν a ν B ν µ ν (A.0) T α S n ν (A.) (n > 0) T α (η µ ), T α (ξ µ ) a µ (A.0) (A.0) µ = ν T α (A.) ω µ b ν (3.75) C µν τ µν (2πi)τ µν = b ν ω µ (A.2) b µ B µ z 0 B µ S µ(z 0 ) * C * 2 b µ F 54

56 (2πi)τ µν = ω µ = b ν = (,µ) Sν (z 0 ) z 0 ω µ (A.3) log S ν(z 0 ) T α (η µ ) S T ν (z 0 ) T α (ξ µ ) α (ν,µ) = δ µν T α z 0 T α (ξ µ ) z 0 T α (η µ ) log η ν T α (η µ ) ξ ν T α (η µ ) η ν T α (η µ ) ξ ν T α (ξ µ ) (A.4) (A.3) (ν,µ) T α S ± ν S ± µ µ = ν (A.3) τ µν z 0 C 3 E(z, w) prime form E(z, w) = (z w) α z T α (w) z T α (z) w T α (z) w T α (w) (A.5) α T α, Tα * 3 (A.5) a µ b µ E(S µ (z), w) = exp z 0 µ σ(z) [ 2πi( w ] 2 τ µµ + ω µ ) E(z, w) z (A.6) g > z 0 µ = 2πi 2 log K µ πi + g (µ,ν) ν= α log ξ ν T α (η µ ) η ν T α (η µ ) z 0 T α (ξ µ ) z 0 T α (η µ ) (A.7) log σ(z) = g = 2(g ) + g (µ,ν) µ,ν= α I log ξ µ T α (ξ ν ) z T α (ξ ν ) log σ(z) = log[(z ξ)(ξ z)] 2 (A.9) z T α (z) ξ µ T α (a) + ξ µ ξ ν log (z ξ µ ν ν )(ξ µ z) (A.8) * 3 T α Tα 55

57 B C µν, C 2 µ, C 3, N (3.74) C µν, C 2 µ, C 3 N (3.75) (3.75) B. C µν C µν (3.59) r µ (3.72),(3.73),(3.68) r µ D (3.40) U V S µ, S µ 56

58 Cµν = (D 00 (S µ ) + D 00 (Sµ ))δ µν (B.) [ ] + (D 0n (S µ ) D 0n (Sµ )) D nm (Σ l ) (D m0 (S ν ) D m0 (Sν )) l= (D 0n (Ũ 2µ ) D 0n (U 2µ )) [ ] δ nm + D nm (Σ) + [D nm (Σ l+ ) 2D nm (Σ l ) + D nm (Σ l )] l= (D m0 (Ṽ 2ν ) D m0 (V 2µ )) (D 0n (Ũ 2µ ) D 0n (U 2µ )) [ ] δ nm + [D nm (Σ l ) D nm (Σ l )] l= (D m0 (S ν ) D m0 (Sν )) + (D 0n (S µ ) D 0n (Sµ )) [ ] δ nm + [D nm (Σ l ) D nm (Σ l )] l= (D m0 (Ṽ 2ν ) D m0 (V 2µ )) (B.) n, m (3.70) l l= lim N N l= (B.2) (B.2) (B.) U, V S, S (3.70) Cµν = (D 00 (S µ ) + D 00 (Sµ ))δ µν (B.3) (±µ,±ν) + [(D 0n (S µ ) D 0n (Sµ ))D nm (T α )(D m0 (S ν ) D m0 (Sν ))] l=0 α;n α =l (±µ,±ν) α;n α (3.40) D(S) D(T =l α ) S µ ± T α S ν ± T α 57

