GR_LN2001.dvi

Size: px
Start display at page:

Download "GR_LN2001.dvi"

Transcription

1 2001

2 Riemann Lie Killing Weyl Petrov Birkhoff Schwarzschild BH Minkowski Killing Cauchy Einstein Israel Israel Hodge

3 Weyl Schwarzschild Israel-Kahn C-metric Ernst Ernst Kerr-TS class Kerr-Newman

4 Riemann : M X T X T X X i) φ X φ = dφ(x) =X µ µ φ. ii) T,S a, b iii) X, Y X (at + bs) =a X T + b X S. X+Y T = X T + Y T. iv) f fx T = f X T. iv) T,S X (T S) =( X T ) S + T X S. X, Y X Y : Riemann Riemann R(X, Y )Z =( X Y Y X [X,Y ] )Z, (1.1)

5 1 5 Riemann : Riemann (M,g) Riemann i) Θ(X, Y ):= X Y Y X [X, Y ]=0. ii) g =0. : e a θ a X e a = e b ω b a(x), X θ a = ω a b(x)θ b (1.2) ω a b Θ a = dθ a + ω a b θ b (1.3) Riemann : Riemann g g ab g Riemann : g =0, (1.4) Torsion free : Θ(X, Y )= X Y Y X [X, Y ]=0, (1.5) dg ab = ω ab + ω ba, (1.6) dθ a = ω a b θ b. (1.7) : Riemann R a b = 1 2 Ra bcdθ c θ d. (1.8) R a b = dω a b + ω a c ω c b (1.9) Bianchi DR a b := dr a b + ω a c R c b R a c ω c b =0. (1.10)

6 Lie (φ, V µ,t µ,ν, ) U, U x µ,x µ U U Φ:U U x µ (Φ(p)) = x µ (p) p U Φ x µ = x µ, (1.1) Φ µ = µ, (1.2) Φ dx µ = dx µ (1.3) :(Φ φ)(φ(p)) φ(p) =φ(φ(p)), (1.4) :(Φ V ) Φ(p) =(Φ V µ )(Φ(p))(Φ µ ) Φ(p) = V µ (p)( µ) Φ(p) = V µ (Φ(p))( µ) Φ(p) = V Φ(p), (1.5) 1 :(Φ ω) Φ(p) =(Φ ω µ )(Φ(p))(Φ dx µ ) Φ(p) = ω µ (p)(dx µ ) Φ(p) = ω µ(φ(p))(dx µ ) Φ(p) = ω Φ(p). (1.6) U U Φ φ = φ, Φ V = V, Φ ω = ω, (1.7) (1 ) 1. U Φ λ : U M ( λ <a) Φ λ U i) (λ, p) Φ λ (p) ( a, a) U M ii) Φ λ U Φ λ (U )

7 1 7 iii) λ 1, λ 2, λ 1 + λ 2 <a p U Φ λ2 (p) U Φ λ1 (Φ λ2 (p)) = Φ λ1 +λ 2 (p) iv) Φ 0 =id. 2. Φ λ ( <λ< ) λ Φ λ M Φ λ M 1 3. U 1 Φ λ X µ (p) = d dλ xµ (Φ λ (p)) λ=0 (1.8) 1 Φ λ () M X p γ(λ), d dλ xµ (γ(λ)) = X µ (γ(λ)), (1.9) λ Φ λ M 1Φ λ {Φ λ (p) λ R} X 2. M X p U X Φ λ : U M ( λ <a) X Φ λ M (Lie )

8 1 8 T X M p X Φ λ T p X Lie (L X T ) p = lim λ 0 (Φ λ T ) p T p λ (1.10) X p 0p x µ X µ = δ µ 0 Φ λx 0 = x 0 + λ, Φ λx i = x i (1.11) (L X T ) µν (x) = 0 T µν (x). (1.12) (Lie ) 1. Lie i) X φ L X φ = dφ(x). (1.13) ii) X, Y L X Y =[X, Y ]. (1.14) iii) a, b X, Y T L ax+by T = al X T + bl Y T. (1.15) iv) a, b X T,S L X (at + bs) =al X T + bl X S. (1.16) v) X T,S L X (T S) =(L X T ) S + T L X S. (1.17)

9 i),ii),iv),v) Lie L X G X F : G X X (1.1) G X i) F g (x) :=F (g, x) F a F b = F ab a, b G. (1.2) ii) e G F e =id. G Lie X F G X Lie 2. F g =id g = e G 3. X 2 x, y g G F g (x) =y G 4. X S g G F g S S G 5. p X O p := {F g (p) g G} (1.3) p G G G G G 6. p X H p := {g G F g (p) =p} (1.4) G p G

10 G 8. G G G M Lie G M L (G) L (G) [X, Y ] Lie G L (G) G Lie M L L = L (G) M Lie G () G X H X G/H G X H dim G =dimx +dimh (1.5) 1.4 Killing () Riemann (M,g) Φ Φ g = g (1.1) Φ (Killing )

11 1 11 Riemann (M,g) ξ µ ξ ν + ν ξ µ =0 (1.2) Killing Φ λ Riemann (M,g) 1 Killing Killing Proof. Φ λ g = g ξ Φ λ 0 = (L ξ g)(x, Y )=L ξ (g(x, Y )) g(l ξ X, Y ) g(x, L ξ Y ) = g( ξ X L ξ X, Y )+g(x, ξ Y L ξ Y )=g( X ξ,y )+g(x, Y ξ) g G g 2. g G M G 3. Riemann (M,g) Lie M n n(n +1)/2 Proof. p Φ p Gauss Φ T p (M) Φ p

12 ξ Killing γ(t) (V γ ) V ξ µ = F µν V ν, (1.3) V F µν = R µν λσv λ ξ σ. (1.4) F µν =( ν ξ µ µ ξ ν )/ () Riemann (M,g) p k p (P ) P dim M > 2 k p (P ) p k p (P ) (M,g) R(X, Y, Z, W) =k[g(x, Z)g(Y,W) g(x, W)g(Y,Z)] (1.5) () 1. n Riemann (M,g) n(n +1)/2 (M,g) 2. i) k = 0: Euclide ii) k>0: iii) k<0: 3. i) k =0: Minkowski ii) k>0: de Sitter iii) k<0: de Sitter

13 (Fubini ) m Riemann k k m(m +1)/2 k <m(m +1)/ k Lie n Riemann (M,g) m (M,g) G k (m) G k (m, S), G k (m, T ), G k (m, N) 1. n G k (n 1,S) n =4Fubini k k =3, 4, 6 n =4,k =6 2. n G (n 1)(n 2)/2 (n 2,S) 3. n G 1 (1,S) S 1 4. n G 1 (1,T) 1.5 Weyl : g µν ĝ µν = e 2Φ g µν (1.1) Weyl

