Microsoft Word - 計量研修テキスト_第5版).doc
|
|
|
- すずり おいもり
- 8 years ago
- Views:
Transcription
1 Q3-1-1 テキスト P R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: Included observations: 24 LOG(YNH) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 誤差項に 1 階の自己相関が発生している ( 視覚的には上記図参照 ) 224
2 Q3-1-2 テキスト P59 Omitted Variable の追加 : 新たに財産所得 [LOG(YAH)] を説明変数として加える R e s i d ual A c tu a l Fi tted Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:47 Sample: Included observations: 24 LOG(YNH) LOG(YAH) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) DW 値が改善 Omitted Variable(=YAH) 225
3 Q3-1-3 テキスト P61 誤差項に 1 階の自己相関があることを考慮した最尤法による推定 R e s i d ual A c tu a l Fi tted Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:50 Sample (adjusted): Included observations: 23 after adjustments Convergence achieved after 13 iterations LOG(YNH) LOG(YAH) C AR(1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 誤差項の1 階自己相関係数 Inverted AR Roots.42 BM 最尤法による推定 226
4 Q3-2-1 テキスト P61 データの季節性を考慮しない推定 R es i dua l A c tu a l Fi tte d Dependent Variable: C95 Date: 10/26/05 Time: 15:57 Sample: 1990Q1 2002Q4 Included observations: 52 RYLE RDEPO C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid 1.71E+08 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 一見誤差項の自己相関の問題はないように思えるが 227
5 Q3-2-2 テキスト P63 Breusch-Godfrey 検定 Breusch-Godfrey Serial Correlation LM Test: F-statistic Prob. F(8,41) Obs*R-squared Prob. Chi-Square(8) Test Equation: Dependent Variable: RESID Date: 11/11/05 Time: 14:50 Presample missing value lagged residuals set to zero. RYLE RDEPO C RESID(-1) RESID(-2) RESID(-3) RESID(-4) RESID(-5) RESID(-6) RESID(-7) RESID(-8) 期ラグとの相関関係強い R-squared Mean dependent var -4.31E-12 Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
6 Q3-2-3 テキスト P64 データの季節性を考慮した推定 1: 季節ダミー変数 (Q1~Q3) 導入 R es i dua l A c tu a l Fi tte d Dependent Variable: C95 Date: 10/26/05 Time: 16:01 Sample: 1990Q1 2002Q4 Included observations: 52 RYLE RDEPO Q Q Q C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 自由度修正済み決定係数の向上 229
7 Q3-2-3 続き 高階自己相関の検定 Breusch-Godfrey Serial Correlation LM Test: F-statistic Prob. F(8,38) Obs*R-squared Prob. Chi-Square(8) 帰無仮説 : 高階の自己相関なし が棄却されない Test Equation: 高階自己相関なし Dependent Variable: RESID Date: 11/11/05 Time: 14:59 Presample missing value lagged residuals set to zero. RYLE RDEPO Q Q Q C RESID(-1) RESID(-2) RESID(-3) RESID(-4) RESID(-5) RESID(-6) RESID(-7) RESID(-8) R-squared Mean dependent var 9.79E-13 Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
8 Q3-2-4 テキスト P65 高階自己相関を考慮した BM 最尤法 R es i dua l A c tu a l Fi tte d Dependent Variable: C95 Date: 10/26/05 Time: 16:05 Sample (adjusted): 1991Q1 2002Q4 Included observations: 48 after adjustments Convergence achieved after 9 iterations RYLE RDEPO C AR(4) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Inverted AR Roots i i
9 Q3-2-5 テキスト P65 季節調整をしたデータによる推定 C 9 5 C 9 5_ SA RY L E RY L E _ S A RDEPO RDEPO_SA 232
