frequency) rare event ( ) 28 jump ( ) (macro-jumps) (intensity function) Hawkes Hawkes (point process) Hawkes 3 (intensity function) Gran

Size: px
Start display at page:

Download "frequency) rare event ( ) 28 jump ( ) (macro-jumps) (intensity function) Hawkes Hawkes (point process) Hawkes 3 (intensity function) Gran"

Transcription

1 46, 2, Causality Analysis of Financial Markets by Using the Multivariate Hawkes Type Models Naoto Kunitomo, Ayao Ehara and Daisuke Kurisu Hawkes Granger :,,, Hawkes, G-, 1. (high-frequency financial data) (low

2 frequency) rare event ( ) 28 jump ( ) (macro-jumps) (intensity function) Hawkes Hawkes (point process) Hawkes 3 (intensity function) Granger (G- )

3 139 Hawkes 1) Ait-Sahalia and Jacod (214), Ait-Sahalia et al. (215), Embrechts et al. (211), Grothe et al. (214), Bacry et al. (215) Bacry et al. (215) 2) 3) 2 Hawkes 3 Hawkes 4 Granger (G- ) 5 Hawkes 6 G- 2. Hawkes (intensity function) Hawkes 4) Ogata (1978) Hawkes Grothe et al. (214) Hawkes 1) 2) Ogata (1978) (215) 3) (point processes) Daley and Vere-Jones (23, Vol.1, Vol.2) ( ) ) Hawkes (1971a, b), Ogata (1978)

4 [, T ] n I i = (t n i 1, tn i ] (i = 1,, n) t n = I n i i T n p P j (t) (j = 1,, p ; t n i 1 < t tn i, i = 1,, n) s I i Y n j (s) = P j(s) P j (t n i 1 ) P j (t n i 1 ) (j = 1,, p; i = 1,, n) (2.1) Yj n(s) (tn i 1 < s tn i ) j (threshold) u n j s I i τ n j (i, 1) s tn i 1 < s τ n j (i, 1) Xn j (s) = Y n j (s) s [τ n j (i, 1), tn i ] Xn j (s) = Xj n(τ j n(i, 1)) s I i Xj n (s) 5 ( ) Xj n(s) (s (, T ] N j n(s, un j ) s X n j (s) un j (j = 1,, p) P (N n j (t + t, un j ) N n j (t, un j ) = 1 F t) = λ n j (t, un j ) t + o p( t), (2.2) P (N n j (t + t, un j ) N n j (t, un j ) > 1 F t) = o p ( t) (2.3) F t t σ (σ field) (intensity function) λ n j (t, u j ) = lim t E[Nn j (t + t, un j ) N j n(t, un j ) F t ] (2.4) t (self-exciting) λ n j (t, u n j ) = λ n j + c ji (Xi n (s ))g i (t s)dni n (s, u), (2.5) i=1 g i (t s) = e γ i(t s) (γ i > ), C(X) = (c ji (x)) (impact function) x > u n j P (X n j (s) > x X n j (s) > u n j, F s ) = = [ ] 1 + ξ 1/ξj j σj n [ (s)x ] 1 + ξ 1/ξj (2.6) j σj n(s)u j [ 1 + ξ j σ j (s)(x un j ) ] 1/ξj

5 141 σj (s) = ξ ju n j + σn j (s) s X n j (s) F X s ( ) [ ] f j (x, s) = 1 σj (s) 1 + ξ 1/ξj 1 j σj (s)(x u j) (x > u n j ) (2.7) 5) (conditional intensity function) λ n j (t, u n j ) = λ n j + i=1 [A ji X n i (s ) + B ji ]g i (t s)dn n i (s, u) (2.8) 6) λ j, A ji,b ji, γ i (mark) C ji (x) = A ji x i + B ji C ji = B ji (, i, j = 1,, p) Hawkes Grothe et al. (214) σ j (s) = β j + α j v n j (s, u) (= ξ j u j + σ n j (s)). (2.9) vj n (s, u) Grothe et al. (214) c(x) F j (x) H( ) c(x) = c(f t (x t )) = 1 + H (F t (x t )) (2.1) ( H ( ) ) U = F (X) U(, 1) v = H (u) E[C(F t (X))] = 1 [1 + H (u)]du = 1 + R vdg(v) = 1 + δ (2.11) 5) (216), Coles (21), Resnick (27) 6) u n j n