59 (B.3) D 0n (S µ )D nm (T α )D m0 (S ν ) (B.4) T α T α = S µ S ν (B.2) (B.3) (B.4) (B.4) T α S µ, Sν order l T α ( µ,+ν)(l) T ( µ,+ν)(l) α = (n,m);n+m l;n,m 0 (S µ ) n T (±µ,±ν)(l n m) α (S ν ) m (B.5) T α (±µ,±ν)(l n m) S µ, Sµ, S ν, Sν order (l n m) (3.40),(B.5),(B.2) (B.3) S C µν = lim N (µ,ν) α + [(D 00 (S N ν ) D 00 (S N ν (D 0n (S N µ ) D 0n (S N µ ))D nm (T α )(D m0 (S N ν ) D m0 (S N ν )) (B.6) )) (D 00 (Sν N ) D 00 (Sν N ))]δ µν T α S µ ±n S±m ν D nm (S) (3.39) η µ, ξ µ k µ lim D 0n(Sµ N ) = ( ) n, lim N n ξ D 0n(Sµ N ) = ( ) n, µ N n η µ lim D m0(sν N ) = (η µ ) m, lim D m0(sν N ) = (ξ µ ) m, N m N m (B.7) lim (D 00(Sν N ) D 00 (Sν N )) = N 2 log k µ (B.8) (B.7) (B.8) (B.6) (µ,ν) Cµν = α = 2πiτ µν log η µ T α (ξ µ ) ξ µ T α (η ν ) η µ T α (η ν ) ξ µ T α (ξ ν ) (B.9) 58

60 C µν τ µν* B.2 C 2 µ C 2 µ B. C 2 µ = [ l=0 α;n α =l n,k= N i= m=0 = lim N [(D 0n (S µ ) D 0n (Sµ ))D nk (T α )] (B.0) D km (V i )am i Q N i= lim N Q α µ [ g µ,µ ν= g ν= D k0 (S ν ) ] + QD 00 (S µ ) (D 0n (Sµ N ) D 0n (Sµ N ))D nk (T α )D km (V i )am i n,k= α ] (D 0n (Sµ N ) D 0n (Sµ N ))D nk (T α )D k0 (Sν N ) n,k= + lim Q[D 00(Sµ N ) D 00 (S N N N = i= α (µ) + Q[ ν µ (µ) α m=0 α i m m! m z µ ) ( log ξ µ T α (V i (z)) η µ T α (V i (z)) log ξ µ T α (ξ µ ) η µ T α (z 0 ) η µ T α (η µ ) ξ µ T α (z 0 ) ] (B.0) A (3.75) ) η µ T α (z 0 ) z=0 ξ µ T α (z 0 ) B.3 C 3 C 3 B.2 * A 59

61 C 3 = N and i nk (U i )D kh (T α )D hm (V j )am j l=0 α;n α =l i, j= n,m=0 k,h=0 N i= m=0 2 Q [(a0 i Q)D 0m(V i )am i + amd i 0m (U i )(a0 i Q)] N [D 0n (S ν )D nk (T α )D km (V i )am i l=0 α;n α =l i= n,k=0 m=0 + amd i mk (V i )D kn (T α )D n0 (Sν )] g 2 Q2 [D 0n (S µ )D nk (T α )D km (Sν )] l=0 α;n α =l µ,ν= n,m= (B.) (B.0) D nm (S) lim N D nm (S N ) C 3 (3.75) B.4 N g-loop vertex (3.77) N = (det( H)) /2 log det( H) = n= n Tr[Hn ] = n= T α T α = U α D α Uα ( ) kα 0 D α = 0 n α:n α =n D mm (T α ) (B.2) D α (B.3) K α T α D mm (T α ) m > 0 D U α, U α D mm (T α ) = m= D mm (D α ) = m= kα m = m= k α k α (B.4) k α order n conjugacy class (B.2) log det( H) = n= 60 n α;n α =n k α k α r α (B.5)

62 α conjugacy class r α class condjugacy class conjugacy class primary class Tα p primary class (Tα p ) m primary class conjugacy class k p (Tα ) m = k m, n Tα p p (Tα ) m = m n Tα p, r (Tα p ) m = r Tα p =, n Tα p (B.6) (B.6) (B.5) log det( H) = α m 0 k (T p α ) m k (T p α ) m r (T p α ) m n (T p α ) m (B.7) primary class (B.6),(B.7) det( H) = α ( kα) n 2 (B.8) α primary class T α N N = α n= n= ( k n α) (B.9) 6

