2 2 GDP( ) 1 () 143,694 47,186 48,997 38,371 36,559 44,519 28,565 44,550 26,526 43,237 23,031 38,455 15,945 34,971 14,996 44,950 10,852 10,183 10,337

Size: px
Start display at page:

Download "2 2 GDP( ) 1 () 143,694 47,186 48,997 38,371 36,559 44,519 28,565 44,550 26,526 43,237 23,031 38,455 15,945 34,971 14,996 44,950 10,852 10,183 10,337"

Transcription

1 2 1 R C C 1 5 ( mmhg) (1) (2) 2 () C (1) saikou<-c(116,128,120,116,118) median(saikou), mean(saikou), sd(saikou) =118, =119.6, = , 70, 1.58 (2) 2 () [110, 130], [67, 73] 2.2 OECD() 2008 GDP() 1 GDP ( ( ) 2010/ ) (1) GDP 1 GDP (2) GDP 1 GDP (3) GDP (1) GDP<-c(143694,48997,,168), GDP1<-c(47186,38371,,52568) 1 GDP rev(sort(gdp1)) 19 rank(gdp1) 1 GDP 12 (2) hist(gdp), hist(gdp1) summary(gdp), summary(gdp1) (3)

2 2 2 GDP( ) 1 () 143,694 47,186 48,997 38,371 36,559 44,519 28,565 44,550 26,526 43,237 23,031 38,455 15,945 34,971 14,996 44,950 10,852 10,183 10,337 48,049 9,291 19,115 8,729 53,094 7,300 10,270 5,283 13,861 5,049 47,151 5,003 64,885 4,790 51,954 4,518 94,763 4,129 49,527 3,503 31,174 3,408 62,054 2,706 50,931 2,663 59,944 2,436 22,929 2,161 20,719 1,542 15,363 1,278 29, , , ,568 kensu daisu plot(daisu,kensu) cor(daisu,kensu) ( 22 )1 ( ) ( ) (1) (2)

3 2 3 30,780 4, ,271 14,526 1,348 14,220 1, , ,748 1, , , ,031 1,093 14, ,693 2, , , , ,118 16, , , ,875 2,224 1, , (1) kyakusu rev(sort(kyakusu)) (2) hist(kyakusu) hist(log10(kyakusu)) ( ) ( C ) 2 (1 29.5, 31.0, 28.8, 31.6, 30.3, 30.6, 27.8, 30.1, 27.8, 31.1, 28.9, 29.1, 27.2, 31.3, 31.4, 31.9, 32.1, 31.7, 34.5, 34.5, 36.3, 36.1, 35.7, 35.8, 34.4, 33.3, 33.8, 34.2, 27.9, 29.2, 32.2 ) ( kw) (1) (2) 2

4 , 4916, 4049, 4066, 4984, 5022, 4716, 4916, 4640, 4146, 3725, 4689, 4367, 4679, 4899, 5249, 4492, 4228, 4793, 5726, 5918, 5965, 5999, 5213, 4715, 5550, 5666, 5596, 4659, 4953, 4712 (1) kion, denryoku plot(kion,denryoku) cor(kion,denryoku) 0.68 (2) % 40% 50% ( ) (1) (%) 2 (2) (1) cumsum ( ) (2) (2.2), (2.6) , ( ) (1) 65 (2) (1) 0.269, 0.173

5 (2) akita, aichi cumsum(akita)/sum(akita) () GNI() ( ) ( GNI GDP ) 1 1 GNI GNI 39, , , , , , , , , , , , , , , , , , , , (1) (2) ( ) 2009 (1) (1) 0.92 (2)

6 2 6 3, 6, 2, 7, 10, 19, 18, 1, 9, 8, 25, 39, 17, 4, 11, 5, 36, 45, 13, 16, 27, 44, 33, 48, 50, 41, 15, 28, 20, 38, 12, 29, 47, 14, 23, 49, 22, 46, 26, 21, 40, 32, 37, 43, 24, 30, 35, 31, 42, 34 nyushi<-1:50 nyugakugo<-c(3,6,2,,42,34) cor(nyushi,nyugakugo) 0.58