6 δ G 5 ( α j = (j = 1,, p)) c(x) Hawkes 3. 7) p = 1 Hawkes n σ1 (s) = β 1 (= ξ 1 u 1 + σ1 n (s) > ) (3.1) c(x) = Ax δ + B ( δ 1) (3.2) δ = Hawkes δ = 1 Hawkes Hawkes δ 1 Hawkes Hawkes Hawkes B λ n ji B = β = β 1, ξ = ξ 1 y = (ξ/β)(x u) C = = = c(x)f(x)dx (3.3) [Ax δ + B] 1 [ 1 + ξ ] 1/ξ 1 β β (x u) dx [ A ξ (u + β ] ξ y)δ (1 + y) 1/ξ 1 dy δ 1, a, b (a + b) δ a δ + b δ 7) Hawkes ( Ait-Sahalia and Jacod (214) )

7 143 C = [ Au δ ] + B (1 + y) 1/ξ 1 dy + A ξ ξ [σ ξ ]δ y δ (1 + y) 1/ξ 1 dy (3.4) [ Au δ ] + B 1 z 1 ξ 1 dz + A 1 ξ ξ (β ξ )δ z 1 ξ δ 1 (1 z) δ dz = [ Au δ + B ] + A ξ (β ξ )δ B( 1 δ, δ + 1) ξ B(p, q) 1 : δ 1 C [ Au δ + B ] + A Γ(1/ξ δ)γ(δ + 1) ξ (σ )δ ξ Γ(1/ξ + 1) (3.5) < ξ < 1 C ξ = δ = 1 1 C = A[u + β 1 ξ ] + B. (3.6) Hawkes (p = 1) λ n (t, u n ) = λ n 1 (t, u n ), λ n = λ n 1 (2.5) E[λ n (t, u n )] = λ n + E[c(X n (s ))g(t s)dn n (s)] (3.7) s {Nj n (s)} σ (σ field) F N s Xn (s ) F N s E[c(X n (s ))g(t s)dn n (s)] = E[E(c(X n (s ))g(t s)dn n (s) F N s )] (3.8) = E[E(c(X n (s ) F N s ))g(t s)λ n (t, u n )ds] t v(t) = E[λ n (t, u n )] = v( ) E[dN(s)] = vds v [, T ] T/n T/n = t n i tn i 1 (i = 1,, n) n u n u λ n (t, u n ) λ(t, u)

8 u > ( ) (u )jump 1 : 1 Hawkes X(s ) Fs N n n σ n 1 (s) σ ( ) c(x)g(t s) = [Ax+B]e γ(t s), β = ξ 1 u 1 + σ ( ) u = u 1,ξ = ξ 1 ( ξ 1), γ = γ 1 > [ B + A(u + β ] 1 ξ ) < γ (3.9) ( C = E[c(X)] = B + A(u + β/(1 ξ)) ) Hawkes p λ(t, u) N(t, u) p 1 λ(t, u) = λ 1 (t, u 1 ). λ p (t, u p ), V(t) = E[λ(t, u)] = v 1 (t). v p (t), N(t, u) = N 1 (t, u 1 )., N p (t, u p ) (3.1) p p C(X(s )) = [c ij (X(s ))], G(t s) = [diag(g j (t s))] (3.11) ( diag( ) ) λ(t, u) E[λ(t, u)] = λ + E[E(C(X(s ))]G(t s)dn(s, u Fs N )] (3.12) ( F N s s σ ( ) ) 1 2 : p Hawkes X(s ) F N s C ij (X n (s )) = A ij X j (s ) + B ij, 1 > ξ i, G(t) = (diag(e γ jt )), γ j >, Γ = (diag(γ j )) n n s β j σ j (s) = ξ ju j + σ j (s) β j (j = 1,, p)

9 (i) 145 F = CΓ 1 = ( (B ij + A ij (u j + β ) j )(δ(i, j)γ 1 i ) 1 ξ j (3.13) 1 ( C = E[C(X )] ) (ii) i,j A ij = F F C C Γ t t V(t) v = [I p F ] 1 λ (3.14) A ij = δ(i, j) = 1(i = j); δ = (i j), Γ = (diag(γ j )) G- Granger (1969) Granger-causality(G-causality G- ) G-causality (time series econometrics) G- (Granger-non-causality) causality test causality measure( ) ( (1987), (29) ) G- (martingale) A G-noncausality Granger (1969) G-causality ( ) Florens and Fougere (1996) 4 G-causality Hawkes A (co-jumps)