63 C Canonical form (3.47) P(x µ ) (3.56) canonical form canonical form O O exp( a, A) : exp( a, (C )a) : exp( B, a) exp( ϕ) (C.) ϕ a, a (a, A) = a n A n, (B, a) = B n a n, n= n= (a, (C )a) = a n(c nm δ nm )a m n,m= (C.2) canonical form (C.) canonical form O O 2 = O 3 (C.3) A 3 = A + C A 2, B 3 = B 2 + B C 2 (C.4) C 3 = C C 2 ϕ 3 = ϕ + ϕ 2 + B A 2 62

64 vertex canonical form (3.46) [ ] P(x µ ) =: exp a n 2µ D nm (P(x µ ))am 2µ + a n 2µ an 2µ n,m=0 n= : (C.5) canonical form C nm = D nm (P(x µ )), ϕ = a 0 D 00(P(x µ )), A n = D n0 (P(x µ ))a 0,B n = a 0 D 0n(P(x µ )), (C.6) (3.37) V N;0 2µ a 2µ canonical form V N;0 = V exp 2 N k=,k 2µ m=0 a k n[d nm (U k V 2µ ) + D mn (U 2µ V k )]a 2µ m (C.7) (C.7) (C.) B m = 2 ak n[d nm (U k V 2µ ) + D mn (U 2µ V k )] (C.8) ϕ = 2 ak n[d n0 (U k V 2µ ) + D 0n (U 2µ V k )]a 2µ 0 C, A (C.5) (C.7) canonical form P(x µ ) Ã, B, C, ϕ V N;0 B, ϕ V N;0 P(x µ ) = V exp( a 2µ, Ã) : exp( a 2µ, ( C )a 2µ ) : exp( ( B + B C, a 2µ ) exp( ( ϕ + ϕ + (B, Ã))) (C.9) (C.9) exp vertex <n 2µ, O a (C.8),(C.6) (C.9) V N;0 P(x µ ) = V exp 2 N k=,k 2µ m=0 a k n[d nm (U k Ṽ 2µ ) + D mn (Ũ 2µ V k )]a 2µ m (C.0) Ṽ 2µ = V 2µ P(x µ ), Ũ 2µ = ΓP(x µ ) ΓU 2µ (C.0) (C.7) U 2µ Ũ 2µ, V 2µ Ṽ 2µ 63

65 [] A.A.Belavin,A.M.Polyakov and A.B.Zamolodchikov,Nucl.phys. B24 (984) 333 [2] M.B.Green,J.H.Schwarz and E.Witten, Superstring Theory,Cambridge University Press (987) [3] D.Freidan,E.Martinec and S.Shenker,Nucl.phys.B27 (986) 93 [4] Michio Kaku,, (989) [5],, (989) [6] P.D.Vecchia,F.Pezzella,M.Frau,K,Hornfeck,A.Lerda and S.Sciuto,Nucl.phys. B322 (989) 37 [7] S.Sciuto,Nuovo Cimento Lett. 2 (969) 4 [8] A.Della Selva and S.saito,Nuovo Cimento Lett. 4 (970) 689 [9] Michio Kaku and K.Kikkawa,Phys.Rev. D0 (974) ;D0 (974) 823 [0] E.Witten,Nucl.phys. B268 (986) 253 [] H.Hata,K.Itoh,T.Kugo,H.Kunitomo and K.Ogawa,Phys.Rev. D34 (986) 34 [2] P.D.Vecchia,L.Magnea,A.Leada,R.Russo and R.Marotta,hep-th/ ,96043 [3] Z.Bern and D.A.Kosower,Nucl.phys. B379 (992) 45 [4] M.Kato and K.Ogawa,Nucl.phys. B22 (983) 443 [5] S.Mandelatam,Phys.Rev. D (975) 3026 [6] P.D.Vecchia, Multiloop amplitudes in string theory" in String quantum gravity and physics at the planck energy scale,world Scientific (993) D (975) 3026 [7] E.D Hoker and D.H.Phong,Rev.Mod.Phys. 60 (975) 4 [8] C.Lovelace,Phys.Lett. B32 (975)

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information