14 1 14 : Weyl ˆR µ νλσ = R µ νλσ +2δ µ [σ λ] ν Φ 2g ν[σ λ] µ Φ 2 ν Φ [ν Φδ µ σ] +2 µ Φ [λ Φg σ]ν 2( Φ) 2 δ µ [λ g σ]ν, (1.2) ˆR µν = R µν g µν 2 Φ (n 2) µ ν Φ +(n 2) µ Φ ν Φ (n 2)( Φ) 2 g µν, (1.3) e 2Φ ˆR = R 2(n 1) 2 Φ (n 1)(n 2)( Φ) 2. (1.4) Weyl : Riemann R µ νλσ = Cµ νλσ + 2 ( ) R µ [λ n 2 g σ]ν R ν[λ δ µ 2 σ] + (n 1)(n 2) δµ [σ g λ]νr (1.5) C µ νλσ Weyl Weyl Weyl Riemann Bianchi C λ µλν =0. (1.6) n =3Weyl n >3 Weyl θ a ( S a := Rb a R 2(n 1) δa b C ab := (1/2)C abcd θ c θ d ) θ b (1.7) C ab = R ab 1 n 2 (Sa θ b S b θ a ) (1.8) 1.6 : Riemann Φ:(M,g) (M,g ) Φ g =Ω 2 g (1.1) Φ (M,g )=(M,g) Φ

15 1 15 Killing : () Φ t Killing dim M = n µ ξ ν + ν ξ µ = 2 n λξ λ g µν. (1.2) n Riemann Killing k n >2 (n +1)(n +2)/2 k =(n +1)(n +2)/2 Proof. Killing ξ µ F µν := 2 [µ ξ ν],φ:= µ ξ m u, φ µ := µ φ V V ξ µ = 1 2 V ν F ν µ + 1 n V µ φ, V F µν = 2R µνλσ V λ ξ σ 4 n V [µφ ν], V φ = V µ φ µ, V µ V φ µ = 2(n 1)(n 2) (2Rφ + n νrξ ν ) 2 n 2 V ν R νµ φ n n 2 V ν σ R νµ ξ σ n n 2 V ν R(µF σ ν)σ. (ξ µ,f µν,φ,φ µ ) ξ µ 1.7 Petrov : A ab + A ab = 1 2 (A ab + i A ab ) (1.1)

16 1 16 A ab = A ab (1.2) + A ab = i + A ab. (1.3) Weyl + C abcd = 1 2 (C abcd + i C abcd ) (1.4) ɛ ab pq C pqcd = ɛ cd pq C abpq (1.5) + C abcd (ab) (cd) Q IJ = + C 0I0J (1.6) Q IJ trace-free : e a null (k, l, m) k = e 0 + e 1,l= e 0 e 1,m= e 2 ie 3 (1.7) l l = k k = m m =0,l k = 1, m m =1. (1.8) (k l) =im m, (k m) = ik m, (l m) =il m (1.9) V := k m, U := l m, W := k l + m m (1.10) U U = V V = U W = V W =0,U V =2,W W = 4. (1.11) + C + C = Ψ 0 U U +Ψ 1 (U W + W U) +Ψ 2 (V U + U V + W W ) +Ψ 3 (V W + W V )+Ψ 4 V V (1.12) Ψ 0 Ψ 4 Ψ 0 = C(k, m, k, m), Ψ 1 = C(k, l, k, m), Ψ 2 = 1 (C(k, l, k, l) C(k, l, m, m)), 2 Ψ 3 = C(l, k, l, m), Ψ 4 = C(l, m, l, m). (1.13)

17 1 17 Petrov : Q Weyl Petrov Petrov type Ψ a I [1 1 1] Ψ 0 =Ψ 4 =(λ 2 λ 1 )/2 Ψ 1 =Ψ 3 =0 Ψ 2 =(λ 1 + λ 2 )/2 D [(1 1) 1] Ψ 0 =Ψ 1 =Ψ 3 =Ψ 4 =0 Ψ 2 = λ 2 II [2 1] Ψ 0 =Ψ 1 =Ψ 3 =0 Ψ 2 = λ 1, Ψ 4 = 2 N [(2 1)] Ψ 0 =Ψ 1 =Ψ 2 =Ψ 3 =0 Ψ 4 = 2 III [3] Ψ 0 =Ψ 1 =Ψ 2 =Ψ 4 =0 Ψ 3 = i O Ψ 0 =Ψ 1 =Ψ 2 =Ψ 3 =Ψ 4 =0

18 : n = m +2 G m(m+1)/2 (m, S) ds 2 = g ab (y)dy a dy b + r 2 (y)dσ 2 m (2.1) dσ 2 m = γ AB(z)dz A dz B (2.2) K m Einstein : G ab = m ( m(m 1) r D K (Dr) 2 ad b r m ) 2 r 2 r r g ab, (2.3a) [ G A B = 1 2 (m 1)(m 2) K (Dr) 2 R + m 1 ] r δ 2 2 r 2 B A (2.3b) r Ḡ aa =0. (2.3c) Weyl : (θ a,θ A ) C ab = m 1 m +1 Xθa θ b, C aa = m 1 m(m +1) Xθa θ A, C AB 2 = m(m +1) XθA θ B. (2.4a) (2.4b) (2.4c) X = 1 2 R + r 2 r + K (Dr)2. (2.5) r 2

19 2 19 : n =4 + C ab = X 6 ɛ ab( θ 0 θ 1 + iθ 2 θ 3 ), (2.6a) + C AB = i 2 ɛab ɛ + ab C ab, (2.6b) + C aa = X (θ a θ A i2 ) 12 ɛ abɛ AB θ b θ B (2.6c) Q 11 = X 6, Q 1A =0,Q AB = X 12 δ AB. (2.7) Petrov D Ψ 2 = X 12. (2.8) 2.2 Birkhoff Einstein-Maxwell : m +2 S EM = d m+2 x g 1 4 F µνf µν (2.1) T µν = 2 g δs EM δg µν = F µλ F ν λ 1 4 g µνf αβ F αβ. (2.2) G m(m+1)/2 (m, S) m +2 F = Edy 0 dy F ABdz A dz B ; (2.3) E = q e r, (2.4) m { qm ɛ F AB = r 2 AB ; m =2 (2.5) 0; m>2 T ab = q2 2r 2m g ab, T AB = q 2 = q 2 e + q 2 m q2 2r 2m g AB (2.6)

20 2 20 Proof. m>2 m F AB =0m =2F AB = Bɛ AB. df = 1 2 a(r m B)(ɛ AB /r m )dy a dz A dz B =0 (2.7) B = q m r m. (2.8) ν F a µ = 1 r m ɛ abd b (r m E) = 0 (2.9) E = q e r m. (2.10) Einstein-Maxwell ( Λ) G m(m+1)/2 (m, S) m +2 (1)Schwarzschild/Reissner-Nordstrom (Dr 0): ds 2 = N 2 (r)dt 2 + N 2 (r) =K 2M r m 1 dr2 N 2 (r) + r2 dσ 2 m ; (2.11) 2Λ m(m +1) r2 + Q2. (2.12) r2m 2 (2) (Dr =0): 2 N 2 m M = N 2 K m. (2.13) N 2 Ricci 2 RK m K/r 2 (K =0, ±1) K r = 2 Q2 Λ+, (2.14) 2 m(m 1) r2m 2 R = 2 m Q2 Λ 2(m 1)2. (2.15) r2m

21 2 21 Proof. Einstein G µν = Λg µν + κ 2 T µν (2.16) ( D a D b r = m 1 K (Dr) 2 2 r (m 1)Q2 + 2r 2m 1 2 R = (m 1)(m 2) K (Dr)2 r r + m +1 λr 2 ) g ab, (2.17) 2(m 1) r r +m(m +1)λ m(m 1) Q2. (2.18) r2m 2Λ λ := m(m +1) (2.19) Q 2 κ 2 q 2 = m(m 1). (2.20) D a D b r = 1 2 rg ab, (2.21) r =(m 1) K (Dr)2 r 2 R = m r (m +1)λr (m 1)Q2 r 2m 1, (2.22) Q2 r +2(m +1)λ 2(m 1)2. (2.23) r2m 2D b D a D b r = D a r D a r = 2 RD a r (2.24) 2 D 2 a R =(m +1) ( 2 R +2λ + 2(2m 1)(m 1)2 m +1 ) Q 2 Da r r 2m r D a [r m+1 ( 2 R 2λ)+2(m 1)(2m 1)Q 2 r 1 m ]=0. (2.25) 2 R =2λ +2m(m 1) M Q2 2(m 1)(2m 1), rm+1 r2m (2.26) (Dr) 2 = N 2 (r) :=K λr 2 2M r + Q2, m 1 r2m 2 (2.27) r =(N 2 ). (2.28)

22 2 22 Dr 0 ds 2 = Vdt 2 + dr2 N 2 + r2 dσ 2 m (2.29) r =(N 2 ) r ln(v/n 2 ) (2.30) V/N 2 t V = N 2 Dr 0 r K r = m +1 2 m 1 λ + Q2, (2.31) r2m 2 R =2(m +1)λ 2(m 1) 2 Q2. (2.32) r2m 2.3 Schwarzschild BH Weyl ds 2 = N 2 (r)dt 2 + dr2 N 2 (r) + r2 dω 2 m ; (2.1) N 2 (r) =1 2M. rm 1 (2.2) Ψ 2 = m(m +1) 12 M. (2.3) rm+1 Future Finkelstein : (v, r) dr r = N 2 (r), (2.4) v = t + r (2.5) ds 2 =2dvdr N 2 (r)dv 2 + r 2 dω 2 m (2.6) r>r H (r m 1 H ξ = t ξ = v =2M) r>0 (2.7)

23 2 23 k = r, l = v N 2 (r) r (2.8) r >r H null ξ k = 1, ξ l = 1 2 N 2 (r), (2.9) k k = l l =0,k l = 1. (2.10) r = r H r>r H future null (future horizon) 2.1: Future Finkelstein Past Finkelstein : (u, r) u = t r (2.11) ds 2 = 2dudr N 2 (r)du 2 + r 2 dω 2 m (2.12) r>r H (r m 1 H =2M) r>0 ξ = u (2.13) k = r, l = u 1 2 N 2 (r) r (2.14) r >r H null ξ k = 1, ξ l = 1 2 N 2 (r), (2.15) k k = l l =0,k l = 1. (2.16) r = r H r>r H past null (past horizon)

24 : Past Finkelstein Szekeres : (U, V )4 (m =2)Null (u, v) ds 2 = N 2 (r)dudv + r 2 dω 2 2. (2.17) r >r H =2M U = 2Me u/4m, V =2Me v/4m (2.18) UV = 2M(r 2M)e r/2m, (2.19) V/U = e t/2m. (2.20) ds 2 = 8M r e r/2m dudv + r 2 dω 2 2, (2.21) d(uv) dr = re r/2m < 0 (2.22) U<0,V > 0 r>0 UV < 4M 2 U =2Mtan T R,V=2Mtan T + R ; 2 2 (2.23) T R <π, T + R <π. (2.24) dudv = 1 UV 4M 2 = M 2 (dt 2 dr 2 ). (2.25) cos 2 T R cos 2 2 T +R 2 cos T cos T R cos T +R 2 2 UV < 4M 2 T <π/2 (2.26)

25 : Szekeres Minkowski 2 Minkowski ds 2 = dt 2 + dx 2 (2.1) null u = t x, v = t + x (2.2) ds 2 = dudv. (2.3) u =tan T X, v =tan T + X 2 2 (2.4) <u,v< D M : T X <π, T + X <π (2.5) ds 2 = 1 ( dt 2 + dx 2 ) (2.6) 4cos 2 T X cos 2 2 T +X 2 : Minkowski : i 0

26 2 26 : I ± : i ± Minkowski : 3 Minkowski ds 2 = dt 2 + dr 2 + r 2 dω 2 m (2.7) dt 2 + dr 2 Minkowski r 0 D M D M : T X <π, T + X <π, X 0 (2.8) ds 2 =Ω 2 [ dt 2 + dx 2 +sin 2 XdΩ 2 m ]; (2.9) 1 Ω=. (2.10) 2cos T X cos T +X 2 2 Minkowski : i 0 : I ± R S m : i ± 2.4: Minkowski ds 2 = N 2 (r)dt 2 + null dr2 N 2 (r) (2.11) u = t r,v= t + r ; (2.12) dr r = (2.13) N 2 (r)

27 2 27 ds 2 = N 2 (r)dudv (2.14) N 2 (r) : N 2 (r) r = r H r 1 <r<r 2 N 2 (r) =(r r H )g(r); g(r) > 0 (2.15) (r 1 <r H <r 2 ) κ κ = 1 2 (N 2 ) (r H ) (2.16) r = 1 2κ ln 2κ r r H + h(r) (2.17) h(r) r H <r<r 2 <v u<2r (r 2 ). (2.18) (U, V ) U = 1 2κ e κu,v= 1 2κ eκv (2.19) UV = 1 2κ (r r H)e h(r), V/U = e 2κt (2.20) (U, V ) I : U<0, V>0, 1 2κ (r 2 r H )e 2κh(r2) <UV <0. (2.21) (U, V ) ds 2 = 2g(r) κ e 2κh(r) dudv, (2.22) I U =0 V =0 d(uv) dr = 1 g(r) eh(r) (2.23) I D 1 : 1 2κ (r 2 r H )e h(r 2) <UV < 1 2κ (r H r 1 )e h(r 1) (2.24) Minkowski D M T = ±X(UV =0) U =0 V =0 r = r H I horizon

28 : f(r) : N 2 (r) r = r H r 1 <r<r 2 N 2 (r) =(r r H ) 2 /g(r); g(r) > 0 (2.25) (r 1 <r H <r 2 ) v u 2 = r = µ r r H + ν ln r r H + h(r r H ). (2.26) µ = g(r H ) > 0,ν = g (r H ) h(r r H ) U 1 2 u = µ U + ν ln U + h 1(U) (2.27) h 1 (U) U =0 h(u) du/du > 0 U u r (U, v) I:U 0, <v<+ D 2 ds 2 = N 1 dudv; (2.28) N 1 =2(h 1 (U) h (U))N 2 (r)+ (r r H) 2 2g(U + r H ) U 2 g(r) (2.29) v U 0 r r H (r r H )/U 1 N 1 (U, v) D 2 v = I r = r H r = r H (U =0) I horizon : κ I t = κ =0 u v u r = r H 2.5

29 Killing (Killing ) (2.11) N 2 (r) = g tt (r) r = r H Weyl (2.4) r>0 X = m(m +1) M Q2 m(2m 1) (2.1) rm+1 r 2m N 2 (r) (2.11) Killing ξ = t () N 2 (r) = ξ ξ. (2.2) r = r H N 2 (r H )=0 Killing (null geodesic generator) Killing Killing Killing ξ Killing ξ ξ µ = ξ ν µ ξ ν = 1 2 µn 2 = 1 2 (N 2 ) (r) µ r (2.3) ( r) 2 = N 2 (r) (2.4) r = r H r//ξ µ r 0, (N 2 ) (r) 0 (v, r) ξ = v, r = v + N 2 (r) r (2.5) r = r H ξ = r (u, r) ξ = r Killing ξ ξ = ±κξ (2.6) κ = 1 2 (N 2 ) (r H ) Killing λ = λ(τ)(ξ µ µ τ =1)λ k ξ = λk k k =0 κ 0 λ/ λ = ±κ λ = ae ±κτ + b (2.7)

30 2 30 ±κ >0(< 0) τ ( ) λ ± τ ( ) λ Killing Killing Killing ξ Szekeres (U, V ) ξ ξ = κ(v V U U ) (2.8) Killing U = V =0 Killing extrem Reissner-Nordstrom κ =0 Killing Cauchy : Σ D D Σ Σ D Cauchy Cauchy M Σ Cauchy D(Σ) Σ Cauchy Cauchy Σ Cauchy : M Σ Cauchy D(Σ) M D(Σ) Σ Cauchy H(Σ) Σ Cauchy I ± Cauchy Schwarzschild Reissner-Nordstrom Cauchy Cauchy Gauss : (M, g) Riemann M Σn

31 2 31 Σ Σ X, Y X Y = X Y K(X, Y )n; X Y //Σ (2.1) [X, Y ] Σ g Σ g Riemann K(X, Y ) Σ K(X, Y )=K(Y,X). (2.2) Weingarten : X Σ n Σ Σ (1, 1) K(X) g(k(x),y)=k(x, Y ) (2.3) X n = ±K(X) //Σ (2.4) : (n +1) ds 2 = N 2 dt 2 + g ij (dx i + β i dt)(dx j + β j dt) (2.5) t = Σ t n n = 1 N ( t β i i ) (2.6) m = Nn K(X, Y ) = ± 1 N g( X m, Y )=± 1 N g([x, m]+ m X, Y ) = ± 1 2N (L mg)(x, Y ) (2.7) K ij = ± 1 2N ( tg ij i β j j β i ) (2.8) Gauss-Codazzi X Y Σ X, Y, Z R(X, Y )Z = X Y Z Y X Z [X,Y ] Z = R(X, Y )Z ± (K(X, Z)K(Y ) K(Y,Z)K(X)) +[ ( X K)(Y,Z)+( Y K)(X, Z)]n. (2.9)

32 2 32 R(X, Y, Z, W) = R(X, Y, Z, W) ± (K(X, W)K(Y,Z) K(X, Z)K(Y,W)), (2.10) R(X, Y, Z, n) = ± (( X K)(Y,Z)) ( Y K)(X, Z)). (2.11) Σ e I Σ e 0 = n M R IJKL = R IJKL ± (K IL K JK K IK K JL ), R 0IJK = n µ Rµ IJK = ±( K K IJ J K IK ). (2.12a) (2.12b) m = Nn = t β i i t = Σ t X, Y L m X =0, L m Y = 0 (2.13) g(n, R(X, n)y )= 1 N 2 g(m, X m Y m X Y ). (2.14) m Y = Y m g(m, X m Y ) = g(m, X Y m)= g(m, X (( Y N)n ± NK(Y ))) = g(m, ( X Y N)n ± N X (K(Y ))) = ±N X Y N N 2 K(X, K(Y )). (2.15) L m X Y //Σ t g(m, m X Y ) = g(m, m ( X Y K(X, Y )n)) = g(m, X Y m m (K(X, Y ))n) = ±N X Y N (L m K)(X, Y ). (2.16) X Y N = X ( Y N)= X (Y i i N)=( X Y ) i i N +( 2 N)(X, Y ). (2.17) g(n, R(X, n)y )=± 1 N (L mk)(x, Y ) K(X, K(Y )) ± 1 N ( 2 N)(X, Y ) (2.18) R 0i0j = 1 N ( K ij (L β K) ij )+K ik Kj k ± 1 N ( 2 N) ij. (2.19)

33 2 33 Note: dimσ=2 2 R IJKL = k(δ IK δ JL δ IL δ JK ) (2.20) 2 R 1212 = k Σ Euclid R abcd =0 Gauss k = K 2 12 K 11 K 22 =detk IJ (2.21) Σ R 1,R 2 K IJ 1/R 1, 1/R 2 Gauss k = 1 R 1 R 2 (2.22) η MN Euclide Σ:η MN X M X N = ±l 2 (2.23) n M = X M /l V n M = V N N n M = 1 l V M (2.24) Σ K(V,W) =±g( V n, W )=± 1 V W, (2.25) l K µν = ± 1 l g µν (2.26) Gauss Σ R µνλσ = ±(K µλ K νσ K µσ K νλ )=± 1 l 2 (g µλg νσ g µσ g νλ ) (2.27) Σ k = ±1/l Einstein Gauss Codazzi 2 G nn =2 R nn R = R + K 2 KjK i j i, (2.28a) G ni = R ni = ±( j K j i ik). (2.28b)

34 2 34 G ij = R ij +( G 0 0 R 0)g 0 ij, (2.29) R ij = R i0j 0 + g kl Rkilj = R ij ± (K ik Kj k KK ij )+ R i0j. 0 (2.30) m = t β i i R 0 i0j = 1 N L mk ij ± K ik Kj k 1 N i j N, (2.31) g ij L m K ij = L m K ± 2NKjK i j i. (2.32) R ij = R ij ± (2K ik K k j KK ij ) 1 N L mk ij 1 N i j N, R 0 0 = 1 N L mk K i jk j i 1 N N, R = R 2 N L mk (K 2 + K i jk j i ) 2 N N. (2.33a) (2.33b) (2.33c) G ij =G ij ± [2K ki K kj KK ij + 12 ] (K2 + K kl K lk)g ij 1 N (L mk ij g ij L m K) 1 N i j N + 1 N Ng ij. (2.34) (L m K) ij = t K ij (L β K) ij (L β K) ij =( β K) ij + K ik j β k + K jk i β k. (2.35) Weyl : dimm = n +1 R 0 i0j = C 0 i0j + 1 n R 0 0g ij (2.36) G ij = R ij ± (K k i K kj KK ij )+ C 0 i0j + G ij = G ij + n 1 ( n [ K k i K kj KK ij G ) 2 R g ij C 0 i0j ( 1 n R ) 2 R g ij (2.37) ] ( ) K 2 Kl k Kl k gij. (2.38)

35 Israel Einstein : (n +1) d s 2 = N 2 dt 2 + g ij dx i dx j. (2.1) (2.33) Einstein G µ ν = Λδµ ν R µ ν = 2Λ n 1 δµ ν (2.2) N(x) g ij (x) n N + 2Λ n 1 N =0, n R ij 1 N i j N = 2Λ n 1 g ij. (2.3a) (2.3b) (N =0) (n 1) N r N =1 2M ( ) 1 +O (2.4) rm 1 r m Λ =0 N 0. Proof. Gauss D dσ N = d n x g n N = 2Λ d n x gn =0. (2.5) n 1 D D N N =0 N D

36 2 36 (m +1) (n = m +1): N 0 N = S m ρ 2 =1/( N) 2 N θ a ds 2 n = ρ 2 dn 2 + γ ab dθ a dθ b (2.6) N = S(N) K ab K ab = 1 2ρ Ng ab, K = 1 ρ N γ γ. (2.7a) (2.7b) ds 2 m = γ abdθ a dθ b S(N) D ( 2 N) 11 = Nρ ρ, 3 (2.8a) ( 2 N) 1a = D aρ ρ, 2 (2.8b) ( 2 N) ab = 1 ρ K ab. (2.8c) (2.33) n R 11 = N K Kb a ρ Kb a ρ ρ, n R 1a = D b Ka b D ak, n R ab = R ab +2K ac Kb c KK ab 1 ρ NK ab 1 ρ D ad b ρ. (2.9a) (2.9b) (2.9c) Einstein (2.3) 1 ρ Nρ = ρk +(m +1)λρ 2 N, (2.10a) 1 ρ N γ = K γ, (2.10b) 1 ρ Nγ ab =2K ab = 2K m γ ab +2ˆK ab, (2.10c) 1 ρ NK = K ρn 1 m K2 ˆK 2 ρ ρ, (2.10d) ( ) 1 ρ ˆK 1 N b a = Nρ + K ˆK b a + Ra b 1 m Rδa b 1 ( D a D b ρ 1 ) ρ m ρδa b, (2.10e) R = 2K Nρ + m 1 m K2 + ˆK 2 + m(m +1)λ, (2.10f) D b ˆKb a m 1 m D ak = D aρ Nρ. 2 (2.10g)

37 2 37 λ = 2Λ m(m +1). (2.11) Israel Λ=0 : k =2 ( t + N ) ρ N, l = 1 ( N 2 t N ) ρ N (2.12) k k = l l =0,k l = 1. (2.13) Killing ξ = t k ξ = 2N 2,l ξ = 1. (2.14) N =0 k ξ k, l null frame Killing ξ ξ = N N = N ρ 2 N. (2.15) N N k = 2N 2 ρ 0(N 0), N N l = 1 ρ (2.16) N N 1 ρ H ξ H (N 0). (2.17) ξ ξ = 1 ρ H ξ. (2.18) κ = 1 ρ H (2.19) κ ρ H ρ H 0.

38 2 38 : R µνλσ Rµνλσ =4 R 0i0j R0i0j + R ijkl Rijkl (2.20) R R0i0j 0i0j R Rijkl ijkl (2.19) R 0i0j = i j N (2.21) N (2.8) R R0i0j 0i0j = 1 ( ) 2 (Dρ)2 + K2 N 2 ρ 4 ρ + Ka b Kb a. (2.22) 2 ρ 2 D a ρ H =0, K ab H =0. (2.23) (2.12) (2.19) R ijkl = n R ijkl N 0 R Rijkl ijkl 4 ρ 2 N Kb a NKa b + R abcdr abcd. (2.24) H ( N K) 2, ( N ˆK) 2 :. (2.25) (2.10) N 0 K N ρ H R, 2 (2.26a) D a ρ 0, N (2.26b) 2 ˆKab N R ab R m δ ab (2.26c) ρ H : N 2 =1 2M ( ) 1 +O, (2.27a) rm 1 r ( m g ij = 1+ 2 ) ( ) M 1 δ m 1 r m 1 ab +O. (2.27b) r m ρ, γ ab,k ab 1 ρ (m 1)M r m, (2.28a) γ ab r 2ˆγ ab, (2.28b) K ab 1 r γ ab, K m r. (2.28c) (2.28d)

39 2 39 : (2.10d) ( γk ) N = m γ (ρ 1/m ) Nρ 1 1/m S(N) ( m 1 γρ 1/m (Dρ) 2 + m ρ ˆK 2 2 ). (2.29) ( ) K 1 N 0. (2.30) N ρ 1 1/m Dρ =0 ˆK ab =0 N (N =0) (N =1) S( ) K N 1 ρ K 1 1/m H N 1 ρ 1 1/m (2.31) 2mΩ m [(m 1)M] 1 1/m ρ 1/m H R (2.32) Ω m m Euclid (2.10d) (2.10f) [ m 1 γ N N ρ = γ H ( KN + 2m )] 1 m 1 ρ [R +(m +1) ln ρ +(m +1) (Dρ)2 + m ρ ˆK 2 2 [ ( 1 N KN + 2m )] 1 N ρ m 1 ρ m 1 S(N) (2.32) S(N) (2.33) ]. (2.34) R. (2.35) 1 dnn R 2mA H 0 S(N) ρ 2 H (2.36) A H

40 2 40 [Killing ]: Killing ξ = t 1 M K := dξ (2.37) 2(m 1)Ω m S( ) Killing Killing Killing (1.2) 2 ξ µ + R ν µ ξ ν = 0 (2.38) d dξ =( 1) m+1 ( 2 ξ µ ν µ ξ ν )dx µ (2.39) d dξ =0 1 M = dξ (2.40) 2(m 1)Ω m H dξ = ( d(n 2 ) dt ) = 2 (dn Ndt)= 2 ρ dσ m (2.41) M = A H (m 1)Ω m ρ H (2.42) (Israel ) Proof. N = Gauss-Bonnet R =8π. (2.43) S(N) (2.32)(2.36)(2.42) m =2 4π 4A H ρ H = 16πM ρ H 4π (2.44) (2.32)(2.36)D a ρ = 0 ˆK ab =0(2.10d) D a K =0 (2.10f) D a R =0S(N) Euclid ρ γ ab Euclid N

41 2 41 Isreal W. Israel(1967, 1968) N = Müller-zum-Hagen (1973, 1974) Robinson(1977) Bach Robinson Bunting Masood-ul-Alam(1987,1993) Reissner-Nordstrom (Majumdar-Papapetrou (1945, 1947) M. Heusler Black Hole Uniqueness Theorems (Cambridge Univ. Press, 1996)

42 Hodge i) ( ω, χ = g ab ω a χ b 1 ω 1,,ω p, χ 1,χ p 2 p ω 1 ω p, χ 1 χ p ω 1 ω p,χ 1 χ p =det ω j,χ k p ω =(1/p!)ω µ1 µ p dx µ 1 dx µp, χ = (1/p!)χ µ1 µ p dx µ 1 dx µp, ω, χ = 1 p! ω µ 1 µ p χ µ 1 µ p. ii) (Hodge ) dx µ 1 dx µp (dx µ 1 dx µp )= 1 (n p)! dxν 1 dx ν n p ɛ ν1 ν n p µ 1 µ p p A p (n p) A n p Hodge p ω Hodge ( ω) µ1 µ n p = 1 p! ɛ ν 1 ν p µ 1 µ n p ω ν1 ν p Ω ω p χ ω χ = ω, χ Ω

43 3 43 (n p) ω, χ A p, η =det(η ab ) Hodge i) 1 =Ω, Ω = η. ii) ω χ = χ ω. iii) ω =( 1) p(n p) η ω. iv) ω, χ = η ω, χ. v) ( d ω) µ1 µ p 1 =( 1) np+p+1 ν ω ν µ 1 µ p X p (p 1) (I X ω)(y 1,,Y p 1 )=ω(x, Y 1,,Y p 1 ) I X i) I X ω =( 1) pn η X ω. ii) I X I Y + I Y I X = η g(x, Y ). iii) L X = di X + I X d. iv) [L X,I Y ]=I [X,Y ].

44 (M,g) G 2 G 2 Killing ξ,η η η (Frobenius) i) n r X 1,,X r r n r X I y p = 0(I =1,,r) n r y p (p = r +1,,n) fjk I (x) [X I,X J ]=f K IJ X K (I,J,K =1,,r) ii) n n r 1 ω P (P = r +1,,n) ω P =Λ P Q df P Λ P Q (x) f P (x) (n r) 2 Ω P Q dω P =Ω P Q ωq Riemann ξ,η ξ η dξ =0,ξ η dη =0 ξ,η Killing ξ d R d[a ξ b η c] =0,η d R d[a ξ b η c] =0

45 3 45 Proof. ξ,η f,g,p,q,r,s ξ = pdf + qdg, η = rdf + sdg Frobenius 1 α, β, γ, δ dξ = α ξ + β η, dη = γ ξ + δ η ξ,η Killing ξ µ = R ν µ ξν L η ξ =0 d( (η ξ dξ) = di η (ξ dξ) =I η d (ξ dξ) L η (ξ dξ) = I η I ξ d( dξ) = I η I ξ ξ = dx µ ɛ νλσ µ η ν ξ λ R σα ξ α. d (ξ η dη = dx µ ɛ µ νλσ ξ ν η λ R σα η α. (η ξ dξ), (ξ η dη) ξ η i) Maxwell F = F + i F df =0 T ab = 1 8π F a c F bc. ii) L ξ Φ=0, L η Φ=0 Φ GF = e 2U [dφ ξ + i (dφ ξ)] e 2U = g(ξ,ξ).

46 3 46 Proof. 0=L ξ F = di ξ F + I ξ df = di ξ F Φ GIξ F = dφ Iξ 2 =0I ξdφ =L ξ Φ=0. 0 =L η dφ= dl η Φ η L η Φ=0. I ξ I ξ F + I ξ I ξ F = g(ξ,ξ)f = e 2U F F = if Ge 2U F = I ξ dφ+i ( I ξ dφ). I ξ dφ =dφ ξ Einstein-Maxwell ds 2 = e 2U [ e 2k (dρ 2 + dz 2 )+W 2 dφ 2] e 2U (dt + Adφ) 2 (3.1) U, k, W, A ρ z F ρ z Φ GF = e 2U [dφ ξ + i (dφ ξ)] ξ = e 2U (dt + Adφ), η= e 2UW 2 dφ + Aξ

47 3 47 ξ µ ξ dξ =0 Proof. ξ µ f = ξ µ = k µ f 1 ξ = ξ µ dx µ ξ dξ =0 (3.1) ξ ξ =0 ξ 1 dξ dξ = χ ξ 1 χ Frobenius ξ = kdf k, f ξ ω := (ξ dξ) =I ξ dξ ω µ := ɛ µνλσ ξ ν λ ξ σ ω µ 1 ξ Killing Weyl 3.1 ξ = e U (dt + Adφ) ξ dξ = e 2U dt dφ da (3.2) A = t+aφ t A =0 ds 2 = e 2U [ e 2k (dρ 2 + dz 2 )+W 2 dφ 2] e 2U dt 2 (3.3)

48 3 48 (3 + 1) R t t = W 1 e 2(U k) (W U), (3.4) R ij = R ij e U i j e U (3.5) (ρ, z) 3 (2 + 1) R φ φ = W 1 e U 2 (We U )= W 1 e 3U 2k 2 (We U ) (3.6) e U 2 φ eu = Γ a φφ au = e 2k W ( W W U) U (3.7) R φφ = We 2k ( 2 W + (W U) ) (3.8) Einstein R µν =0 2 W =0, (3.9) (W U) = 0 (3.10) W = ρ ρ W = ρ a, b = ρ, z R ab = ρ 1 a ρ b k + ρ 1 b ρ a k 2 a U b U [ ] Re 2(k U) ρ 1 ρ (k U) δ ab (3.11) 2 2 R 2 R = 2e 2(U k) 2 (k U) (3.12) Einstein z k =2ρ ρ U z U, (3.13) ρ k = ρ [ ( ρ U) 2 ( z U) 2], (3.14) 2 k +( U) 2 = 0 (3.15) (Weyl)

49 3 49 Einstein 2 (ρ, z) Laplace ρ (ρ ρ U)+ρ 2 z U = 0 (3.16) U(ρ, z) ds 2 = e 2U [ e 2k (dρ 2 + dz 2 )+ρ 2 dφ 2] e 2U dt 2 (3.17) k(ρ, z) z k =2ρ ρ U z U, (3.18) ρ k = ρ [ ( ρ U) 2 ( z U) 2] (3.19) : ρ =Σsinϑ, z =Σcosϑ (3.20) U = k = a n Σ (n+1) P n (cos ϑ), (3.21) n=0 l,m=0 (l +1)(m +1) P l P m P l+1 P m+1 a l a m. (3.22) l + m +2 Σ l+m Schwarzschild Weyl : (ρ, z) Schwarzschild U = 1 2 ln Σ + +Σ 2m Σ + +Σ +2m = 1 2 ln m z +Σ m z +Σ +, (3.23) k = 1 2 ln (Σ + +Σ ) 2 4m 2, 4Σ + Σ (3.24) Σ ± = [ ρ 2 +(z ± m) 2] 1/2 (3.25) Schwarzschild ρ, z ρ = r(r 2m)sinθ, z =(r m)cosθ (3.26) U, k ρ =0, z m r =2m

50 3 50 : Weyl ρ = m (x 2 1)(1 y 2 ),z= mxy (3.27) Σ ± = x ± y (3.28) Schwarzschild Weyl U = 1 2 ln x 1 x +1, (3.29) k = 1 2 ln x2 1 x 2 y 2 (3.30) ( ) dx dρ 2 + dz 2 = m 2 (x 2 y 2 2 ) x dy2. (3.31) 1 y 2 U x ( (x 2 1) x U ) + y ( (1 y 2 ) y U ) =0, (3.32) k k x =(1 y 2 ) x[(x2 1)u 2 x (1 y2 )u 2 y ] 2y(x2 1)u x u y, (3.33a) x 2 y 2 k y =(x 2 1) y[(x2 1)u 2 x (1 y2 )u 2 y ] 2x(1 y2 )u x u y,(3.33b) x 2 y 2 U k x = r m m, sin θ = 1 y 2 (3.34) x =1, y 1 z x 1,y = ± Israel-Kahn Weyl Laplace z Schwarzschild Israel-Kahn (1964) z conic singularity

51 3 51 Schwarzschild BH : z z =0 m z = z 0 m Israel-Kahn m <z<m, m + z 0 < z<m + z 0 z k { 0 ;z< m, z > z0 + m k = 1 ln z2 0 (m+m ) 2 ; m<z<z 2 z0 2 (m m ) 2 0 m (3.35) m <z<z 0 m k <0 z e k φ 2πe k > 2π C-metric C : ] ds 2 1 = [H(y)dt 2 dy2 A 2 (x y) 2 H(y) + dx2 G(x) + G(x)dφ2 ; (3.36) H(y) = λ + ky 2 2mAy 3, (3.37) G(x) =1+kx 2 2mAx 3, (3.38) Λ= 3A 2 (λ + 1) (3.39) Einstein Petrov D λ = 1 ρ = H(y)G(x) xy[ k + ma(x + y)], z = A 2 (x y) 2 A 2 (x + y) (3.40) Weyl e 2U = H(y) A 2 (x y), 2 (3.41) e 2k H(y) = A 4 (x y) 4 (Gρ 2 x Hρ2 y ) (3.42) Weyl : m =0 y2 + λx r = 2 A(x y), ρ = 1+kx 2 (3.43) y 2 + λx 2

52 3 52 C ds 2 = dr 2 r 2 /l 2 λ + r2 ] [ (λρ 2 k)dt 2 + dρ2 λρ 2 k + ρ2 dφ 2 (3.44) l 2 = 1 A 2 (λ +1) (3.45) λ = 1,k = 1 ρ =sinθ (r, θ, φ) (x, y, z) ds 2 = z 2 dt 2 + dz 2 + dx 2 + dy 2 (3.46) Minkowski Rindler T = z sinh t, Z = z cosh t, X = x, Y = y, (3.47) ds 2 = dt 2 + dz 2 + dx 2 + dy 2 (3.48) λ = 1,m 0 r = 1 Ay, t = t A (3.49) A 0 C m Schwarzschild C Horizons: λ = 1,k = 1 (H(x) =G(x)) µ = ma 0 <µ 1 G(x) x 1 <x 2 < 0 <x 3 x 1 1/(2µ), x 2 1 µ, x 3 = 1 µ m =0 D 1 : x 2 <x<x 3, y 1 <y<y 2 (3.50) x = x 2 x = x 3 z Killing y = y 2 Rindler y = 1 y = y 3 A 0 r =2m

53 3 53 Conic singularity: y = x z x = x 2 x = x 2 + G (x 2 )ρ 2 /4 x, φ dx 2 G(x) + G(x)dφ2 dρ 2 + G (x 2 ) 2 ρ 2 dφ 2 (3.51) 4 2π φ 2 φ 2 = G (x 2 )φ/2 (1 2µ)φ (3.52) z φ 3 φ 3 = G (x 3 ) φ/2 (1 + 4µ)φ 2 (3.53) 8µπ Ernst Ernst : Einstein-Maxwell Killing ξ ω ω = I ξ dξ. p I X ω =( 1) p+1 (X ω), I X ω = (X ω) (3.1) Killing ξ ( d dξ) µ = ν ( ν ξ µ µ ξ ν )= 2 ξ µ =2R ν µ ξ ν (3.2) dω = I ξ d dξ + L ξ dξ = I ξ d dξ = (ξ d dξ) = 2 (ξ (Rξ)) (3.3) Einstein R µν =8πGT µν = GF µλ F ν λ (3.4) Rξ = Gdx µ F µλ F ν λ ξ ν = Gdx µ F µλ (d Φ) λ = Gd d ΦF = e 2U I d Φ[dΦ ξ + i (dφ ξ)] (3.5)

54 3 54 dω =2ie 2U (ξ I d Φ (dφ ξ)) = 2ie 2U (ξ (d Φ dφ ξ)) = 2ie 2U I ξ (d Φ dφ ξ) = 2id Φ dφ (3.6) d(ω +2i ΦdΦ) = 0 (3.7) de = d(e 2U )+iω 2 ΦdΦ (3.8) E Ernst Einstein-Maxwell ξ = t t U(y) A i (y) γ ij (y) ds 2 = e 2U (dt + A i dy i ) 2 + e 2U γ ij dy i dy j, (3.9) F t Φ(y) GF = e 2U [dφ ξ + i (dφ ξ )] (3.10) (ξ = ξ µ dx µ = e 2U (dt+a i dy i ))Einstein Maxwell Ernst de =Γ 2 ΦdΦ; Γ = d(e 2U )+iω (3.11) Φ γ ij (y) Σ 3 E = e 2U γ(γ,de ), (3.12) 3 Φ=e 2U γ(γ,dφ), (3.13) 3 R ij = 1 2 e 4U Γ (i Γj) 2e 2U (i Φ j) Φ. (3.14) A i (y) A = A i dy i U ω Σ da 2dU A = e 2U 3 ω. (3.15) 3 ω (Σ,γ) ω Hodge

55 (Neugebauer-Kramer) Einstein-Maxwell (E, Φ,γ ij ) (E, Φ,γ ij ) i) E = α 2 E, Φ = αφ ii) E = E + ib, Φ =Φ iii) E = E, 1+icE Φ = Φ 1+icE iv) E = E 2 βφ β 2, Φ =Φ+β v) E = E 1 2 µφ µ 2 E, Φ = Φ+µE 1 2 µφ µ 2 E α, β, µ b, c Proof. (E, Φ,γ ij ) S = d 3 y γ [3 R 1 2 e 4U γ ij ( i E +2 Φ i Φ)( j Ē +2Φ j Φ) Σ +2e 2U γ ij i Φ j Φ] (3.16) i)-v) Ernst (Ernst ) Einstein-Maxwell ρ, z U, k, A ds 2 = e 2U (dt + Adφ) 2 + e 2U [e 2k (dρ 2 + dz 2 )+ρ 2 dφ 2 ] (3.17) Φ ρ, z Einstein- Maxwell E, Φ (ρ, z) e 2U ρ 1 (ρ E )= E ( E +2 Φ Φ), (3.18) e 2U ρ 1 (ρ Φ) = Φ ( E +2 Φ Φ) (3.19)

56 3 56 U, A, k E, Φ e 2U =ReE + Φ 2, (3.20) ζ = ρe 4U [i ζ (Im E )+ Φ ζ Φ Φ ζ Φ], (3.21) [ ] e 4U ζ k =2ρ 4 ( ζe +2 Φ ζ Φ)( ζ Ē +2Φ ζ Φ) e 2U ζ Φ ζ Φ (3.22) ζ = ρ + iz Kerr-TS class Weyl (ρ, z) ρ = σ(x 2 1) 1/2 (1 y 2 ) 1/2,z= σxy (3.23) Ernst Ξ= 1 E 1+E (3.24) ( Ξ 2 1) [ x {(x 2 1) x Ξ} + y {(1 y 2 ) y Ξ} ] =2 Ξ [ (x 2 1)( x Ξ) 2 +(1 y 2 )( y Ξ) 2]. (3.25) Ξ= β α (3.26) δ =1: α = px iqy, β =1, (3.27) δ =2: α = p 2 (x 4 1) 2ipqxy(x 2 y 2 ) q 2 (1 y 4 ), β =2px(x 2 1) 2iqy(1 y 2 ), (3.28) δ =3: α = p(x 2 1) 3 (x 3 +3x)+iq(1 y 2 ) 3 (y 3 +3y) pq 2 (x 2 y 2 ) 3 (x 3 +3xy 2 ) ip 2 q(x 2 y 2 ) 3 (y 2 +3x 2 y), β = p 2 (x 2 1) 3 (3x 2 +1) q 2 (1 y 2 ) 3 (3y 2 +1) 12ipqxy(x 2 y 2 )(x 2 1)(1 y 2 ). (3.29) p, q p 2 + q 2 =1

57 Kerr-Newman δ =1 Kerr m = σ/p, a = σq/p (3.30) m J/m = a Harrison ν = 1+ µ 2 1 µ = m 2 m2 e, 2 (3.31) p = 2σ 1 1+ν m2 e, 2 (3.32) a q = m2 e 2 (3.33) m a e Kerr Kerr-Newman r m = 2σx, cos θ = y (3.34) 1+ν (r, θ, φ, t) ( ) ( dr ds 2 = Σ dθ2 +sin 2 θ r 2 + a 2 + a2 (2mr e 2 ) Σ 2 2a(2mr e2 ) sin 2 2mr e2 θdφdt (1 Σ 2 Σ 2 ) sin 2 θ dφ 2 ) dt 2 (3.35) Σ 2 = r 2 + a 2 cos 2 θ, =r 2 2mr + a 2 + e 2. (3.36) Kerr-Newmann a 2 + e 2 <m 2 =0 r = r ± = m ± m 2 a 2 e 2 Killing g tt =0g tt > 0 a 2 + e 2 >m (dominant energy condition)

58 3 58 T µν X, Y T (X, Y ) 0 dominant eneryg condition () (M,g,ξ) i) (M,g) Cauchy Σ. ii) ξ I + I Killing M θ t iii) (M,g) Einstein T µν dominant energy condition T µν () (non-rotating) ξ ξ =0(M,g,ξ) (Hawking 1972, HE prop ) Killing Killing k i) ( k Killing ii) ( Killing m

59 (HE prop.9.3.2, prop.9.3.3, Chrusciel & Wald 1994) B(τ) S 2 R τ B(τ) J + (I, M ) J (I +, M ) M [0, 1) S 2 R () Condition 1: DOC := J + (I, M ) J (I +, M ) S 2 R 2 H + := J (I +, M ) S 2 R Condition 2: Non-rotating case DOC ξ ξ< (HE prop.9.3.4) Condition 1 & static Condition (HE prop.9.3.5, Carter 1973) Non-rotating & Condition 2 static [Israel 1967,1968, Muller-zum-Hagen et al 1973,1974, Robinson 1977]

60 3 60 Static & Conditions 1 DOC: (Lindblom 1980) Static, Condition 2 and 3-geometry:conformally flat [Bunting&Masood-ul-Alam 1987, Ruback 1988, Masoodul-Alam 1992] Static and Condition 2 3 Geometry: conformally flat (Uniqueness for Non-rotationg BH) Non-rotating and Condition 2 Schwarzschild or Reissner-Nordstrom (Circular symmetry) [HE prop.9.3.7, Papaetrou 1966, Carter 1969] (M,g): axisymmetric & stationary regular predictable T µν : empty or source-free EM fields Killing ξ,η([ξ,η]=0) 2-surface orthogonal [HE prop.9.3.8, Carter 1971, 1973] & Condition 1

61 3 61 ρ 2 := (ξ η) 2 (ξ ξ)(η η) > 0inDOC(ρ 2 =0on H [Carter 1971, 1973] λ, µ, φ, tdocglobal chart ( ) dλ ds 2 2 =Ξ λ 2 c + dµ2 + Xdφ 2 +2Wdφdt Vdt µ 2 ρ 2 =(λ 2 c 2 )(1 µ 2 ) c = M 2Ω H J Φ H Q. µ = ±1 λ c (Ernst ) [Carter 1970, 1973] Einstein ds 2 2 = dλ2 λ 2 c + dµ2 ( 1 <µ<1,c<λ< ) 2 1 µ 2 X, Y, E, B δs = δ Ldλdµ =0; L = X 2 + Y +2(E B B E) 2 +2 E 2 + B 2 2X 2 X X, Y, E, B. µ ±1 X, λ (E,B,Y ), µ Y +2(E µ B B µ E). λ E = Qµ +O(1/λ),B =O(1/λ), Y =2Jµ(3 µ 2 )+O(1/λ),λ 2 X =(1 µ 2 )(1 + O(1/λ)).

62 (empty case) [Robinson 1975] Prop empty(e = B =0) C, J () [Robinson 1974] Prop C, J, Q (No hair theorem) [Mazur 1982, Bunting 1981, 1983] Condition 1 Einstein rotating, stationary regular predictable Kerr-Newmann

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information