10 G-noncausality Hawkes p = 2, u n j = u (j = 1, 2) N i n (t, u) (i = 1, 2), t λ n i (t) = λn i (t, u j) Hawkes λ 1 (t) = λ 1 + c 11 (X 1 (s ))e γ1(t s) dn1 n (s) + c 12 (X 2 (s ))e γ2(t s) dn2 n (s) τ i (t) (i = 1, 2) Ni n (t, u) (stopping times, ) t s P (τ 1 > t F N s ) = e R t s λ 1(u)du, (4.1) F N s s N i n (v) (i = 1, 2; v s) σ field F is s Ni n (v) (v s) ( i ) σ field N2 n (v); (v s) N1 n (t) (t s) t s P (τ 1 > t F N s ) = P (τ 1 > t F 1s ) = e R t s λn 1 (v)dv (4.2) G- H : c 12 (X s ) = (4.3) G- G- (variance decomposition) Hawkes (relative intensity contribution, RIC) RIC 11 (t s) = P (τ 1 > t F 1s ) P (τ 1 > t F N s ) (4.4)

11 147 RIC 12 (t s) = P (τ 1 > t F N s ) P (τ 1 > t F 1s ) P (τ 1 > t F N s ). (4.5) RIC ij (t s) = 1, RIC ij (t s) 1 (4.6) j=1 Bartrett Bartlett (1963) Bartrett p N(t) = (N i (t)) λ(t) = λ + γ(t u)dn(u) (4.7) (p p γ(u) = (γ ij (u)) u < γ(u) = (O)( ) ) ξ ξ = E[λ(t)] ξ = [I p Γ ()] 1 λ (4.8) Γ (ω) = e iωτ γ(τ)dτ (4.9) ( i 2 = 1 ) N(t) 2 µ(τ) = E[ dn(t + τ) dt dn (t) ] ξξ (τ > ) (4.1) dt τ < µ( τ) = µ(τ) τ = E[(dN(t)) 2 ] = E[dN(t)] µ (c) (τ) = Dδ(τ) + µ(τ) (4.11) ( δ( ), D = (δ(i, j)d ii ) (i, j = 1,, p) d ii, δ(i, j) ) Bartrett f(ω) = 1 e iωτ µ (c) (τ)dτ (4.12) 2π = 1 [D + M(ω)] 2π

12 M(ω) = 1 e iωτ µ(τ)dτ (4.13) 2π Hawkes (1971b) 8) 3 : (4.7) Hawkes η, a 1, a 2 γ ij (u) < a 1 e ηu, β ij (u) < a 2 e η ( B(u) = (β ij ) (A.28) ) f(ω) = 1 2π [I p Γ (ω)] 1 D[I p Γ ( ω)] 1 (4.14) ( f(ω) = (f ij (ω)), Γ (ω) (4.9) Hawkes (relative power contribution, RPC) R p econometrics 3 Bartrett 9) p = 2, D D = diag(d 11, d 22 ) 2 2 Γ (ω) = (γij (ω)) (i, j = 1, 2) ω f 11 (ω) = [d 11(1 γ 22(ω))(1 γ 22( ω)) + d 22 γ 12(ω)γ 12( ω)] I 2 Γ (ω) 2 RP C 1 1 (ω) = RP C 2 1 (ω) = d 11 (1 γ 22(ω))(1 γ 22( ω)) d 11 (1 γ 22 (ω))(1 γ 22 ( ω)) + d 22γ 12 (ω)γ 12 ( ω) (4.15) d 22 γ 12(ω)γ 12( ω) d 11 (1 γ 22 (ω))(1 γ 22 ( ω)) + d 22γ 12 (ω)γ 12 ( ω) (4.16) ω RP C 1 1 (ω) + RP C 2 1 (ω) = 1 (4.17) 8) Hawkes (1971a) D 9) Anderson (1971) 5

13 149 γ(t) = C(diag(e γjt )) Γ (ω) = C(diag(iω + γ j )) 1 γ j = γ (j = 1, 2) Γ (ω) = (iω + γ) 1 C RPC ω d 11 [(γ c 22 ) 2 + ω 2 ]/(γ 2 + ω 2 ), d 22 [(c 12 ) 2 ]/(γ 2 + ω 2 ) (point processes) T Hawkes (T, T ] P(τ k T F t ) = exp( t λ n k(s, u Ft N )ds), (4.18) P(τ k T F N t ) = E[1 [τk T ] F t ] (4.19) p = 3 (p = 3) σ F t,(2,3) Ft,(1,2,3) N σ N 2, N 3 N 1, N 2, N 3 P(τ k T Ft,(1,2,3) N ) = P(τ k T Ft,(2,3) N ) (4.2) A k1 = G T (T, T ] N k F N t (first arrival time) τ P r(τ T FT N ) = exp( T λ n k(t, u FT N )dt) (4.21) (216)

14 ( ) 5. (Tokyo) (New York) (London) , SP5, FTSE1 Hawkes Tokyo opening, closing jumps (co-jumps) NC : Hawkes jumps (co-jumps)

15 151 -[( )-( )]/( ) c =.2 (u j )(j = 1, 2, 3) (closing time) (opening time ) (VaR) 5% 1) p { i=1 log L = λ n i (s)ds + log(λ n i (s))dn n i (s)} (5.1) { i=1 + { i=1 = L 1 + L 2, λ n i (s)ds + log(λ n i (s))dn n i (s)} (5.2) log f i (X n i (s ))dn n i (s)} L 1 = L 2 = { i=1 { i=1 λ n i (s)ds + log(λ n i (s))dn n i (s)}, log f i (X n i (s ))dn n i (s)} u i f i (x) = 1 σ i x i u i (1 + ξ i σi ) 1 ξ 1 i (i = 1,, p) (5.3) Hawkes L 1 1) 1%

16 Log Likelihood σi ξ i Log Likelihood σi ξ i Log Likelihood σi ξ i L 2 L 2 GPD (generalized Pareto distribution, ) (p = 2) c(x) (1) 1, (2) x, (3) x c ( < c < 1) AIC ( L 1 ) Fisher (1) (intensity) λ n 1 (t) = λ n 1 + λ n 2 (t) = λ n 2 + α 11 e γ 1(t s) dn n 1 (s) + α 21 e γ1(t s) dn n 1 (s) + α 12 e γ 2(t s) dn n 2 (s), (5.4) α 22 e γ2(t s) dn n 2 (s) (5.5) γ i γ (γ > )

17 (1) Log Likelihood AIC α 11 α e e α 21 α 22 γ λ 1 λ e e e e e Log Likelihood AIC α 11 α α 21 α 22 γ λ 1 λ N 1 N 2 N 1 N 2 (2) (Intensity) λ n 1 (t) = λ n 1 + λ n 2 (t) = λ n 2 + α 11 e γ 1(t s) X 1 dn n 1 (s) + α 21 e γ 1(t s) X 1 dn n 1 (s) + α 12 e γ 2(t s) X 2 dn n 2 (s), (5.6) α 22 e γ 2(t s) X 2 dn n 2 (s) (5.7) γ 5-3 (2) Log Likelihood AIC α 11 α e e α 21 α 22 γ λ 1 λ e e e e e Log Likelihood AIC α 11 α α 21 α 22 γ λ 1 λ

18 N 1 N 2 N 1 N 2 (3) (Intensity) λ n 1 (t) = λ n 1 + λ n 2 (t) = λ n 2 + α 11 e γ 1(t s) X 1 c 11 dn n 1 (s) + α 21 e γ 1(t s) X 2 c 21 dn n 1 (s) + α 12 e γ 2(t s) X 2 c 12 dn n 2 (s) (5.8) α 22 e γ 2(t s) X 2 c 22 dn n 2 (s) (5.9) γ i c 11 = c 12, c 21 = c 22 11) 5-4 (3) Log Likelihood AIC α 11 α 12 α 21 α e e e e γ λ 1 λ 2 c 11 = c 12 c 21 = c e e e e e Log Likelihood AIC α 11 α 12 α 21 α γ λ 1 λ 2 c 1,1 =c 1,2 c 2,1 =c 2, (1) (2), (3) AIC (2) (3) 3 Hawkes G- G- 1 Hawkes T (T ) 11) c 11, c 12 AIC

19 155 12) (martingale) Ogata (1978) (Wilks-property) C 4 : Hawkes NC L T (θ), θ L T (θ ), ˆθ ML L T (ˆθ ML ) T 2{L T (ˆθ ML ) L T (θ )} d χ(d) (5.1) Ω θ = (θ k ) Ω Ω χ 2 (d) d 2 Ω Ω d χ 2 (d) 1 d = 1 C(X) = α 11X 1 α 12 X 2 α 21 X 1 α 22 X 2, G(t) = e γt e γt Hawkes α ij = H : α 21 = 2 ( ) ( ). 5-5 (1) Log Likelihood AIC α 11 α α 21 α 22 γ λ 1 λ 2 null null ) compensator ( ) T Kunitomo et al. (217)

20 H : α 12 = 2 ( ) = (2) Log Likelihood AIC α 11 α e-1 null.6887 null α 21 α 22 γ λ 1 λ e e e e e H : α 21 = 2 ( ) = ( ) 5-7 (3) Log Likelihood AIC α 11 α α 21 α 22 γ λ 1 λ 2 null null H : α 12 = 2 ( ) = (4) Log Likelihood AIC α 11 α null.893 null α 21 α 22 γ λ 1 λ

21 157 2 RPC Hawkes ( (2)) RPC 2 Bartrett ( ) Bartrett RPC ( ) 13) Hamao et al. (199) GARCH (genaralized autoregressive conditional heteroscedastic models) 13)

22 Hawkes (SEVT) Hawkes Granger Granger G-causality, G-noncausality G- (i) (ii) causality analysis (G- ) (iii) Hawkes (co-jumps) 14) Hawkes Hawkes ( ) JP ) Solo (27), Kunitomo et al. (217)

23 159 Ait-Sahalia, Y. and Jacod, J. (214). High-Frequency Financial Econometrics, Princeton University Press. Ait-Sahalia, Y., Cacho-Diaz, J. and Laeven, L. (215). Modeling financial contagion using mutually exciting jump processes. Journal of Financial Economics, 117, Anderson, T. W. (1971). Statistical Analysis of Time Series, Wiley. Bacry, E., Mastromatteo, I. and Muzy, J.-F. (215). Hawkes processes in Finance. Market Microstructure and Liquidity, 1, 1555, World Scientific. Bartrett, M. S. (1963). The spectral analysis of point processes, Journal of Royal Statistical Society (B), 25(2), Coles, S. (21). An Introduction to Statistical Modeling of Extreme Value, Springer. Daley, D. J. and Vere-Jones, D. (23). An Introduction to the Theory of Point Processes, Volume I, Volune II, 2nd Edition, Springer. Dellacherie, C. and Meyer, P. A. (196). Probabilities and Potentials, Elsevier Science, Paris. (216).,, ( ). Embrechts, P., Liniger, T. and Lin, L. (211). Multivariate Hawkes processes: an application to financial data, Journal of Applied Probability, Special Volume, 48A, Florens, J.-P. and Fougere, D. (1996). Noncausality in continuous time, Econometrica, 64, Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37, Grothe, O., Korniichuk, V. and Manner, H. (214). Modeling multivariate extreme events using self-exciting point processes, Journal of Econometrics, 182, Hamao, Y., Masulis, R. W. and Ng, V. (199). Correlations in price changes and volatility across international stock markets, Review of Financial Studies, 3, Hawkes, A. G. (1971a). Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B, 33(3), Hawkes, A. G. (1971b). Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58(1), Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems and Linear Algebra, Academic Press. (29). 38(2), Kunitomo, N., Kurisu, D., Amano, Y. and Awaya, N. (217). The simultaneous multivariate Hawkes-type point processes and their application to financial markets, (in preparation). Ogata, Y. (1978). The asymptotic behavior of maximum likelihood estimators of stationary point processes, Annal of Institute of Statistical Mathematics, 3, (215). 63(1), Resnick, S. (27). Heavy-Tail Phenomena, Springer. Solo, V. (27). Likelihood functions for multivariate point processes with coincidences, Proceedings of the 46th IEEE Conference on Decision and Control, (216).. (1987)..

24 Granger (Granger noncausality) A G- Granger (1969) ( G- ) Granger (G- ) G- G Florens and Fougere (1996) (z t, w t, y t ) (Ω, A, F t ) s t σ F s F t F t = F t+ = F s s>t sub-σ L t G t F t L t z t G t (z t, w t ) F t y t ( L t = G t ) G- A-1 : ( G ) s, t E[z t F s ] = E[z t G s ] G t F t (weakly) (globally) z t (cause ) A-2 : ( G ) s, t L t F s G s G t F t (strongly) (globally) z t (cause ) L t F s G s (conditional independence) (Dellacherie and Meyer (196), Florens and Fougere (1996) ) G- A-1 : (i) G t F t (strongly) (globally) z t

25 161 cause L t F t (ii) L t F t F t (strongly) (globally) z t cause G- G- G- (local) z t (special) z t = z + H t + M t (A.1) H t predictable ( ), M t local ( ) G- A-3 : ( G- ) t z t F t G t F t (weakly) (instantaneous) z t cause A-4 : ( G- ) L t G t (special) F t F t (strongly) (instantaneous) z t cause A-2 : (Florens and Fougere (1996)) (i) (strongly) (globally)g- G (ii)l t = G t F t G- F t (strongly) (globally)g- G- Co-jump 15) A-3 : (Florens and Fougere (1996)) N t = (N 1 t, N 2 t ) N 1 t = n> 1 {τ 1 n t}, N 2 t = n> 1 {τ 2 n t} τ 1 n, τ 2 n N 1 t, N 2 t L t = G t N 1 t F t N 2 t NC G- 15) Florence and Fougere (1996) co-jump

26 B Hawkes Daley and Vere-Jones (23) N Borel A B(R d ), N(A), Janossy ( ) Janossy ( ) B-1 Janossy ( ) : Borel A B(R d ), A Janossy J n ( A), n = 1, 2,... N(A) = n n A J n (dx 1 dx n A) = P. (A.2) dx 1,..., dx n Janossy R nd Lebesgue, Radon- Nikodym Janossy j n ( A) B-2 : Borel A B(R d ), R d N A, k Janossy J n (dx 1 dx k A) Janossy j n ( A) Janossy B-3 : Borel A B(R d ) N x 1,, x n L A (x 1,, x n ) = j n (x 1,, x n A). (A.3) Poisson λ > Janossy.. N R + = [, ) Borel A A = [, T ]

27 163 {t 1,, t N(T ) } (, T ) N(T ). {τ i = t i t i 1 }. t =. S k (u t 1,, t k 1 ) = P (τ k > u t 1,, t k 1 ). p 1 (t), p 2 (t t 1 ),... S 1 (u), S 2 (u t 1 ),... S n (t t 1,, t n 1 ) = 1 t n 1 p n (u t 1,, t n 1 )du B-1 : j n (t 1,, t n T ) = j n (t 1,, t n [, T ]) J (T ) = S 1 (T ). j 1 (t 1 T ) = S 2 (T t 1 )p 1 (t 1 ). j 2 (t 1, t 2 T ) = S 3 (T t 1, t 2 )p 2 (t 2 t 1 ).. j n (t 1,, t n T ) = S n+1 (T t 1,, t n )p n (t n t 1,, t n 1 ) p 2 (t 2 t 1 )p 1 (t 1 ). ( ) [, t] {T } {t }, J (t) = J (T ) + k=1 1 T j k (u 1,..., u k T )du 1 du k. k! t t (A.4) p 1 (t) t 1, p 1 (t) = j 1 (t T ) + k=2 1 T j k (t, u 2,..., u k T )du 2 du k. (k 1)! t t (A.5) p 1 (t 1 )S 2 (t t 1 ) t 1 1, t 2, p 1 (t 1 )S 2 (t t 1 ) = j 1 (t 1 T ) + = j 1 (t 1 t). k=2 1 T j k (t 1, u 2,..., u k T )du 2 du k (k 1)! t t 1 T p 1 (t 1 )p 2 (t t 1 ) = j 2 (t 1, t T ) + j k (t 1, t, u 3,..., u k T )du 3 du k. (k 1)! t t k=3 (A.6)

28 ( ),, B-2 : N [,T] t 1,, t n N [, T ] ( ) ( N(T ) ) T L = λ (t i ) exp λ (u)du, i=1 λ (t) h λ 1 (t), < t t 1, (t) = h n (t t 1,, t n 1 ), t n 1 < t t n, 2 n. (A.7), h n (t t 1,, t n 1 ) ( ) h n (t t 1,, t n 1 ) = p n(t t 1,, t n 1 ) S n (t t 1,, t n 1 ). ( ) ( ), ( ) p n (t t 1,, t n 1 ) = h n (t t 1,, t n 1 ) exp h n (u t 1,, t n 1 )du t n 1, (A.8). B-1, N(t) L = p j (t j t 1,..., t j 1 ) S N(t) (t t 1,..., t N(t) ) j=1 ( N(t) = h j (t j t 1,..., t j 1 ) exp j=1 ( ) h j (u t 1,..., t j 1 )du t j 1 ) j exp h N(t) (u t 1,..., t N(t) )du T N(t) ( N(t) ) ( tj = λ (t j ) exp λ (u)du exp j=1 t j 1 ( N(t) ) T = λ (t i ) exp λ (u)du. i=1 T N(t) λ (u)du ) (λ ( ) ) ( )

29 165 Janossy B-4 : E, K N E K N E K Borel A B(E) N g (A) = N(A K) < a.s. N g ( ) N 16) N = (N 1,..., N m ) K = {1,, m} N g ( ) = N( {1,, m}) = m i=1 N( {i}) = m i=1 N i( ) (K, B(K)) l K ( ) 17) R + K N l( ) R + Lebesgue B-5 : R + K N Borel A B(R + ) n 1 Janossy J n ( A K) l l K n Janossy B-6 Janossy : Borel A B(R + ) Janossy j n (x 1,, x n, κ 1,, κ n A K)dx 1 dx n l K (dκ 1 ) l K (dκ n ) N = P g (A) = n n A dx 1,..., dx n, K dκ 1,..., dκ n. 16) ground process 17) reference measure