10 R es i dua l A c tu a l Fi tte d Dependent Variable: C95_SA Date: 10/26/05 Time: 16:08 Sample: 1990Q1 2002Q4 Included observations: 52 RYLE_SA RDEPO_SA C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
11 Q3-3-1 テキスト P67 誤差項の不均一分散 4.0E E E E E R e s i d u a l A c tu al Fi t t e d Dependent Variable: C95 Date: 10/26/05 Time: 16:11 Sample: 1 47 Included observations: 47 Y C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid 1.20E+14 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
12 Q3-3-2 テキスト P68 不均一分散の有無を確認する検定 White Heteroskedasticity Test: F-statistic Prob. F(2,44) Obs*R-squared Prob. Chi-Square(2) Test Equation: Dependent Variable: RESID^2 Date: 10/26/05 Time: 16:13 Sample: 1 47 Included observations: 47 C -1.77E E Y Y95^ R-squared Mean dependent var 2.56E+12 Adjusted R-squared S.D. dependent var 7.05E+12 S.E. of regression 4.77E+12 Akaike info criterion Sum squared resid 1.00E+27 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) H 0 : 不均一分散なし H 1 : 不均一分散 帰無仮説 : H 0 が棄却される 誤差項の不均一分散がある 235
13 Q3-3-3 テキスト P70 残差の 2 乗系列と POP の 2 乗系列の相関 Dependent Variable: RES^2 Date: 10/26/05 Time: 16:17 Sample: 1 47 Included observations: 47 POP^ R-squared Mean dependent var 2.56E+12 Adjusted R-squared S.D. dependent var 7.05E+12 S.E. of regression 3.83E+12 Akaike info criterion Sum squared resid 6.73E+26 Schwarz criterion Log likelihood Durbin-Watson stat 加重最小 2 乗法による推定 Dependent Variable: C95 Date: 10/26/05 Time: 16:20 Sample: 1 47 Included observations: 47 Weighting series: POP Y C Weighted Statistics R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid 5.66E+14 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Unweighted Statistics R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Sum squared resid 6.48E+14 Durbin-Watson stat
14 Q3-3-4 テキスト P71 Dependent Variable: C95 Date: 10/26/05 Time: 16:21 Sample: 1 47 Included observations: 47 White Heteroskedasticity-Consistent Standard Errors & Covariance Y C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid 1.20E+14 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 係数推定値は Q3-3-1 と不変 t値 = bˆ が Q3-3-1 より低く算出されている s b 237
15 演習 3 テキスト P72 Dependent Variable: I90 Date: 10/26/05 Time: 16:43 Sample: 1 46 Included observations: 46 YF KP KG C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
16 不均一分散検定 ( クロス項を考慮した場合 ) White Heteroskedasticity Test: F-statistic Prob. F(9,36) Obs*R-squared Prob. Chi-Square(9) Test Equation: Dependent Variable: RESID^2 Date: 10/26/05 Time: 16:43 Sample: 1 46 Included observations: 46 C YF YF90^ YF90*KP YF90*KG KP KP90^ KP90*KG KG KG90^ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid 2.75E+10 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
17 不均一分散の問題を解決する方法の一例 対数変換 Dependent Variable: LOG(I90) Date: 10/26/05 Time: 16:44 Sample: 1 46 Included observations: 46 LOG(YF90) LOG(KP90) LOG(KG90) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