7 (1) sample 10 R (2) 100 R (3) R (4) (3) 0.5, 0.05 R sample(), mean(), sapply(), hist(), curve(), dnorm(), replace=t, freq=f, add=t # (1) sample(c(" ",""), 10, replace=t) # (2) coin < - sample(c(" ",""), 100, replace=t) head < - which(coin == " ") length(head) / 100 # (3) jikken < - sapply(rep(100,100), function(n) { coin < - sample(c(" ",""), n, replace=t) head < - which(coin == " ") length(head) / 100 }) hist(jikken) # (4) (3) hist(jikken, freq=f) curve(dnorm(x, 0.5, 0.05), add=t) % sample mean sapply population < - c(rep("",20000), rep(" ",80000)) # 20% 10 z < - sapply(rep(1000,10000), function(x) { ss = sample(population, x) mean(ss == "") }) hist(z)

8 3 8 ±4% R (600 ) % c(rep(1,100000),rep(0,900000)) sample mean sapply ## population < - c(rep(1,100000),rep(0,900000)) # 10% 100 mean(sample(population, 600)) ## ww < - sapply(rep(600,1000), function(n) mean(sample(population, n))) hist(ww, freq=f) curve(dnorm(x,mean(ww),sd(ww)), add=t, col=2) ## ( 5% population population < - c(rep(1,50000),rep(0,950000)) # 10% 100 col=2 10% 3% 4% 5% 2% 3% , R m, s n rnorm(n,m,s) [a,b] curve(dnorm(x,m,s)), add=t ( freq=f ) ## n < # n = 1000 n < w < - rnorm(n, 10, 2) c(mean(w), sd(w)) hist(w, freq=f)

9 curve(dnorm(x,mean(w),sd(w)), add=t, col=2) 3 9

10 n, p 2 n ( n E(X) = i i i=0 n = np E(X(X 1)) = i=1 ( n 1 i 1 n ( n i(i 1) i i=0 = n(n 1))p 2 n ) p i (1 p) n i = n i=1 ) p i 1 (1 p) n i = np i=2 ) p i (1 p) n i = ( n 2 i 2 n! (i 1)!(n i)! pi (1 p) n i n i=2 n! (i 2)!(n i)! pi (1 p) n i ) p i 2 (1 p) n i = n(n 1)p 2 V (X) = E(X(X 1)) + E(X) (E(X)) 2 = np(1 p) 4.2 p k E(X) = k p(1 p) k 1 = p (1 p) k 1 = p (1 p) k 1 = (1 p) i 1 = 1 p k=1 k=2 k=1 i=1 k=2 i=1 i=1 k=i k 1 E(X(X 1)) = p k(k 1)(1 p) k 1 = 2p i (1 p) k 1 = 2p i 4.3 = 2 i=1 i(1 p) i = 2 1 p p 2 = 2 p 2 2 p V (X) = E(X(X 1)) + E(X) (E(X)) 2 = 1 p p 2 λ i=1 i=1 k=i+1 (1 p) k 1 E(X) = k=0 k λk k! e λ = E(X(X 1)) = k=0 = λ 2 k=1 λ k (k 1)! e λ = λ k(k 1) λk k! e λ = k=2 λ k 2 (k 2)! e λ = λ 2 k=1 k=2 λ k 1 (k 1)! e λ = λ λ k (k 2)! e λ

11 4 11 V (X)E(X(X 1)) + E(X) (E(X)) 2 = λ 4.4 a, b M(θ) = E(e θx ) = e θx ba x a 1 b a x a 1 0 Γ(a) e bx dx = 0 Γ(a) e (b θ))x dx ( ) a b (b θ) a x a 1 = e (b θ))x dx b θ 0 Γ(a) ( ) a b = b θ a, b θ 4 d dθ M(θ) = a (b θ) a+1 b a d 2 b a M(θ) = a(a + 1) dθ2 (b θ) a+2 a/b 2 a(a + 1)/b 2 a/b X, Y 2 g(x), h(x) E(g(X)h(Y )) = E(g(X))E(h(Y )) X, Y f X (x), f Y (x) 4.6 E(g(X)h(Y )) = = g(x)h(y) f X (x)f Y (y)dxdy g(x)f X (x)dx h(y)f Y (y)dy = E(g(X))E(h(Y )) X i a i, b (i = 1, 2,..., n) X 1 + X X n n i=1 a i, b 2 ( ) b a i, b M i (θ) = ( b ) ai b θ