30 J (T ) = S 1 (T ). j 1 (t 1, κ 1 T ) = p 1 (t 1, κ 1 ) = p 1 (t 1 )f 1 (κ 1 t 1 ). j 2 (t 1, t 2, κ 1, κ 2 T ) = p 1 (t 1 )f 1 (κ 1 t 1 )p 2 (t 2 (t 1, κ 1 ))f 2 (κ 2 (t 1, κ 1 ), t 2 ).. f n (κ (t 1, κ 1 ),, (t n 1, κ n 1 ), t) (t 1, κ 1 ),, (t n 1, κ n 1 ), t h λ 1 (t), < t t 1, (t, κ)= h n (t (t 1, κ 1 ),, (t n 1, κ n 1 ))f n (κ (t 1, κ 1 ),, (t n 1, κ n 1 ), t), t n 1 < t t n, 2 n. (A.9) h n (t (t 1, κ 1 ),, (t n 1, κ n 1 )) h n (t (t 1, κ 1 ),, (t n 1, κ n 1 )) = p n(t (t 1, κ 1 ),, (t n 1, κ n 1 )) S n (t (t 1, κ 1 ),, (t n 1, κ n 1 )) λ (t, κ) h n, f n (A.1) λ (t) = h n (t (t 1, κ 1 ),, (t n 1, κ n 1 )) (t n 1 T t n ), (A.11) f (κ t n ) = f n (κ (t 1, κ 1 ),, (t n 1, κ n 1 ), t n ) (A.12) N g ( (T ) L = λ (t i, κ i ) exp i=1 ) λ (u, κ)dudκ N g (T ) N g ( (T ) = λ g(t i ) f (κ i t i ) exp i=1 i=1 K K ) λ (u, κ)dudκ. (A.13) ( Hawkes ) : p N = (N 1,..., N p ) λ m (t) λ m (t) = λ m + j=1 α m,j e β(t s) dn j (s), (A.14) m = 1, 2,, p p N g Ng (t) = N m (t), λ g(t) = λ m (t). m=1 m=1

31 167 m = 1, 2,, p N m [, T ] {t 1,m,, t nm,m} N g {t 1,m,, t Nm (T ),m} m {t 1,, t Ng (T )} N {(t 1, m 1 ), (t Ng (T ), m Ng (T ) )} m 1 1, 2,, p λ (t i, m i ) = λ mi (t i ), (A.15) p ( log L(T t 1,, t Ng (T )) = m=1 λ m (t)dt + log(λ m (t))dn m (t) ). ( Hawkes ) : Hawkes m X(t) = (X 1 (t),..., X p (t)) X m (t) f m (x t), m = 1,, p p N = (N 1,... N p ) N m λ m (t) λ m (t) = λ m + j=1 α m,j e β(t s) C(X j (s ))dn j (s), (A.16) C( ) p N g N g (t) = N m (t), λ g(t) = m=1 λ m (t). m = 1, 2,, p N m [, T ] {(t 1,m, X m (t 1,m )),, (t nm,m, X m (t nm,m))} N g [, T ] {t 1,m,, t Nm(T ),m} m,{t 1,, t Ng (T )} N {(t 1, m 1, X m1 (t 1)), (t N g (T ), m N g (T ), X mn g (T ) (t N g (T )))} m 1 1, 2,, p {t, m} X m (t) m=1 f (X m (t) t, m) = f m (X m (t) t). (A.17) Hawkes log L(T {(t 1, m 1, X m1 (t 1)), (t Ng (T ), m Ng (T ), X mn g (T ) (t Ng (T )))}) ( ) T N m (T ) = λ m (t)dt + log(λ m (t))dn m (t) + log f m (X m (t k,m ) t k,m ). m=1 m=1 k=1

32 C C-1: 1 2 (i) 1 2 p = 1 λ(t) λ n λ n = λ n + E[E(C(X n (s ))G(t s) Fs N )dn n (s)] (A.18) n E(C(X n (s )) F N s )] C γ > e γ(t s) ds = 1/γ p G(t) = (diag ( e γ jt )) n p p C λ = λ + C G(t s)λds (A.19) ( p = 1 c n (s) = E[C(X n (s ))] λ[1 [ lim n cn (s)]e γ(t s) ds] = λ (A.2) λ ) (ii) γ > p = 1 v(t) = λ + c e γ(t s) v(s)ds dv(t) dt = [c γ]v(t) + γλ (A.21) p > 1 C V(t) = E[λ(t)] dv(t) dt = C Γ e γ 1(t s) v 1 (s)ds. e γp(t s) v p (s)ds + V(t) (A.22) C dv(t) dt = CΓC 1 λ + C [ I p ΓC 1] V(t) (A.23) (C CΓC 1 ) xi p = (A.24)

33 169 C 1, C (C Γ) xi p = (A.25) t ( Hirsch and Smale (1974) ) Q.E.D. C-2: 3 (4.7) (4.1) u = u t (4.11) +τ (t) µ(τ) = E{[λ + γ(t + τ u)dn(u)] dn } ξξ (τ ) (A.26) dt = τ γ(τ u )µ (c) (u )du. µ(τ) = γ(τ)d + γ(τ u)µ(u)du, τ > (A.27) (4.11) µ( τ) = µ (τ) µ c ( τ) = (µ c (τ)), B(τ) = γ(τ)d + γ(τ u)µ(u)du µ(τ), < τ < (A.28) ( B(τ) = O (τ < ) ) B(ω), Γ (ω), M(ω) B(ω) = Γ (ω)d + Γ (ω)m(ω) M(ω) (A.29) M(ω) = [I p Γ (ω)] 1 [Γ (ω)d B(ω)] (A.3) (4.13) M( ω) = M (ω) [I p Γ ( ω)][γ ( ω)d B( ω)] = [Γ (ω)d B (ω)][i p Γ (ω)] (A.31) ( H(ω) 18) ) H(ω) = [I p Γ ( ω)]b (ω) + Γ ( ω)d = B( ω)[i p Γ (ω)] + DΓ (ω) = O (A.32) 18) Hawkes (1971b)

34 B (ω) = [I p Γ ( ω)] 1 [ Γ ( ω)d] (A.33) M(ω) M(ω) = [I p Γ (ω)] 1 [Γ (ω)d(i p Γ ( ω)) + DΓ ( ω)][i p Γ ( ω)] 1 D + M(ω) 3 [I p Γ (ω)] 1 D[I p Γ ( ω)] 1 3 Q.E.D. C-3: 4 Ogata (1978) Ogata (1978) (i) = 1 L T (θ ) L T (θ ) T (ˆθ θ ) T θ T θ θ + T (ˆθ θ ) { α T H(t, ω)dt + β T α α i,j d2 2 β β i,j d2 2 G(t, ω)dn t }(ˆθ θ ) d d Ogata (1978) 3 2 Ogata (1978) martingale ( ) N(, E[ (, 1) (, 1) ]) (, 1) m=1 1 λ m (t) θ 1 2 L T (θ ) T θ θ dt + m=1 1 p E[ 2 L θ θ ] λ m (t) θ A = E[ (, 1) (, 1) ], B = E[ 2 L θ θ ] 1 λ m (t) dn m,t T (ˆθ θ ) d N(, B 1 AB 1 ) (ii) p = 2 L T θ i = ( λ 1 θ i + λ 2 θ i )dt + ( λ 1 θ i dn 1,t λ 1 + λ 2 θ i dn 2,t λ 2 )

35 L T θ i = L T θ j = [ 171 [ ( λ 1 θ i (dt dn 1,t λ 1 (t) ) + ( λ 2 θ i (dt dn 2,t λ 2 (t) )] ( λ 1 (ds dn 1,s θ j λ 1 (s) ) + ( λ 2 (dt dn 2,s θ j λ 2 (s) )] λ 1 λ 1 (dtds dt dn 1,s ds dn 1,t + dn 1,s dn 1,t ) θ i θ j λ 1,s λ 1,t λ 1,s λ 1,t λ 2 θ i λ 2 θ j (dtds dt dn 2,s λ 2,s ds dn 2,t λ 2,t + dn 2,s λ 2,s dn 2,t λ 2,t ) λ 1 θ i λ 2 θ j (dtds dt dn 2,s λ 2,s ds dn 1,t λ 1,t + dn 2,s λ 2,s dn 1,t λ 1,t ) λ 2 θ i λ 1 θ j (dtds dt dn 1,s λ 1,s ds dn 2,t λ 2,t + dn 1,s λ 1,s dn 2,t λ 2,t ) 1 2 Ogata (1978) 2 k=1 λ k λ k 1 θ i θ j (λ k ) dt 3 4 Ogata (1978) (a) s < t (b) t > s(c) s = t 3 4 (a), (b) E[dN k (t) H t ] = λ k (t)dt Hawkes Cov[(N i (t + h) N i (t)), (N j (t + h) N j (t)) F t ] = o(h 2 ) (i j; i, j = 1,, p) (c) 1 T 2 k=1 λ k θ i λ k θ j 1 λ k dt p E[ (, 1) (, 1) ] A = B 2{L T (ˆθ) L T (θ )} = 2 L T (ˆθ) θ (ˆθ θ ) + (ˆθ θ ) 2 L T (θ ) θ θ (ˆθ θ ) + o p (1) 1 A = B T (ˆθ θ ) d N(, A 1 ) 4 Q.E.D.

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

dvi

dvi 2017 65 1 87 111 c 2017 2016 7 15 12 27 2017 1 23 2015 9 Hawkes 10 Hawkes 1. HFT 2010 1 arrowhead 40% 2012 2012 2013 2014 2015 UFJ 107 0052 4 2 6 88 65 1 2017 1 2015 7 1 2015 12 29 2015 2015 1 2015 9 1

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x 203 7......................................2................................................3.....................................4 L.................................... 2.5.................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information