18 White Heteroskedasticity Test:( 対数変換したもの ) F-statistic Prob. F(9,36) Obs*R-squared Prob. Chi-Square(9) Test Equation: Dependent Variable: RESID^2 Date: 10/26/05 Time: 16:44 Sample: 1 46 Included observations: 46 帰無仮説 : 均一分散 は棄却されない C LOG(YF90) (LOG(YF90))^ (LOG(YF90))*(LOG(KP90)) (LOG(YF90))*(LOG(KG90)) LOG(KP90) (LOG(KP90))^ (LOG(KP90))*(LOG(KG90)) LOG(KG90) (LOG(KG90))^ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
Microsoft Word - 計量研修テキスト_第5版).doc
Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>
1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
操作変数法
操作変数法 Instrumental Varables Method 誤差項と説明変数の相関 説明変数の誤差 説明変数から省かれた変数の影響 誤差項 説明変数が内生変数であるとき 連立方程式モデル --------------------------- 誤差項と説明変数の間に相関がある場合には, 係数の推定値はバイアスを持つ 操作変数法 (Instrumental Varables Method)
パネル・データの分析
パネル データの分析 内容 パネル データとは pooled cross section data の分析 パネルデータの分析 DID (Difference in Differences) モデル パネル データの分析 階差モデル (first difference model) fixed effects model random effects model パネル分析の実際 データ セットの作成
Microsoft PowerPoint - Econometrics pptx
計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: [email protected] webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n
R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
回帰分析 単回帰
回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 1 + + Φ p y t p + ε t, ε t ~ W.N(Ω), を推定することを考える (
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
ODAとFDIの相互関係 ~先進国5カ国における考察~
ODA と FDI の相互関係 ~ 先進国 5 カ国における考察 ~ 東京外国語大学外国語学部 イタリア語専攻 4 年 瀬脇理 目次 第 1 章導入 ~ 研究背景 定義 先行研究第 2 章モデル ~ モデルと分析手法の説明第 3 章データ ~ データの出典第 4 章分析 ~ 分析結果と考察第 5 章結論第 6 章付録 2001 2002 2003 2004 2005 2006 2007 2008 2009
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
201711grade2.pdf
2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35
回帰分析 重回帰(1)
回帰分析 重回帰 (1) 項目 重回帰モデルの前提 最小二乗推定量の性質 仮説検定 ( 単一の制約 ) 決定係数 Eviews での回帰分析の実際 非線形効果 ダミー変数 定数項ダミー 傾きのダミー 3 つ以上のカテゴリー 重回帰モデル multiple regression model 説明変数が 個以上 y 1 x 1 x k x k u i y x i 他の説明変数を一定に保っておいて,x i
Microsoft Word - eviews2_
2018/02/02 新谷元嗣 藪友良 高尾庄吾 2 章 : 定常時系列モデル ここでは教科書 2 章 ( 定常時系列モデル ) の内容を再現する 具体的には ARMA モデルにおける同定 推定の手順 構造変化の問題を扱う 1 コレログラム Workfile を新規作成し ホームページの SIM2.xls から データを読み込もう 人工的に発生させたデータなので Date specification
II (2011 ) ( ) α β û i R
II 3 9 9 α β 3 û i 4 R 3 5 4 4 3 6 3 6 3 6 4 6 5 3 6 F 5 7 F 6 8 GLS 8 8 heil and Goldberger Model 9 MLE 9 9 I 3 93 II 3 94 AR 4 95 5 96 6 6 8 3 3 3 3 3 i 3 33 3 Wald, LM, LR 33 3 34 4 38 5 39 6 43 7 44
Microsoft Word - eviews1_
1 章 : はじめての EViews 2018/02/02 新谷元嗣 藪友良 高尾庄吾 1 ここでは分析を行うにあたって 代表的なツールの 1 つとして EViews について解説しよう EViews は 時系列分析に強みを持つ統計ソフトであり その使い易さ また高度な分析に対応できることから 官公庁を中心に広く用いられている 1. データの入力と保存 EViews では データを特有のファイル形式である
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
経済統計分析1 イントロダクション
1 経済統計分析 10 回帰分析 今日のおはなし. 回帰分析 regression analysis 2 変数の関係を調べる手段のひとつ単回帰重回帰使用上の注意 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. Stock, James H. and Mark W. Watson. 2006. Introduction to Econometrics.