12 4 12 X 1 + X X n M(θ) ( ) a1 ( ) a2 ( ) an b b b M(θ) = b θ b θ b θ ( ) a1 +a b 2 + +a n = b θ a 1 + a a n, b 4.7 (4.75) E(X Y ) Y g(y ) V (E(X Y )) = E(g(Y ) 2 ) (E(g(Y ))) 2 = E(g(Y ) 2 ) (E(X)) 2 V (X Y ) = E(X 2 Y ) g(y ) 2 E(V (X Y )) = E(X 2 ) E(g(Y ) 2 ) V (E(X Y )) + E(V (X Y )) = E(X 2 ) (E(X)) 2 = V (X) 4.1 A, B P (A B) = P (A) + P (B) P (A B) () A B A B c A c B A B A, B 2 A = (A B) (A B c ), B = (A B) (A c B) A B 3 A B = (A B) (A c B) (A B c ) P (A B) = P (A B) + P (A c B) + P (A B c ) = P (A) + P (B) P (A B) P (B i A) = P (A B i )P (B i ) n j=1 P (A B j)p (B j ) 3 B 1, B 2, B 3 50%, 30%, 20% , 0.010, B 1, B 2, B 3

13 4 13 P (B i A) = P (A B i) P (A) P (A) = n P (A B j ) = j=1 P (A B i ) = P (A B i )P (B i ) n P (A B j )P (B j ) A 1 B 1, B 2, B 3 B 1, B 2, B 3 j=1 P (B 1 ) = 0.5, P (A B 1 ) = P (B 2 ) = 0.3, P (A B 2 ) = 0.01 P (B 3 ) = 0.2, P (A B 3 ) = P (A B 1 )P (B 1 ) : P (A B 1 )P (B 1 ) : P (A B 1 )P (B 1 ) = 7.5 : 3 : 4 P (B 1 A) = 15 29, P (B 2 A) = 6 29, P (B 3 A) = 8 29 X F (x) X E(X) x = x 0 du. E(X) = 0 E(X) = ( x 0 0 ) dt df (x) = xdf (x) = ( 0 0 t (1 F (x))dx ) df (x) dt = 0 (1 F (t))dt 1 F (t) y = 1 y y = F (x) ( 1 (1 F (t))dt = 0 0 du F ((t) ) dt = 1 0 F 1 (u)du F 1 (x) = u 0 < u 1 < < u n = F 1 (u)du i u i = F (x i ) F 1 (u i )(u i+1 u i ) = i i = i F 1 (u i )(u i+1 u i ) x i (F (x i+1 ) F (x i )) x i F (x i+1 ) F (x i ) x i+1 x i (x i+1 x i )

14 4 14 n F (x i+1) F (x i ) x i+1 x i f(x i ) i F (x i+1 ) F (x i ) x i (x i+1 x i ) x i+1 x i i xf(x i ) (x i+1 x i ) 0 xf(x)dx 4.4 X x, y P (X > x + y X > x) = P (X > y) λ 1 e λx 4.5 P (X > x + y X > x) = P (X > x + y) P (X > x) = e λ(x+y) e λx = e λy = P (X > y) (= 5 60) X 1, X 2,... 1/5[ ] S n = X 1 +X X n 1 n S n 60 < S n+1 S n = s( 60) X n+1 > 60 s s 0 s 60 ( ) X 1, X 2,... 1/5[ ] S n = X 1 + X X n S n n, b(= 5) 1 N N = n S n (= s) 60 S n+1 > 60 X n+1 > 60 s 0 < S n 60 S n f Sn (s) P (N = n) = = P (X n+1 > 60 s)f Sn (s)ds e b(60 s) bn s n 1 (n 1)! e bs ds = (60b)n n! e 60b N 60b = n, p 2 p n np p n R R 2 dbinom(k,n,p)dpois(k,np) (n, p) = (10, 0.1), (20, 0.05), (100, 0.01), (100, 0.05) n n = 100; p = 0.05; nn = min(n,20) plot(dbinom(0:nn,n,p), type="b") lines(dpois(0:nn, n*p),col=2)

15 [0,1] R runif m n R m = 2, 4, 12 n = , 1/12m mean(runif(m)) sapply hist freq=f curve(dnorm(x,1/2,sqrt(1/12/m)),add=t) m = 2 m = 4 m = 12 ## n = m = 12 z = sapply(rep(m,n), function(m) mean(runif(m))) hist(z, freq=f) curve(dnorm(x, 0.5, sqrt(1/12/m)), add=t)

16 X 1, X 2,..., X n p 2 n X 1 + X X n n, p 2 X ( P X = k ) ( ) n = p k (1 p) k, k = 0, 1,..., n n k 5.2 X 1, X 2,..., X n a, b (4.6.8 ) n X M(θ) = ( b ) a b θ ( ) an b M X(θ) = = b θ/n ( bn ) an bn θ an, bn E ( an X) = bn = a b V ( an X) = (bn) 2 = 1 a n b X 1, X 2,..., X n µ, σ 2 X i X X i X 2 X X i X C( X, X i X) = C( X, X i ) V ( X) = 1 n n j=1 C(X j, X i ) σ2 n = 1 n V (X i) σ2 n = n i=1 (X i X) 2 /(n 1) 2σ 4 /(n 1) 5.2 W = n ( Xi X i=1 σ ) 2

17 5 17 n 1 2 W 2(n 1) V V = σ 2 W/(n 1) V 2σ 4 /(n 1) 5.5 n t X X 2 1, n F t 2 P (X 2 x) = P ( X x ) x = 2 = x 0 Γ((n + 1)/2) Γ(n/2) nπ 0 ( u n + 1 ) (n+1)/2 du u, 1, n F ( ) Γ((n + 1)/2) t 2 (n+1)/2 Γ(n/2) nπ n + 1 dt (t 2 = u ) Z n 2 W Z/ W/n n t Z ( F Z/ 2 W/n) = Z 2 /(W/n) 1, n F R R rnorm(n)^2 2 X g(x) = x 2 Y = X 2 P (Y x) = P (X 2 x) = P ( x X x ) = 2P ( 0 X x ) 2 x = e u2 /2 du π 0 u 2 = v u = v, du = dv 2 v F Y (x) = 2 x π 0 f Y (x) = d dx F Y (x) = π = Γ(1/2) 1 2 v e v/2 dv 2 π 1 2 x e x/2 f Y (x) = 1 Γ(a) ba x a 1 e bx, (a = b = 1/2) a, b 5.7 a, b X X/(2a)/((1 X)/(2b)) 2a, 2b F

18 5 18 a, b B a,b (x) Y = X/(2a) (1 X)/(2b) ( ) ( ) X/(2a) P Y = (1 X)/(2b) y y/(2b) = P X 1/(2a) + y/(2b) ( ) ay = B a,b b + ay Y ( Γ(a + b) ay Γ(a)Γ(b) = Γ(a + b) Γ(a)Γ(b) ) a 1 ( ) b 1 b ab b + ay b + ay (b + ay) 2 ( ) b ( b y a 1 y + b ) (a+b) a a 2a, 2b F 5.8 m, n F 100α% F α (m, n) F α (m, n)f 1 α (n, m) = 1 F 2 2 m 2 X, n 2 Y (X/m)/(Y/n) m, n F (Y/n)/(X/m) n, m F ( ) X/m α = P Y/n F α(m, n) = P ( ) Y/n = 1 P X/m 1 F α (m, n) ( ) Y/n X/m 1 F α (m, n) n, m F 100(1 α)% F 1 α (n, m) 1/F α (m, n) (5.1) (5.2)

19 p = n = 100 ˆp = % 2 95% 2 R pbinom(k,n,p) p = 0.4 p(1 p)/n /100 = = % qnorm(0.975) % 0.35 ± [0.257, 0.443] pbinom(kb,100,0.35)-pbinom(ka,100,0.35)> =0.95 ka,kb kb-ka 2.5% ( 2.5% ) ka 2.5% ( 2.5% ) kb pbinom(44,100,0.35)= pbinom(25,100,0.35)= % [0.25, 0.44] pbinom(44,100,0.35)-pbinom(24,100,0.35)= % 96% 6.1 µ, σ 2 n T 1 (X) = X i, T 2 (X) = n i=1 i=1 T 1 (X), T 2 (X) µ, σ 2 X 2 i µ, σ 2 n x 1, x 2,..., x n l(µ, σ 2 ; x) = n 2 log 2πσ2 1 2σ 2 n (x i µ) 2 i=1 = n 2 log 2πσ2 1 2σ 2 ( T2 (x) 2µT 1 (x) + nµ 2) n T 1 (x), T 2 (x) µ, σ 2 T 1 (X), T 2 (X) ( 6.2) 6.2 µ, σ , % 2 σ % 1.96σ/ n σ = n < 2

20 6 20 n n > σ 2 = 20 = X p(0 < p < 1) P (X [r, s]) = p [r, s] s r r + s = 0, s = r + g(r) r λ s r λ(φ(s) Φ(r) p) r, s λϕ(r) = 0, 1 λϕ(s) = 0 ϕ(r) = ϕ(s) r + s = 0 r, s 6.4 θ > 0 X 1, X 2,..., X n U(0, θ) T (X) = c max {X 1, X 2,..., X n } θ c T (X) P (T (X) < x) = P ( x ) n = cθ E(T (X)) = E(T (X) 2 ) = cθ 0 cθ 0 V (T (X)) = ( X 1 < x c, X 2 < x c,..., X n < x ) c x nxn 1 (cθ) n dx = n n + 1 cθ = θ c = n + 1 n x 2 nxn 1 (cθ) n dx = n n + 2 (cθ)2 = (n + 1)2 n(n + 2) θ2 θ 2 1 = n(n + 2) θ2 (n + 1)2 n(n + 2) θ (1) p (2) a (1) log f(x; p) = x log p + (1 x) log(1 p) p log f(x; p) = x p 1 x 1 p 2 p 2 log f(x; p) = x p 2 1 x (1 p) 2

21 6 21 (2) ) I 1 (p) = E ( 2 log f(x; p) = 1 p2 p p = 1 p(1 p) 6.6 log f(x; a) = log a x a a log f(x; a) = 1 a + x a 2 2 a 2 log f(x; a) = 1 a 2 2x a 3 ) I 1 (p) = E ( 2 log f(x; a) = 1 a2 a 2 θ (1) n θ ˆθ n (2) n X med π 2 /(4n) f(x; θ) = 1 π(1 + (x θ) 2 ) (1) ) E ( 2 l(θ; X) θ2 l(θ; x) = log(1 + (x θ) 2 ) log π 2(x θ) l(θ; x) = θ 1 + (x θ) 2 2 θ 2 l(θ; x) = (x θ) 2 + 4(x θ) 2 (1 + (x θ) 2 ) 2 = = (x θ) 2 4 (1 + (x θ) 2 ) 2 J k = 2 π(1 + (x θ) 2 ) 2 dx π(1 + x 2 ) k dx 4 π(1 + (x θ) 2 ) 3 dx x 2 J k = 2k 0 π(1 + x 2 ) k+1 dx = 2kJ k 2kJ k+1 J k+1 = 2k 1 2k J 1 = 0.5 J k ) E ( 2 l(θ; X) = 2(4J θ2 3 2J 2 ) = 1 2 ˆθ n 2/n (2) V (X med ) π 2 /(4n) V (ˆθ n ) V (X med ) 8 π

22 () µ i, σi 2 (i = 1, 2) m, n X 1, X 2,..., X m ; Y 1, Y 2,..., Y n S 2 X, S2 Y 2 σ1/σ (1 α)% F α (m, n) m, n F 100α% [ ] S 2 X 1 F α/2 (m 1, n 1), S2 X F α/2 (n 1, m 1) S 2 Y S 2 Y (S X /σ 1 ) 2 m 1 2 F α (m, n)f 1 α (n, m) = 1 (m 1)SX 2 /σ2 1 m 1 2 (n 1)S2 Y /σ2 2 n 1 2 ( S 2 X /σ2 1) / ( S 2 Y /σ 2 2) m 1, n 1 F α = P ( F 1 α/2 (m 1, n 1) < S2 X /σ2 1 SY 2 /σ2 2 ( S 2 = P X S 2 Y 1 F α/2 (m 1, n 1) < σ2 1 σ 2 2 ) < F α/2 (m 1, n 1) < S2 X S 2 Y ) 1 F 1 α/2 (m 1, n 1) F F α (m, n)f 1 α (n, m) = 1 100(1 α)% 6.8 X 1, X 2,..., X n N(µ, σ 2 ) n T 1 (X) = X i, T 2 (X) = n i=1 i=1 T 1 (X), T 2 (X) µ, σ 2 X 2 i n x 1, x 2,..., x n X med n 1 n n x i θ i=1 θ θ = X med n θ = X med n x 1, x 2,..., x n x (1) x (2) x (n) x (k) < θ < θ < x (k+1) n x i θ i=1 n x i θ = (2k n)(θ θ) i=1 k < n/2 θ k > n/2 θ θ = x (k), θ = x (k+1) n x i θ i=1 n x i θ = 2x (k+1) + (2k + 2 n)θ (2k n)θ i=1 = (2k n)(x (k+1) x (k) ) k < n/2 θ k > n/2 θ n

23 6 23 k = n/2 0 x (n/2) < θ < x (n/2+1) θ = X med

24 exp(θa(x) + b(θ) + c(x)) H 0 : θ = θ 0, H 1 : θ = θ 1 (> θ 0 ) θ a(xi ) > d 1 1 ( exp( (x µ) 2 /2) = exp µx µ 2 /2 x 2 /2 log ) 2π 2π log L(θ 0 ; x) = (θ 0 a(x i ) + b(θ 0 ) + c(x i )) log L(θ 1 ; x) = (θ 1 a(x i ) + b(θ 1 ) + c(x i )) L(θ 1 ; x) L(θ 0 ; x) > c log L(θ 1; x) log L(θ 0 ; x) > log c log L(θ 1 ; x) log L(θ 0 ; x) = (θ 1 θ 0 ) a(x i ) + b(θ 1 ) b(θ 0 ) ( ) log c (b(θ1 ) b(θ 0 )) d = exp θ 1 θ p H 0 : p = 1 6, H 1 : ṗ > i=30 ( 100 i ) ( ) i ( ) 100 i % 7.3 () 40 A B A 39.0, 39.6, 39.9, 40.4, 39.8, 39.7, 40.0, 40.4, 40.0, 39.4 B 39.5, 40.7, 40.6, 39.3, 38.9, 40.4, 41.6, 41.6, 42.3, 39.1

25 7 25 A σ 2 A B σ2 B H 0 : σ 2 A = σ2 B, H 1 : σa 2 < σ2 B A B T 5 (X, Y ) 1.398/0.184 = 7.6 9, 9 F 1% % p m = 20 n = 10 x = 1500 ȳ = 1000 µ X, µ Y (1) X, Ȳ ( ) (2) F F = ( X/µ X )/(Ȳ /µ Y ) (3) µ X /µ Y 100(1 α)% (4) µ X = µ Y µ X = 1.5µ Y (5) (1) µ X X 2X/µ X m X m µ 1 X 2m X/µ X 2m 2 ( 1/2 ) 2m 1/2 θ X θ θµ X /(2m) ( ) m ( ) m 1/2 m/µx = 1/2 θµ X /(2m) m/µ X θ m, m/µ X X 20, 20/µ X Ȳ 10, 10/µ Y (2) (1) 2nȲ /µ Y 2n 2 2m X/µ X 2m 2 F = 2m X/µ X /(2m) 2nȲ /µ Y /(2n) 2m, 2n(= 40, 20) F ( 5.6) (3) (2) ( X/µX P Ȳ /µ Y = X/µ X Ȳ /µ Y ) ( 1 X x = P x Ȳ µ ) X = F 2n,2m (x) µ Y µ X /µ Y 100(1 α)% [ 1 F α/2 (2m, 2n) X/Ȳ X Ȳ, 1 F 1 α/2 (2m, 2n) ] X Ȳ = 1.5 α α = 0.1 [0.752, 2.758] α = 0.05 [0.656, 3.102] α = 0.01 [0.496, 3.898]

26 7 26 (4) F = X/Ȳ 40, 20 F µ X = 1.5µ Y F > F α (2m, 2n) F = 1.5 F 0.1 (40, 20) = % R na = 20; ma = 1/1000; nb = 10; mb = 1/1000 nn = 1000 z = sapply(1:nn, function(x) mean(rexp(na,ma))/mean(rexp(nb,mb)) ) hist(z) c(length(which(z> 1.5))/nn, 1-pf(1.5,40,20)) (5) H 1 : µ X > µ Y

27 ( 8.1) Q Q P P Q Q 151.3,157.2,156.0,152.2,151.4,154.1,158.9,158.9,155.4,156.6, 151.9,153.4,167.8,168.7,157.2,158.2,155.6,152.5,161.2,152.1, 151.5,159.2,161.1,162.6,151.5 Q Q 1, P P 2 P P Q Q R data = c(151.3,157.2,156.0,152.2,151.4,154.1,158.9,158.9,155.4,156.6, 151.9,153.4,167.8,168.7,157.2,158.2,155.6,152.5,161.2,152.1, 151.5,159.2,161.1,162.6,151.5) hist(data) qqnorm(data, xlim=c(-2.5,2.5)) qqline(data) n = length(data) qqplot((1:n-0.5)/n, pnorm(data,mean(data),sd(data)), xlim=c(0,1), ylim=c(0,1)) abline(0,1) 8.2 1

28 ( 8.1) P P λ = m = 4 (m 1) 1 = % χ (2) = chisq.test p pchisq 1.09 p 0.78 data = c(226,104,28,6,1) n = sum(data) # m = sum(data * (0:4)) / n # obs = c(data[1:3],7) # 2 exp = c(dpois(0:2,m), 1-ppois(2,m)) chisq.test(obs, p=exp) ##

29 ( 8.2) Z (ρ = 0.5) chi2 = sum((obs - n*exp)^2 / (n*exp)) 1 - pchisq(chi2, 3) 8.3 µ = ν = 0, σ 2 = τ 2 = 1 ρ = n = 20 (8.33) Z N = ρ 2 log 1 ρ, 1/(n 3) Z ρ = 0.9 rr N hist((log(1+rr)-log(1-rr))/2, freq=f)z freq=f 8.4 n = 20 2 N sapply ρ = 0.5 3, ρ = hist(rr) ( ) n = 20 r = 0.5 N = rr = sapply(rep(n,n), function(n) { z = rnorm(n) w = r*z+sqrt(1-r^2)*rnorm(n) cor(z,w)}) hist((log(1+rr)-log(1-rr))/2, freq=f) curve(dnorm(x,(log(1+r)-log(1-r))/2, 1/sqrt(n-3)), add=t)

30 ( 8.2) Z (ρ = 0.9) ( C) ( ) () Excel R R lm data= attach(temp) temp < - read.table("clipboard", header=t) plot(temp, type="l") model < - lm( ~, data=temp) abline(model) summary(model)

31 ( 9.1) t ( mmhg, C. 1mmHg Pa) P, T T = log 10 P () 680 P 775 ( 6) R boil < - read.table("clipboard", header=t) plot(boil) model < - lm( ~, data=boil) abline(model) curve(1730/(8.07-log10(x))-233.4, add=t, col=2)

32 ( 9.2) 9.3 ( C) ( C ) (Ω) , 0.06 R regist < - read.table("clipboard", header=t) plot(regist) model < - lm( ~, data=regist) abline(model) 9.4 ( ) () ( )

33 ( 9.3) , , , , , , , , , , , , , 0.94 R bank < - read.table("clipboard", header=t) plot(bank) n < - length(bank[,1]) x < - bank[4:n,1] y < - bank[4:n,2]/10000 plot(x, y) model < - lm(y ~x) abline(model) 9.5 (CO 2 ) () ( ppm) ( 2010 )

34 ( 9.4) , 1.78 R carbon < - read.table("clipboard", header=t) plot(carbon) model < - lm(carbon$ ~carbon$ ) abline(model) () ( ) (1) () (2) (1) (3) (2)

35 ( 9.5) ( ppm) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (1) (1 132 )

36 (a) banka < - read.table("clipboard", header=t) attach(banka) model < - lm( ~ ) plot(banka[,3]) ## abline(model) ## ahat < - model$coefficients[1] bhat < - model$coefficients[2] res < - ahat + bhat*banka[,1] plot(banka[,3]-res) abline(h=0) (2) log 9.1 ahat + bhat * R predict(model) logbank < - log( ) logkaiki < - lm(logbank ~ ) summary(logkaiki) plot(logbank-predict(logkaiki)) abline(h=0) (3) logkaiki$coefficients[2] i y i y i+12 y i y i

37 (b) () z i = log y i y i+12 y i y i = ezi+12 e zi 1 = e zi+12 zi 1 = e = %

38 H I T O p ( ) data < - read.table("clipboard", header=t) data1 < - c(data[,2], data[,3], data[,4], data[,5]) level < - c(rep(1,7), rep(2,7), rep(3,7), rep(4,7)) level < - factor(level) summary(aov(data1 ~ level)) ## Df Sum Sq Mean Sq F value Pr(> F) level e-13 *** Residuals ## 5 plot(level,data1,xaxp=c(1,4,3),xlab="") points(1:4,c(mean(data[,2]),mean(data[,3]),mean(data[,4]),mean(data[,5])),pch=16) lines(1:4,c(mean(data[,2]),mean(data[,3]),mean(data[,4]),mean(data[,5]))) lines(1:4,c(mean(za),mean(zb),mean(zc),mean(zd))) abline(h=mean(data1), lty=2) ( ( )

39 10 39 ) 10 ( / ) (1) ( 2 ) (2) (3) () (1) ( 10.1) 9 data < - read.table("clipboard", header=t) brand < - factor(floor((10:99)/10))

40 10 40 count <- c(); for(i in 1:9) count = c(count, data[,i]) ## () apply(data, 2, mean) apply(data, 2, sd) apply(data, 2, sd) / apply(data, 2, mean) ## plot(level,count) (2) (3) (summary(aov(count ~brand))) > summary(aov(count ~brand)) Df Sum Sq Mean Sq F value Pr( > F) brand e-14 *** Residuals ( / ) , 3 2 p p 0.87 >time < - factor(rep(1:10,5)) > summary(aov(count ~point + time)) Df Sum Sq Mean Sq F value Pr( > F) point < 2e-16 *** time

41 ( 10.2) Residuals A, B, C, D 4 3 () ( kg) A B C D (1) (2) (1) 14 A B 4 p % 5% (2) 2 p 0.77 ## (1) data < - read.table("clipboard", header=t) person < - factor(c(rep("a",3),rep("b",3),rep("c",3),rep("d",3))) count < - c(data[,1],data[,2],data[,3],data[,4]) summary(aov(count ~person)) plot(person, count) ## (2)

42 ( 10.4) brand < - factor(c(rep("",4),rep(" ",4),rep(" ",4))) count < - c(t(data[1,]),t(data[2,]),t(data[3,])) summary(aov(count ~brand)) 10.5 (A1, A2, A3, A4 4 ) (B1, B2, B3 3 ) 3 ( %) A1 A2 A3 A4 B1 55.6, 56.6, , 60.8, , 60.0, , 55.7, 48.4 B2 66.3, 65.6, , 71.1, , 55.1, , 59.0, 59.9 B3 52.0, 50.9, , 58.3, , 52.6, , 47.2, p % p % aov ~ * data < - read.table("clipboard", header=t) < - rep(data[,1],3) < - c(rep("b1",12),rep("b2",12),rep("b3",12)) < - c(data[,3],data[,4],data[,5]) summary(aov( ~))

43 ( 10.5) 16 ( 10.5) summary(aov( ~)) summary(aov( ~ + )) summary(aov( ~ * ))

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

求人面接資料PPT

求人面接資料PPT Hair Salon TV etc. 250" 250" 200" 200" 150" 150" 100" 100" 50" 50" 0" 0" Nov)13" Dec)13" Jan)14" Feb)14" Mar)14" Apr)14" May)14" Jun)14" Jul)14" Dec)12" Jan)13" Feb)13" Mar)13" Apr)13"

More information

1 R ID 1. ID Before After 1 X 1 Y 1 2 X 2 Y n 1 X n 1 Y n 1 n X n Y n. ID Group Measure. 1 1 Y 1... n 1 1 Y n1 n Y n n 0 Y n 1 E

1 R ID 1. ID Before After 1 X 1 Y 1 2 X 2 Y n 1 X n 1 Y n 1 n X n Y n. ID Group Measure. 1 1 Y 1... n 1 1 Y n1 n Y n n 0 Y n 1 E 2010 R 0 C626 R 2 t Welch t Wilcoxon 3 Fisher McNemar Box-Muller p- Excel R 1 B USB tomo-statim i.softbank.jp R WWW D3 C626 E-Mail d082905 hiroshima-u.ac.jp url http://home.hiroshima-u.ac.jp/d082905/r.html

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information