note01
|
|
|
- たみえ とみもと
- 9 years ago
- Views:
Transcription
1 γ 5
2
3 J, M α J, M α = c JM JM J, M c JM
4 e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π
5 m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±, π 0 ( + m π )π a F.T. ( x) = 0 q ( + m π )π a q ( ) = 0 J a (π, ρ, N,,etc) ( + m π )π a = J a (π,ρ, N,,etc ) π, ρ,n, π + ~ ud, π 0 ~ uu + dd, π + ~ du q q
6 π = qq + qq qq + qq qq qq +... F π ( q ) γ γ ρ 0 e π ± e π ± ρ ρ π = 6 F π q ( q = 0) = 6 m ρ ρ m ρ = 770 π = 0.63 fm (exp) = 0.65 fm π
7 Space-like egion Pion fom facto F π ( q ) Time-like egion 4m π q [GeV ] q [GeV ] f π = 93
8 q µ, q µ = (ω,q i ), ( ω, q i ) a, b p µ, p µ = (E, p i ), ( E, p i ) α, β ( ) π b ( ω, q ) π a ω, q N α ( ) ( E, p ) N β E, p S-wave P-wave N,, etc
9 S = exp(iδ ) =1 + it = 1 + i q K 1 i q K K = 1 q tanδ a = lim q 0 q (l+1) tanδ = lim q 0 q l K l =1 l = 0 a u Tu = 4π s M χ fχ f u χ s = ( p + q) M q i q i q σ, q σ, q q, σ i q q σ f = B + C q q + id σ q q f q, q τ 1 = , τ = 0 i i 0, τ 3 = i 0 i 0 t 1 = 0 0 i, t = 0 0 0, t 3 = i i 0 i t τ
10 f = b 0 + b 1 t τ + c 0 + c 1 t τ ( ) q q + i d 0 + d 1 t τ σ q q ( ) b 0,1, c 0, 1, d 0,1 S - wave P - wave b 0 b 1 c 0 c 1 d 0 d 1 Spin - - a a f f Isospin a f a f a f a:, f: a I = a 1, a 3 a I,J = a 11, a 13, a 31, a 33 b, c, d a b b c 0 c = 1 d 0 d a 1 a 3 a 11 a 13 a 31 a 33
11
12 0.1 m π 1 10 m π 1 b 0 = m π 1, b 1 = m π 1 a 1 = m π 1, a 3 = m π 1 c 0 = 0.08 m π 3, c 1 = m π 3 a 11 = m π 3, a 13 = m π 3 d 0 = m π 3, d 1 = m π 3 a 31 = m π 3, a 33 = 0.14 m π 3 b 0 a 33 P 33 S-wave ρ P-wave
13 L πnn = ign τ π γ 5 N N g γ 5 γ 5 = N(p) = E + M 1 σ p E + M 1 χ exp(ipx) M σ p χ exp(ipx) M L πnn = ign (p ) τ π g γ 5 N( p 1 ) M M χ σ i τ a χ ( ) ( π i π a ) σ q q σ q p 1 p σ 1 q τ 1 σ q τ
14 V(q) = g M = 1 g 3 M σ 1 q σ q q + m τ 1 τ q q + m σ 1 σ q + q + m S 1 ( q ˆ ) τ 1 τ FT 1 g 3 M 1 m e m 4πδ 3 () σ 4π 1 + m + 3 m + 3 e m S 1 (ˆ ) σ τ 1 τ V στ () = 1 g 3 M 1 e m 4π m σ 1 σ τ 1 τ σ 1 σ τ 1 τ = ( S(S +1) )( I(I +1) ) = S I L odd SO even TE even SE odd TO
15 1 q + m Λ q + Λ 1 q + m Λ Λ q + Λ 1 q + m ~ Λ q + Λ 1 = ~ Λ 4 Λ Λ 1 A q + m + Λ q + Λ 1 q + m (If Λ 1 ~ Λ ) 1 q + Λ 1 1 q + Λ B q + Λ 1 + C q + Λ 1 q + m Λ 1, Λ g 4π ~ 14.9 g ~ 13.7 ; Λ = 1400 MeV a q 1 b q p 1 p T = g u ( p )iγ 5 τ b i / p 1 + q / 1 M τ a iγ 5 u(p 1 ) + g u (p )iγ 5 τ a i p / 1 q / M τ b iγ 5 u( p 1 ) At theshold a=b + i g M u (p )u( p 1 )
16 p 1 ~ p ~ (M,0), q / 1 ~ q / ~ γ 0 m π m π σ = (π) 4 T 4 ( pq) m M dφ m dφ u ( p )u( p 1 ) ~ M dφ = 1 q (π) 5 m + M (angle integated ), T ~ 4g σ ~ g4 4πM ~ 15 fm =150 mb
17 γ 5 m L = ψ ( i / m )ψ, ψ = u d u, d ψ exp(iτ v )ψ ; ψ ψ exp( i τ v ), ( ψ ψ exp( iτ v )) τ v = 3 i=1 τ i v i v i (i =1,,3) ψ / ψ ψ e i τ v / e i τ v ψ = ψ / ψ (invaiant ) ψ ψ ψ e i τ v e i τ v ψ = ψ ψ ( " ) γ 5 γ 5 ψ e i τ a γ 5 ψ ; ψ ψ e i τ a γ 5, ψ ψ e iτ a γ ( 5 ) ψ / ψ ψ e i τ a γ 5 / e i τ a γ 5 ψ = ψ / ψ (invaiant ) ψ ψ ψ e i τ a γ 5 e i τ a γ 5 ψ ψ ψ (noninvaiant )
18 γ 5 ψ = 1+ γ γ 5 ψ ψ R +ψ L P R 1+ γ 5, P L 1 γ 5 P R = P R, P L = P L, P R P L = 0, P R + P L = 1 γ 5 ψ R = γ 5 P R ψ = +ψ R, γ 5 ψ L = γ 5 P L ψ = ψ L ψ R, ψ L P 1+ γ ψ R γ 5 0 ψ = 1 γ 5 γ 0 ψ = 1 γ 5 ψ = ψ L ψ R ψ L c =1 p = (0,0,1) s z = +1 / 1 ψ + = σ p χ = = 1 1 χ
19 χ = ( ) ( 0 1) ψ = 1 σ p ˆ χ = = 1 1 χ P R ψ + = 1 + γ 5 ψ + = P L ψ = 1 γ 5 ψ = P R ψ = P L ψ + = χ = ψ χ = ψ ψ R ψ L exp(iτ v ) ~ 1 + iτ v +... g V exp(iτ a γ 5 ) ~ 1 + iτ a γ g A g V ψ R = (1 + iτ v )ψ R g V ψ L = (1 + iτ v )ψ L g A ψ R = (1 + iτ aγ 5 )ψ R = (1 + iτ a)ψ R g A ψ L = (1 + iτ aγ 5 )ψ L = (1 iτ a)ψ L γ 5 ψ R,L = ±ψ R,L
20 g V + g A ψ R = 1 + iτ v + a ψ R g R ψ R g V g A ψ R = iτ v a ψ R g V + g A ψ L = 1 + iτ v a ψ L g L ψ L g V g A ψ L = iτ v + a ψ L v = a v = a l g R ψ R = (1+ iτ )ψ R, g L ψ R = ψ R g L ψ L = (1 + iτ l )ψ L, g R ψ L = ψ L ψ R, ψ L g R, g L g R, g L g V, g A g R, g L g A, g B g A ψ R, g B ψ L g A ψ L, g B ψ R g A g B g B g A (D A, D B ) g A g B ψ R ~ (D A, D B ), ψ L ~ (D B, D A ) D A A
21 g L(φ, µ φ) φ = ( φ 1,φ,L,φ n) ( ) G φ = φ 1,φ,L,φ n φ a g ( D(g)φ ) a D(g) ab φ b b ~ 1 + i ε m T m φ φ + δφ m D(g) T m φ n n ε m 0 = δl(φ, µ φ) L(φ + δφ, µ φ + µ δφ) L(φ, µ φ) ~ L φ δφ + L ( µ φ) µ δφ L = i µ ( µ φ) T m φ ε m µ J m m m ( ) µ ε m ( J m ) µ = i L ( µ φ) T m φ ε m m µ ( J m ) µ = 0 V µ a = ψ γ µ τ a ψ, A µ a = ψ γ µ γ 5 τ a ψ
22 V µ a = ψ R γ µ τ a ψ R +ψ L γ µ τ a ψ L R µ a + L µ a A µ a =ψ R γ µ τ a ψ R ψ L γ µ τ a ψ L R µ a L µ a V µ a ψ (1 iτ v)γ µ τ a (1 + iτ v)ψ A µ a ~ ψ γ µ τ a ψ + i ψ γ µ [ τ a, τ v]ψ a c = V µ ε abc v b V µ A µ a c ε abc v b A µ V µ a V µ a ε abc a b A µ c A µ a A µ a ε abc a b V µ c a a c R µ R µ ε abc b R µ a a L µ L µ a a c L µ L µ ε abc l b R µ R µ a R µ a φ π a L (x) = ( 0 φ a )
23 [ π a (x),φ b (y)] = iδ ab δ 3 (x y) ( J m ) µ = i L ( µ φ) T m φ µ =0 i πt m φ Q m d3 x J m 0 (x) = i d 3 x πt m φ [ ] = d 3 y [ π(y)t m φ(y),φ(x) ] i Q m, φ(x) = i T m φ(x) e i Qm ε m φ(x)e i Q m ε m = D(g)φ(x) Q a b [ V, Q V ] = iε abc Q c V, Q a b [ V, Q A ] = iε abc Q c A, Q a b c [ A, Q A ] = iε abc Q V Q R a = 1 Q a a a ( V + Q A ), Q L = 1 Q a a ( V Q A ) Q a b [ R, Q R ] = iε abc Q c R, Q a b [ L, Q L ] = iε abc Q c L, Q a b [ R, Q L ] = 0
24 SU() SU() SU() SU() J(J +1) J H ghg 1 = H
25 g g A = a 0, B = b 0 B g A E A = A H A = B ghg B = B H B = E B GeV Meson spectum σ(~ 600) 0 + a 1 (160) ρ(770) f 1 (185) ω (780) π (1300) η(195) a 0 (980) f 0 (975) K 1 (1400) K 1 (170) K * (890) 0 π(139) GeV 1.5 Bayon spectum 1 N (1535) Λ (1670) Λ (110) Σ (1750) Σ (1190) (1700) (13) N (939)
26 A g A = ga 0 = ga g g 0 = b g 0 g 0 = 0 g SU() SU() SU() Isospin SU() Isospin SU() SU() SU() SU() SU() Isospin ~ U = exp(iτ π / f π )
27 ν π + u µ d 0 A µ π d A µ u W + ν µ L int ~ J µ J µ J µ ~ J µ (h) + J µ (l) J µ (l) J µ (l) = l γ µ (1 γ 5 )l v µ a µ µν µ L int (x) π(q) ~ µν µ J µ (x)j µ (x) π(q) ~ µν µ J µ(l) (x) 0 0 A µ (x) π(q) q µ A µ A a µ = σ µ π a π a µ σ f π f π µ π a f π
28 µν µ J µ (l) 0 0 A µ π A µ a (x) 0 A µ a (x) π b (q) = iq µ δ ab f π exp( iqx) f π q f π exp( iqx) 0 µ A µ a (x) π b (q) = δ ab m π f π exp( iqx) 0 π a (x) π b (q) = δ ab exp( iqx) 0 µ A µ a (x) π b (q) = m π f π 0 π a (x) π b (q) µ A µ a (x) = m π f π π a (x) m π m π = 0
29 p(p f )eν e L int n( p i ) = µν e J µ (l) 0 p(p f ) (V µ A µ ) n(p i ) p(p f ) A µ a n( p i ) p(p f ) A a µ (x) n(p i ) = u p ( p f ) γ µ g A (q ) + q µ h A (q τ [ a )]γ 5 u n ( p i ) exp(iqx) q = p f p i g A (q ) h A (q ) ν e f π = + g π NN n p g A tem h A tem µ A µ a (x) = 0 m π = 0 0 = p( p f ) µ A a µ n( p i ) = iu p ( p f ) q / g A (q ) + q h A (q τ [ a )]γ 5 u n (p i ) h A (q ) = M N g A (q ) q h A (q ) 1 / q A µ a = f π µ π a +...
30 x = 0 p(p f ) A µ a n( p i ) 1π = if π q µ p(p f ) π a n( p i ) m π = 0 p(p f ) π a n(p i ) i q g πnn (q ) u p ( p f )γ 5 τ a u n ( p i ) p(p f ) π a n(p i ) = 1 q p( p f ) J a n(p i ) i q g πnn (q ) u p ( p f )γ 5 τ a u n ( p i ) 1 / q J a A µ a p(p f ) A µ a n( p i ) 1π = f π q µ q g πnn (q ) u p (p f )γ 5 τ a u n (p i ) p(p f ) A µ a n( p i ) 1π = u p (p f )q µ M N g A (q ) q γ 5 τ a u n ( p i ) g πnn M N = g A f π g πnn = 13.7, g A =1.5, M N = 938 MeV, f π = 93 MeV g πnn f π
31 a q 1 b q p 1 p π b (q )N(p ) π a (q 1 )N(p 1 ) I = π b (q )N(p ) π a (q 1 )N(p 1 ) ~ d 4 xd 4 y e iq 1 x e +iq x N(p ) Tπ b (x)π a (y) N( p 1 ) I ~ d 4 xd 4 y e iq 1 x e +iq x N(p ) T µ A b µ (x) ν A a ν (y) N(p 1 ) I = I 1 + I + I 3 I 1 = d 4 xd 4 y e iq 1 x e +iq y δ(x 0 y 0 ) N(p ) A b 0 (x), ν A a ν (y) I = d 4 xd 4 y e iq 1 x e +iq y µ x ν y N(p ) A b 0 (x),a a ν (y) I 3 = i d 4 xd 4 y e iq 1 x e +iq y q µ δ(x 0 y 0 ) N(p ) A b 0 (x), A a µ (y) [ ] N(p 1 ) [ ] N(p 1 ) [ ] N(p 1 )
32 I I 1 I 3 O(m π ) O(m π ) O(m π ) I 1 I 3 I m π I 1 ν A a ν (y) ~ m π O(m π ) O(m π ) O(1) I 3 O(m π ) T = i f π I π I N, I N = τ, (I π a ) bc = iε abc a = m π 8πf π = m π 8πf π 1 + m π M 1+ m π M 1 I π I N 1 [ I(I +1) I N (I N +1) ] a 1 = 0. m π 1, a 3 = 0.1 m π 1 I N = 1 / I = I π + I N =1 / o 3 / a 1 = m 1 1 π, a 3 = m π
33 ψ,σ,π L SU() R SU() L 1 (, 0 ) ( 0, 1 ) 1 ( ), 1 1 (, 0 ) SU() R SU() L SU() R ~ Isospin 1 /, SU() L ~ Isospin 0 ( ) SU() R ~ Isospin 0, SU() L ~ Isospin 1 / 0, 1 1 ( ) ~ ψ R 0, 1 B α, 0 ( ) ~ ψ L B α ψ R τ α ψ L
34 B 0 B B B 0 B 0 B + v B B 0 + i a B B + i a B 0 B = τ α ( ψ R τ α ψ L ) = ψ L ψ R U B U ψ R τ α ψ L ψ L ψ R Paity ψ R τ α ψ L ψ L τ α ψ R S α = ψ R τ α ψ L + ψ L τ α ψ R =ψ τ α ψ ( ) = iψ τ α γ 5 ψ P α = i ψ R τ α ψ L ψ L τ α ψ R i S 0 S 0 S S + v S, P P 0 P 0 P + v P S 0 S 0 + a P P 0 P 0 a S, S S + a P 0 P P a S 0 S 0 + P P 0 + S S 0 + P, P 0 + S : Invaiant
35 S 0 + P (S 0, P ) (σ, π ) L σ = 1 ( µ σ) + ( µ π ) ( ) V (φ ) V(φ ) φ = σ + π V(φ ) = µ φ + λ 4 φ 4 λ µ H = 1 p α + 1 i φ α ( ) + V (φ ), p α = L φ = φ α α µ µ m π 10 1 mπ
36 φ φ π π σ 0 σ µ µ µ > (σ, π ) = (0, 0 ) µ < 0 φ = µ λ
37 0 µ λ, 0 f π, 0 ( ) SU() SU() SU() SU() R SU() L SU() V χ = ( χ 0, χ 1, χ, χ 3 ) φ = φ vac + χ χ V(φ vac + χ) = V(φ vac ) + χ α α V(φ vac ) + 1 χ α χ β α β V (φ vac ) +... V(φ), φ = φ 0 + φ 1 +φ + φ 3
38 α V(φ) = φ V (φ ) = φ α V (φ) φ ˆ φ α φ α V (φ ) ( ) = P αβ α β V(φ) = ˆ β φ α V (φ) P αβ δ αβ ˆ φ α ˆ φ β, φ V (φ) + φ ˆ ˆ α φ β V (φ ) P αβ ˆ φ α = P αβ ˆ φ β = 0 φ vac = ( f π, 0,0,0) L σ ~ 1 ( µ χ ) 1 V''(φ vac ) χ 0 ( ψ ψ, iψ τ γ 5 ψ ) σ, π ( ) σψ ψ + π iψ τ γ 5 ψ = ψ ( σ + iτ π γ 5 )ψ L = i ψ / ψ gψ ( σ +iτ π γ 5 )ψ + 1 µ σ ( ) + ( µ π) V(φ) ψ i ψ L / ψ L + i ψ R / ψ R gψ L ( σ + iτ π )ψ R gψ R ( σ iτ π )ψ L gσψ ψ gf π ψ ψ
39 M = gf π g A g A g A σ ψ ψ = ψ R ψ L +ψ L ψ R ψψ ψψ = ψ R ψ R +ψ L ψ L + 1 µ σ L = i ψ / ψ gψ ( σ + iτ π γ 5 )ψ [( ) + ( µ π) ] λ 4 σ + π ( f π ) m σ = λf π M = gf π
40 σσσ, σππ σσσσ, σσππ, ππσσ a q 1 b q π π p 1 p σ (3d tem ) = g u u i q m λf π i g σ M k 0 L PS = iψ γ 5 τ π ψ ψ ψ (x) = u n ( x )exp( ie n t)b n + v m ( x ) exp(+ie m t)d m E n >0 E m <0 L PS n L PS n v ~ p / E m L PS n
41 n Bon tem n ~ n iψ γ 5 τ π ψ iψ γ 5 τ π ψ n ~ u n γ 5 0 T(ψψ ) 0 γ 5 u n ~ u n (x)γ 5 ~ dω π dω π u n (x)u n (y) ω E n + iε + v m (x)v m (y) γ ω + E m iε 5 u n (y) u n (x)γ 5 u n (x)u n (y)γ 5 u n (y) ω E n + iε + u n (x)γ 5 v m (x)v m (y)γ 5 u n (y) ω + E m iε γ 5 O(1) L PV = 1 f π ψ γ µ γ 5 τ µ π ψ O(q) µ = 1,,3 n L PV n n L PV n n L PV n ~ O(q) ( n L PV n ) / (Enegy denominato ) O(q) O(q ) σ q
42 1 (, 1 ) f 0 (600) o σ ( σ,π 1,π,π 3 ) O(4) f = σ +π 1 +π + π 3 P Q P(x,y, z) Q( x, y, z ) δx δy = δz 0 ε 3 ε ε 3 0 ε 1 ε ε 1 0 x y z (x, y, z) (ε 1,ε,ε 3 )
43 x = sinθ cosϕ, y = sinθ sinϕ, z = cosθ δθ = δϕ sinϕ ε 1 cosϕ ε cot θ cosϕ ε 1 + cot θ sinϕ ε ε 3 (θ,ϕ) sinϕ φ µ ~ ( σ,π 1,π,π 3 ) σ = f cosθ 1, π 1 = f sinθ 1 sinθ cosθ 3, π = f sinθ 1 sinθ sinθ 3, π 3 = f sinθ 1 cosθ. ( σ,π 1,π,π 3 ) (θ 1,θ,θ 3 ) L = 1 ( µ ) φα = 1 m θ m x µ φ α θ m = 1 m,n g mn (θ ) θ m x µ θ n x µ g mn (θ ) (θ 1,θ,θ 3 ) g mn (θ ) = δ mn + θ m θ n f π θ L = f π ( ) ( µ σ) + µ θ, σ = 1 θ
44 g mn (θ) = θ m θ n θ + δ mn θ θ m θ n θ 4 sin θ L = f π 4 t µ UU µ UU = f π 4 t µ U µ U ( ) U = exp i τ θ U U U U g L U g R g V U g V g A U g A V µ a A µ a = i f 4 tτ a U, µ U = i f 4 tτ a U, µ U [ ] ~ ε abc φ b µ φ c { } ~ f µ φ a L = i ψ / ψ gψ ( σ +iτ π γ 5 )ψ 1 + µ σ ( ) + ( µ π ) V(φ) σ + iτ π f U, U = exp( iτ φ / f π ) σ + iτ π γ 5 f U 5, U 5 = exp iτ φ γ 5 / f π ( ), ψ ( σ +iτ πγ 5 )ψ = f ψ U 5 ψ = f ψ U 5 U 5 ψ f N N
45 ξ 5 ψ = N, ψ = ξ 1 5 N U 5 = exp iτ φ γ 5 / f π ( τ ) ( ) ξ 5 exp( i φ / f ) ξ π ψ N N L = i N ξ 1 5 / ( ξ 1 5 N) gf N N + f 4 t µ U µ U + 1 ( µ f ) + V ( f ) N ξ 5 1 L K = i N ξ 1 5 / ( ξ 1 5 N) = i N / N +i N ξ 1 5 / 1 ( ξ 5 )N i N ξ 1 5 ( µ ξ 5 )γ µ N = i N 1 ξ ( ( µ ξ 5 ) + ξ 5 ( µ ξ 5 ))γ N + i N 1 ξ ( ( µ ξ 5 ) ξ 5 ( µ ξ 5 ))γ N φγ 5 γ 5 φγ 5 1 ( ( ) + ξ 5 ( µ ξ 5 ) v µ = 1 ξ 5 1 µ ξ 5 a µ = 1 ξ ( ( µ ξ 5 ) ξ 5 ( µ ξ 5 ))γ 5 τ a L = i N D / N + i N a / γ 5 N gf N N + f 4 t µ U µ U + 1 ( µ f ) + V( f ) 1 ξ 5 / 1 ξ 5 ( ) = ξ 1 5 γ µ µ ξ 1 5 = ξ 1 5 µ ξ 5 γ µ γ 1 µ ξ 5 1 ξ 5 ξ 5
46 D µ = µ iv µ ξ U U U = ξ g L Ug R = ( g L ξ) ( ξg R ) U U = ξ ( ) h ξ = g L ξh = hξg R h ξ (g R, g L ) ξ g R = g L = g V h h = g V ε δφ = ε φ h h ~ 1+ iε φ τ + L
47 SU() R SU() L SU() R SU() L SU() R SU() L SU() V π ~ SU() R SU() L / SU() V SU() V U SU() R SU() L SU() R SU() L τ R a ~ SU() R, τ L a ~ SU() L τ R a τ L a τ a (R) 1+ γ 5 τ a = P R τ a, τ a (L) 1 γ 5 τ a = P L τ a τ a γ 5 P R,L τ V a = τ R a + τ L a = τ a τ A a = τ R a τ L a = γ 5 τ a τ V a = τ a τ A a = γ 5 τ a γ 5 H G G G
48 g Π = G / H a H h g = ha a i i a h ha i i { ha 1,ha,ha 3,L} G Π = G / H SU() SU() / SU() ( ) ξ 5 (φ) = exp iφ τ γ 5 / a i ξ 5 (φ) φ γ 5 τ a = τ R a τ L a = τ A a ~ SU() SU() / SU() ξ 5 ( ) γ 5 ξ 5 ξ = exp iτ φ / γ 5 ξ 5 (φ) G ξ 5 (φ) g G ξ 5 ( φ ) h ξ 5 (φ) g = h(g,φ ) ξ 5 ( φ ) ha i h h (g,φ) h ξ 5 (φ) φ g ξ 5 ( φ ) = h(g,φ)ξ 5 (φ )g φ φ
49 N h N = h(g,φ)n i N / N i N h / (hn) = i N h ( / h)n +i N / N v µ h v µ h h ( / h) a µ h a µ h i N D / N i N ( / + v /)N i N D / N, N a / γ 5 N N a / γ 5 N L = i N D / N + i g A N a / γ 5 N gf N N + f 4 t µ U µ U + 1 ( µ f ) + V( f ) g A =1 g A g A N = ξ 5 ψ g A
50 λ 1 = , λ = 0 i 0 i 0 0, λ 3 = λ 4 = , λ 5 = 0 0 i i 0 0 λ 6 = , λ 7 = i, λ 8 = i U = exp( iθ a λ a ), θ a = θ 1, θ,lθ 8 I 3 Y U + Y V + I I + I 3 V U I ± = 1 ( λ 1 ± iλ ), V ± = 1 ( λ 4 ± iλ 5), U ± = 1 ( λ 6 ± iλ 7) 3 3 = 1 + 8, =
51 π + I + + π I + π 0 I 0 + K + V + + K V + K 0 U + + K 0 U + η λ 8 π 0 + η π + K + = π π 0 + η K 0 = λ a φ a φ K K 0 η 6 exp( iφ / f π ) U U Peudoscala meson octet K 0 ( ds) K + (us) Vecto meson octet K *0 (ds) K *+ (us) π ( d u ) π 0 (uu dd) π + (ud ) ρ ( du) ρ 0 (uu dd) ρ + (ud) η(uu + dd ) ω ( uu + dd ) K (su) K 0 (sd) K * (su) K *0 (sd ) n(udd) Bayon octet p(uud) (ddd) Bayon decuplet 0 (udd) + (uud) ++ (uuu ) Σ (dds) Σ 0 (uds) Λ (uds) Σ + (uus) Σ * ( dds) Σ *0 (uds) Σ *+ (uus) Ξ (ssd ) Ξ 0 (ssu) Ξ (dss) Ξ *0 (uss ) Ω (sss)
52 Σ 0 + η Σ + p B = Σ Σ0 + Λ n Ξ Ξ 0 Λ 6 p n 8 8 = (8 8) 8 = ( ) L = f π ( ) + t B i / 4 t µ U µ U ( D B) + m 0 tb B + F tb γ 5 [ a /, B] + D tγ 5 { a /, B}
53 R 3 SU() ~ S 3 x = (x 1, x,x 3 ) R 3 R 3 π = (π 1,π, π 3 ) S 3 S 3 N
54 N = 1 V dπ = 1 V (π ) (x) dx V S 3 dπ x (π) / (x) V N π 3 (S 3 ) = Z (intege ) x π ( x ) ( ) U( x ) = exp iτ π ( x ) / f π f π π µ = ( µ U)U N = ε ijk 4π t ( ) U = exp iτ π / f π d3 x i j k L = f π 4 t µ µ E = f π d 3 x 4 t i i U( x ) x ax a
55 E E ae a U( x ) 1 E 4 E 4 / a E = E + E 4 a L 4 = 1 3e t [ µ, ] ν e ρ π L Skyme = f π [ ] 4 t µ µ + 1 3e t µ, ν E = E + E 4 E E 4 a
56 ( ) U H exp( iτ ˆ F() ) U = exp i τ π / f π F() K = I + J K I = τ / U H U H Isospin : U H AU H A A SU() J = i Spin : ( ) R O(3) U H exp iτ Rˆ F() B R R ab = i t [ τ a B τ b B] A = B K U H E E = kq ˆ
57 1 / B = 1 E ~ Y 1, e [ ] 0 0 Y 1 e E = d 3 x f π 4 t i i + 1 3e t i, j [ ] = 4π d f π F + sin F + sin F e F + sin F F + sin F F + e f π sin F F + sinf F sin F sin F = 0 B = 1 π d 3 x sin F F = 1 π ( F(0) F( ) ) F() F(0) = π F( ) = 0 F( ) =1 / 3 F( ) Radial distance [fm].0
58 e f π = 93 MeV e ~ 5 E ~ 1.4 GeV ρ π R 0 e ~ 4.5 E ~ 1.4 GeV I = J K = 0 (I, I z ) = (J, J z ) I = J U H φ c ϕ φ = φ c + ϕ φ c L( φ c + ϕ) = L(φ c ) + L φ (φ c ) ϕ + 1 L φ (φ c ) ϕ + L L / φ ϕ ϕ ϕ L φ (φ c ) = 0 φ c ϕ L φ (φ c ) ϕ = 0 ϕ t ϕ = Hϕ
59 H H ϕ(t, x ) = n a n e iω n t ϕ n ( x ) φ Gφ φ Gφ G L φ (Gφ c ) = L φ (φ c ) = 0 ε T G ~ 1 + iεt 0 = L φ (Gφ c ) ~ L φ ((1 + iεt)φ c ) ~ L φ (φ c ) + i L φ (φ c ) εtφ c L φ (φ c ) Tφ c = 0 Tφ c 0 Tφ c = 0 Tφ c Tφ c ω = 0 Tφ c 0 φ c φ c
60 U H AU H A A SU() A A A(t) A A SU() ~ S 3 (α,β,γ ) ψ ~ exp(ip α α)exp(ip β β)exp(ip γ γ ) ψ ~ D t, s (α,β, γ ) J J K = I + J = 0 I = J J J = SU(N f > ) N c N c N c 1/ p ~ D 1/, 1/ (α,β,γ ) = e i α cos β i e γ A / A U(x) U(x) AU H A d 3 x A A A / A
61 H = d 3 x L = M H + Λ π Ω Λ π Ω = (i / )t[ τ A A ] (~ A ) A F() Λ π = 8π 3 f π R d sin F e F + sin F f π A A / A H = M H + 1 Λ π J(J +1) J(J +1) M N M f π 1/ I =0 1/ M,I =1 µ p µ n µ p / µ n g A g πnn g πn µ N
62 1 (,0 ) ( 0, 1 ) 1 (, 1 ) 1 (,0 ) ( 0, 1 ) g A =1
63
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b
I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +
I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.
1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030
1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
「数列の和としての積分 入門」
7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................
E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656
SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
,..,,.,,.,.,..,,.,,..,,,. 2
A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,
2 1 17 1.1 1.1.1 1650
1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
hirameki_09.dvi
2009 July 31 1 2009 1 1 e-mail: [email protected] 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-
45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =
木オートマトン•トランスデューサによる 自然言語処理
木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 [email protected] n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α
2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,
Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin
( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >
5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R
1 4 4.1 1922 1929 1947 1965 2.726 K WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. : v = ȧ(t) = Ha [ ] dr 2. : ds 2 = c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) a(t) H k = +1 k *1) k = 0 k = 1 dl 2 = dx
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................
NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................
M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y
1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä
2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
平成18年度弁理士試験本試験問題とその傾向
CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3
0406_total.pdf
59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =
1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,
z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z
Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
ボールねじ
A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49
A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................
1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1
1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a
[] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos
6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
136 pp p µl µl µl
135 2006 PCB C 12 H 10-n Cl n n 1 10 CAS No. 42 PCB: 53469-21-9, 54 PCB: 11097-69-1 0.01 mg/m 3 PCB PCB 25 µg/l 136 pp p µl µl µl 137 1 γ 138 1 γ γ γ µl µl µl µl µl µl µl l µl µl µl µl µl l 139 µl µl µl
2 p T, Q
270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =
2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2
Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v
E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm
1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1 E F = q