3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10
第 10 章 くさりのない犬 はじめにこの章では 単位根検定や 共和分検定を説明する データが単位根を持つ系列の場合 見せかけの相関をする場合があり 推計結果が信用できなくなる 経済分析の手順として 系列が定常系列か単位根を持つ非定常系列かを見極め 定常系列であればそのまま推計し 非定常系列であれば階差をとって推計するのが一般的である 1. ランダムウオーク 最も簡単な単位根を持つ系列としてランダムウオークがある
Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]
S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
Microsoft PowerPoint - ch03j
Ch.3 重回帰分析 : 推定 重回帰分析 ( 複数要因のモデル ) y = + x + x +... + k x k + u. 推定. 重回帰分析の必要性. OLSE の計算と解釈 3. OLSE の期待値 4. OLSE の分散 5. OLS の効率性 :Gauss-Markov 定理 6. 重回帰の用語 入門計量経済学 入門計量経済学 ( 線形 ) 重回帰モデルの定義 変数 yを変数 x, x,,
回帰分析 重回帰(3)
回帰分析 重回帰 (3) 内容 分散不均一性 分散不均一性とは何か 分散不均一性の検出 Heteroskedstcty robust estmator 加重最小二乗法 (Weghted Least Square) 誤差項の系列相関 多重共線性 説明変数の誤差 誤差項と説明変数の相関 回帰分析の前提 モデルの線型性 u ~N(0,s )..d. 誤差項の期待値は0 誤差項は互いに独立 ( 系列相関は無い
事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度-
事例研究 ( ミクロ経済政策 問題分析 III) - 規制産業と料金 価格制度 - ( 第 8 回 手法 (4) 応用データ解析 / 時系列分析 ) 2011 年 6 月 9 日 戒能一成 0. 本講の目的 ( 手法面 ) - 応用データ解析の手法のうち 時系列分析 (ARMAX, 共和分, VAR) パネルデータ分析の概要を理解する ( 内容面 ) - 計量経済学 統計学を実戦で応用する際の留意点を理解する
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」
URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッ
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の R にパッケージを追加していくことになる インターネットに接続してあるパソコンで
オーストラリア研究紀要 36号(P)☆/3.橋本
36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
Excelにおける回帰分析(最小二乗法)の手順と出力
Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:[email protected] 1 Excel Excel.1 Excel Excel
と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関
R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R
R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
Microsoft Word - eviews4_
4 章 : トレンドモデル 2018/02/02 新谷元嗣 藪友良 高尾庄吾 教科書の 4 章の内容を確認しよう 具体的には 単位根検定として ADF 検定 ERS 検定 ペロン検定 パネル単位根検定 またトレンド分解として HP 分解を説明する 1. ADF 検定教科書の 4 章 7 節の例 ( ラグの選択 ) を通して 単位根検定の手順を確認しよう まず LAGLENGTH.XLS のデータを
平成 25 年度卒業論文 浪人と留年 所属ゼミ 村澤ゼミ 学籍番号 氏名中司雄也 大阪府立大学 経済学部
平成 25 年度卒業論文 浪人と留年 所属ゼミ 村澤ゼミ 学籍番号 1100401107 氏名中司雄也 大阪府立大学 経済学部 要約 本稿では 大学の現役入学生と浪人入学生でどちらが留年しやいすか比較する 2005 年 社会階層と社会移動 (SSM) 全国調査の個票データを利用して 回答者の大学入学時と卒業時の年齢から浪人ダミーと留年年齢を作成し そして ポアソン回帰分析を行った結果 浪人 男性 国公立大学生は現役合格生
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
Microsoft Word - 光石賞完成.doc
雇用の非正規化と消費 非正規雇用者の増加が消費に与える影響について 009 年 0 月 9 日明治大学政治経済学部岩田州靖笠谷悠治朗金子雄太郎野本和樹山下由紀子山本啓太 < 要旨 >.008 年 9 月のリーマン ショック以降 急速に雇用環境が悪化している 完全失業率は 5.7% 有効求人倍率も 0.4 倍といずれも過去最低を記録しており その影響は個人消費の落ち込みに表れている. 雇用環境の急速な悪化の背景には
.3 ˆβ1 = S, S ˆβ0 = ȳ ˆβ1 S = (β0 + β1i i) β0 β1 S = (i β0 β1i) = 0 β0 S = (i β0 β1i)i = 0 β1 β0, β1 ȳ β0 β1 = 0, (i ȳ β1(i ))i = 0 {(i ȳ)(i ) β1(i ))
Copright (c) 004,005 Hidetoshi Shimodaira 1.. 3. 4. 004-10-01 16:15:07 shimo cat(" 1: "); c(mea(), mea()) cat(" : "); mmea
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
Chapter 1 Epidemiological Terminology
Appendix Real examples of statistical analysis 検定 偶然を超えた差なら有意差という P
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
082_rev2_utf8.pdf
3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説
第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない
