Size: px
Start display at page:

Download ""

Transcription

1

2 RBS 3 K-factor Bragg 15 ERDA 21 ERDA 21 ERDA RUMP Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i

3 Ti 86 V 90 V 99 V 101 V 105 V 114 V Ti 121 Ti 123 V 124 V ii

4 1 V( ) Ti( ) Ti( ) Ti( ) V( ) V( ) 1

5 2 Ti( ) Ti( ) V( ) V( ) 2

6 3 RBS K-factor RBS He + He He SSD MCA SSD He 3-1 RBS 3-1RBS - 3 -

7 3-2 K-factor 3-2 m 1 v 0 x E v 1 E 0 v mv 1 0 = mv mv m1v0=m1v1cos m2v2 cos 3-2 0=m1v1sin m2v2sin E 0 = m1v0, E1 = m1v1 2 2 E E kinematic factor K E 1 K = 1-4 E 0 K = E E m1 cosθ + m2 m = ( m1 + m2) 2 1 sin 2 θ

8 RBS 3-5 K 3-3 Si K p m = p m i ) K m ( i K E = p K ) m K m 0 i( m i E0 K m 3-3RBS RBS - 5 -

9 RBS 3-4 P 3-4 x b x b x b b b b b sin - 6 -

10 3-5 P b b b dσ σ b b φ b db = dω lim = Ω lim = sin Ω 0 Ω 0 θ θ φ sin θ dθ 3-7 db/d ( 90) ZZ MM E CGS dσ Z { 1 ( 1 2 ) sin θ cosθ } 1Z 2e 4 M M + = dω 4 4E sin θ 1 ( M M MKS dσ Z { 1 ( 1 2 ) sin θ cosθ } 1Z 2q 4 M M + = 4 dω 16πε 0 E sin θ 1 ( M M ) ) 2 2 sin sin 2 2 θ θ

11 3-4 P 3-5 dσ σ = Ω 3-10 dω θ j dσ ν = j 0 Ω 3-11 dω θ S n t dσ ν 0 = nj 0 t Ω 3-12 dω θ 3-12 S N N N n n Nτ= 3-13 S Q Q=S jt ν = N τ dσ 0 dω QΩ 3-15 x E E dedx E de lim ( E) 3-16 x 0 x dx - 8 -

12 E x E x de E( x) = E0 dx dx dedx E dx dx = de ( E) de 3-18 x = E E 0 de dx 1 de 3-19 dedx dedx de de = const = 3-20 dx dx E 0 de de = const = 3-21 dx dx E 0 + E 1 x = ( E0 E) 3-22 de dx E0 2 de E = E0 x 3-23 dx E0 dedx dedx t E E dedx Et dedx N - 9 -

13 N dedx dedx x E = de x 3-24 dx E x N x N x x E E N x E N x ε= E 1 = N x N de dx N dedx π ε = Z1 Z2e Mv e ln ( I = 10Z ) mv I e ZZ me v Bragg ε AmBn = mε A + nε B 3-27 N

14 3-6 E 0 E 3-6 E x E E xcos E = x E 0 cosθ 1 de dx ( E ) KE x de E KE dx KE KE x de dx KE 1 = ( ) ( 0) 3-29 cosθ2 cosθ2 KE 0 K de 1 de E1 = ( E0 ) + ( KE0 ) x 3-30 cosθ1 dx cosθ 2 dx 3-30 K E KE 3-30 E KE E = 1 S ] x [

15 S S K de 1 de S 0 ] ( E0 ) + ( KE ) cosθ1 dx cosθ 2 dx [ ε 3-25 E = ε ] Nx 3-33 [ 0 ε stopping cross section factor K 1 ε 0 ] ε( E0 ) + ε( KE ) cosθ1 cosθ 2 [ N MCA xi xi i i i i H i 3-15 Hi d d Ei Ni Ei xi xi d Ei

16 3-7 (a) (b) RBS >0 i i/cos Hi H i dσ ΩQNτ = ( Ei) dω cosθ 1 i xi Ei MCA i 3-7 E H 3-35 dσ ΩQNτ H0 = ( E0) dω cosθ KEKE ξ Nτ0 = 3-37 [ ε ] N

17 H dσ ΩQξ = ( E ) 3-38 dω [ ε ]cos θ x i (a) (b) RBS 3- xi xi Ni 3-37 ξ ε( KEi ) Nτ i = 3-39 ε ( E )] ε( E ) [ 0 i 1, i Ei xi E 1,i MCA εkei εe 1,i

18 KEi E 1,i xi Hi H i dσ ΩQξ ε( KEi ) = ( Ei) dω [ ε ( E )] cos θ ε( E ) 0 i 1 1, i 3-40 xi Bragg 2 AB AB

19 3-9 (a) (b) RBS 3-9(a) 3-9(b) A B 2 kinematic factor K A B E HEHE E H E ) = H ( E ) + H ( E ) 3-41 ( i A i B i A B 1-36 H A,0 ΩQN τ AB A A,0 = σ A( E0) cosθ AB ΩQN B τ B, 0 HB, 0 = σ B( E0) 3-43 cosθ1 AB N N AB AB A A B B τa, B, A B

20 A B σeσe A, B, 3-37 N AB N τ A, 0 AB B,0 ξ = 3-44 [ ε ] AB 0 A ξ τ = 3-45 [ ε 0 ] AB B [ ε 0 ] N AB AB AB [ ε 0 ] B AB,, A B AB AB AB N = mn N AB B H AB = nn A ΩQmξ, 0 = σ A( E0) [ ] AB ε cos θ 0 A ΩQnξ HB, 0 = σ B( E0) 3-47 [ ] AB ε0 B cos θ1 H A, 0 σ A ( E0) m [ ε0] = HB, 0 σ B ( E0) n [ ε0] [ ε ] 0 B [ ε ] m n 0 H = H AB AB A σ σ AB B AB A ( E ) ( E ) A, 0 A 0 B, 0 B AB AB mn [ ε 0 ] [ ε 0 ] 3-48 mn A B A AB A

21 H AB ΩQN A τ = σ ( E ) cosθ Ai, A i 1 Ai, 3-50 H B, i ΩQN τ AB B B, i = σ B( Ei ) cosθ N AB τ Ai, ξ = [ ε ( E )] ε ε AB ( KAEi) ( E ) AB AB 0 i A 1Ai, 3-52 AB AB ξ ε ( KBEi) N τ Bi, = 3-53 AB AB [ ε0( Ei)] B ε ( E1Bi, ) H H = σ AB ΩQmξ ε ( KAEi) ( E ) [ ( AB AB ε0 Ei )] A cos θ1 ε ( E1Ai, ) = σ AB ΩQnξ ε ( KBEi) ( E ) [ ( AB AB ε E )] cos θ ε ( E ) Ai, A i Bi, B i 0 i B 1 1Bi, (3-46)(3-47) (3-54)(3-55)

22 (3-44)(3-45) (3-52)(3-53) AB AB 3-10 E,A E,B A B AmBn A B mn x E in E in AB = N ε AmBn in x cosθ N AB AB E out kinematic factor x E A B E E AB AB E = [ ε] N x 3-57 A B A AB AB E = [ ε] N x 3-58 B [] [] AB A B 3-33 (3-34 AB K A AB 1 AB [ ε ] A = εin + ε out, A 3-59 cosθ1 cosθ 2 AB KB AB 1 AB [ ε ] B = εin + ε out, B 3-60 cosθ1 cosθ 2 in E 0 out E 0 A B K A E 0 K B E

23 [ ε ] 0 [ ε ] 0 K ( ) ( ) cosθ ε 1 = E cosθ ε 0 + KAE AB A AB AB A 1 K ( ) ( ) cosθ ε 1 = E cosθ ε 0 + KBE AB B AB AB B x AB Bragg ε + AB A B = mε nε 3-63 mn x x t t E in = E 0 t cosθ 1 de dx ( E ) 0 = E 0 t cosθ 1 N AB ε AB ( E ) E in E

24 ERDA ERDA Elastic Recoil Detection Analysis He ERDA ERDA ERDA ERDA ERDA Au/SiTiO 2 SiC 3-12 ERDA Au/Si

25 Energy (MeV) Normalized Yield Au Channel 3-12ERDA Au/si Au TiO 2 SiC

26 Econv XRUMP OMEGA FWHM( ) Econv XRUMP OMEGA FWHM( ) 60 Energy (MeV) Normalized Yield Channel 3-14ERDA OMEGA FWHM 3-14 OMEGA FWHM( ) ERDA Mev 2 dσ Z1Z2e 2 M1 2 1 ( ) ϕ = ( ) ( + 1) 3 dω 2E0 M 2 cos ϕ E 0 MeV e MeVcm (d /d) cm 2 Tirira

27 dσ In H ( EHe, φ) 1 2 = A1 EHe + A2 + A3 EHe + A4 EHe dω A1A4 3-1 (deg) A 1 A 2 A 3 A Tirira Rutherford

28 XRUMP XRUMP XSECT E2COF XRUMP XSECT E2COF 2 dσ E2COF = XSECT + 2 dω E XRUMP b[ ] b[ ] XRUMP Tirira XRUMP XSECT E2COF Trira Mev Mev Mev 1.53Mev

29

30 1 2 ( ) XSECT E2COF XSECT E2COF XSECT E2COF XSECTE2COF/ Trira XRUMP Trira XRUMP

31 2.3Mev XRUMP XRUMP 2.3Mev ERDA 1.5Mev2.3Mev XSECT E2COF Mev2.3Mev 2 ( ) XSECT E2COF

32 XSECT E2COF XSECT E2COF XSECT E2COF XSECT E2COF XSECTE2COF/E 2 Tirira XRUMP Trira XRUMP

33 3-22Trira XRUMP Trira XRUMP Tirira XRUMP

34 Li 3-24 A He Li Li He He

35 He He He He

36 N 2 N 2 IN N 2 N 2 kgf/cm 2 T/C T/C LV-TC T/C LV-TC CLOSE O T/C T/C N 2 N 2 L/EH/E

37 ON ON ALi A 1.000MV ON 428DETECTORBIASSUPPLY OFF POS ON NT2400 NT2400 ON NT2400 MENUPF1 EXTCLOCK ENTRYENT INT EXT ENTPF4 MENUPF1 Main Menu WindowsNT LOGIN kutele RBS Datetake Network-NT2400ON He + 80 He I/S A I/S 1.5A 2.0A 90.0V V I/S V ON I/S V ON I/S V ON Y I/S V ON GV-L OPEN

38 12.40A ON L/EH/E A LE xy k ON LE k ON Q ON OUT Y HE 0.3k ON GV-LGV-R OPEN He + 15AHe + 10A ON 428 SSD CCD Datetake Gonio Move c: users data

39 Datatake Takedata ERDA/2SSDERDA/ Tilt /Step 20000nC Tilt 20000nC SSD SSD Au10 MevHe + c: users data watarabo jikken3 428 SSD

40 428 SSD Li 250 Li OFF OFF L/HH/E OFF Datatake GonioMove GonioStatus DatatakeNetworkNT2400OFF Datatake WindowsNT OFF 428DETECTOR BIAS SUPPLY POSOFF NT2400 STOP OFF NT2400 OFF

41 RUMP XRUMP Energy (MeV) Normalized Yield Channel

42 ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 80.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition KAP auto C H N O XRUMP 1.998Mev He 3-3 BEAM 2.000msr 3-3 Omega Phi Psi Theta 0ch1024ch 3-3 NPT C 22 H 10 N 2 O 5 RUMP KAPKAP KAP C22.0 H10.0N2.0O

43 25 Energy (MeV) Normalized Yield Channel KAP KAP KAP C22.0 H10.0 N2.0 O5.0 Ag

44 ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 80.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition KAP auto C H N O Ag XRUMP 25 Energy (MeV) Normalized Yield Channel

45 He MeV He MeV Ti( )V( )

46 (mv) (mv) SLIDETRANS( ) SLIDETRANS( )INPUT 3-30 SLIDETRANS( ) SLIDETRANS( )

47 SLIDETRANS( ) SLIDETRANS( ) SLIDETRANS( )

48 Ti Ti Ti V V Ti 0,135,250,370,440 Ti 0,120,250,370,470 V 0,115,250 V0,120,250 Ti 4-1- step Ti kpa W sccm Ti Ti RBS ERDA RBS ERDA

49 4-2-1 Ti Ti 46

50 4-2-1 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H

51 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%] Ti Ti 135 RBS ERDA RBS ERDA

52 4-2-4 Ti Ti

53 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H

54 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%] Ti Ti 250 RBS ERDA RBS ERDA

55 4-2-7 Ti Ti

56 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H

57 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%] Ti Ti 370 RBS ERDA RBS ERDA

58 Ti Ti

59 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H

60 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%] Ti Ti 440 RBS ERDA RBS ERDA

61 Ti Ti

62 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H

63 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%] Ti 60

64 Ti Ti ( Ti ) Ti 61

65 Ti Ti 62

66 Ti Ti Ti RBS ERDA RBS ERDA Energy (MeV) Normalized Yield Channel Ti 63

67 3.5 Energy (MeV) Normalized Yield Channel Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: 0.00 MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: 1.45 Correction: # Thickness Sublayers Composition A auto Ti H C A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au

68 A auto Ti C Au A auto Ti Au ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 55.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti C Au A auto Ti Au ( Ti )

69 Ti Ti 66

70 Ti Ti RBS ERDA RBS ERDA Ti 67

71 4-3-2 Ti Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C

72 A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti

73 [at%] Ti Ti 120 RBS ERDA RBS ERDA

74 4-3-4 Ti Ti

75 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 70.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H

76 C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%]

77 Ti 4-3- Ti 250 RBS ERDA RBS ERDA Ti

78 4-3-8 Ti Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 45.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H

79 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti

80 [at%] Ti Ti 370 RBS ERDA RBS ERDA

81 Ti Ti

82 Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 45.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H

83 C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti [at%]

84 Ti Ti 470 RBS ERDA RBS ERDA Ti

85 Ti Ti ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 33.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H

86 C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti Ti ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti H C A auto Ti C A auto Ti

87 [at%] Ti Ti Ti ( Ti )

88 Ti Ti 85

89 Ti Ti Ti Ti RBS ERDA RBS ERDA

90 50 Energy (MeV) Normalized Yield Channel Ti 15 Energy (MeV) Normalized Yield Channel Ti 87

91 ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: 0.00 MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: 1.45 Correction: # Thickness Sublayers Composition A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti Au A auto Ti Au ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 55.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto Ti H C Au A auto Ti H

92 C Au A auto Ti H C Au A auto Ti H C Au A auto Ti H C Au A auto Ti Au A auto Ti Au0.010 ( Ti ) Ti 89

93 Ti V V RBS ERDA RBS ERDA

94 4-4-1 V V 91

95 4-4-1 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 20.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V C A auto V V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 30.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V C A auto V

96 [at%] V V 115 RBS ERDA RBS ERDA

97 4-4-4 V V

98 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 20.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V C A auto V V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 30.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V C A auto V

99 [at%] V V 250 RBS ERDA RBS ERDA

100 4-4-7 V V

101 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 20.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V C A auto V V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 30.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V C A auto V

102 [at%] V V V ( )

103 V V 100

104 V V V V RBS ERDA RBS ERDA

105 50 Energy (MeV) Normalized Yield Channel V Energy (MeV) Normalized Yield Channel V ERDA 102

106 4-4-7 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: 0.00 MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: 1.45 Correction: # Thickness Sublayers Composition A auto H C Au A auto H C Au A auto Au A auto Au V ERDA ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 55.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto H C Au A auto H C Au A auto Au A auto Au

107 ( V ) V V 104

108 V V RBS ERDA RBS ERDA V 105

109 4-5-2 V V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 20.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V

110 4-5-2 V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 30.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V [at%]

111 4-5-3 V V 120 RBS ERDA RBS ERDA

112 4-5-4 V V

113 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 20.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 30.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V

114 [at%] V V 250 RBS ERDA RBS ERDA

115 4-5-7 V V

116 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 28.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V V ERDA ========================================================== Beam: MeV 4He na Geometry: IBM Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 50.0 kev Tau: 5 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto V H C A auto V H C A auto V H C A auto V C A auto V C A auto V

117 [at%] V V V ( )

118 V V 115

119 V V V RBS ERDA RBS ERDA

120 50 Energy (MeV) Normalized Yield Channel V 2.0 Energy (MeV) Normalized Yield Channel V 117

121 4-5-7 V ========================================================== Beam: MeV 4He na Geometry: IBM Theta: 0.00 Phi: Psi: 0.00 MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 25.0 kev Tau: 5 Omega: 1.45 Correction: # Thickness Sublayers Composition A auto H C Au A auto H C Au A auto H Au A auto H Au A auto Au V ========================================================== Beam: MeV 4He na Geometry: General Theta: Phi: Psi: MCA: Econv: First chan: 0.0 NPT: 1024 Detector: FWHM: 55.0 kev Tau: 5.0 Omega: Correction: # Thickness Sublayers Composition um auto Al A auto H C Au A auto H C Au A auto H Au A auto H Au

122 A auto Au0.030 ( V ) V 119

123 V V 250 V 120

124 Ti Ti ( ) Ti 121

125 5-1-2 Ti Ti Ti Ti Ti 122

126 Ti Ti ( ) Ti Ti 123

127 Ti Ti Ti Ti Ti Ti Ti V V ( )

128 5-3-1 V V 125

129 Ti V V V V V V Ti Ti V V V V 250 V V ( )

130 5-4-1 V V 127

131 Ti V V V V V V V V V V

132

133 1990 RBS RBS RBS RBS Rump/Genplot CGS ( ) (mv) 4) (2004) 5) (2004)

134 131

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

he T N/ N/

he T N/ N/ 6.000 1.000 0.800 0.000 0.500 1.500 3.000 1.200 0.000 0.000 0.000 0.000 0.000-0.100 he 1.500 T 0.100 1.50 0.00 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X() 20.000 Y() 0.000 (kn/2) 10.000 0.000 kn

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information