D D E 2 (? 44 E E

Size: px
Start display at page:

Download "D D E 2 (? 44 E E"

Transcription

1 A B 23 IV 3 A A A A.2 IV ( B B B.3 Laplace B B.5 Green n C Laplace 5 C C C C.4 Fourier, Laplace C.5 Laplace C C D 27 D D.2 D D D D.3.2 e m,α D.4 (D α m u = f D.5 p(du = f

2 D D E 2 (? 44 E E E E E E E E.4.2 y + ω 2 y = E.4.3 y = E.4.4 y ω 2 y = E E E F 53 F F F G 62 G. Newton H 63 H I Kepler 66 J 66 K 66 K L 68 L M 7 M N 79 N N

3 IV A 23 IV A. 23 IV A.. 2 IV IV A..2 OK A.2 IV ( y = g (g y = f(x y = f(x y = gx + C (C, y = g 2 x2 + Cx + C (C. y = f(xg(y f(x, /g(y F, G dy g(y = f(x dx G(y = F (x + C (C y = G (F (x + C y = ay (,, y = (a byy (, 3

4 ( y = a(xy ( (2 y = a(xy + b(x ( y = ay ( y = a(xy y = a(xy + b(x 2 A. ( L[y] = y a(xy L[y + z] = L[y] + L[z], L[ky] = kl[y] L (2, ( ( (3, (4 y ( 2 (3 y + py + qy = (4 y + py + qy = f(x ( (3 λ 2 + pλ + q = 2 α, β (i α β y = Ae αx + Be βx (A, B (ii α = β y = Ae αx + Bxe αx (A, B (i α, β = a ± ib (a, b R, b y = C e ax cos bx + C 2 e ax sin bx (4 u y = u + z (z L[z] = ( L[y] = y + py + qy L[y + z] = L[y] + L[z], L[ky] = kl[y] 4

5 (a (b (c (d Laplace (e y = g ( y = ay (, y = ω 2 y ( 2 L[y] L[y + z] = L[y] + L[z] 2 or B 2 B. ( 5

6 (a 2 d y dx = A y + F (x y = e xa y + e xa x e ta F (t dt (b 2 y, y 2 y = c (xy + c 2 (xy 2 y = [c (xy + c 2(xy 2 ] + [c (xy + c 2 (xy 2]. y (5 c (xy + c 2(xy 2 = (c, c 2 y = c (xy + c 2 (xy 2, y = [c (xy + c 2(xy 2] + [c (xy + c 2 (xy 2] L[y] = y + py + qy = c (xl[y ] + c 2 (xl[y 2 ] + [c (xy + c 2(xy 2] = c (xy + c 2(xy 2. L[y] = f(x (6 c (xy + c 2(xy 2 = f(x (5, (6 c (x, c 2(x c (x, c 2 (x y = c (xy + c 2 (xy 2 B. (2 L[y] = y 6y + 8y = e x. L[z] = z = Ae 2x + Be 4x. y = c (xe 2x + c 2 (xe 4x 2 ( 6

7 y = ( c (xe 2x + c 2(xe 4x + ( c (x2e 2x + c 2 (x4e 4x (7 c (xe 2x + c 2(xe 4x = y = 2c (xe 2x + 4c 2 (xe 4x. y = ( 2c (xe 2x + 4c 2(xe 4x + ( 4c (xe 2x + 6c 2 (xe 4x. L[y] = ( 2c (xe 2x + 4c 2(xe 4x + ( 4c (xe 2x + 6c 2 (xe 4x 6 ( 2c (xe 2x + 4c 2 (xe 4x + ( c (xe 2x + c 2 (xe 4x = 2c (xe 2x + 4c 2(xe 4x. e x (8 2c (xe 2x + 4c 2(xe 4x = e x. (7, (8 ( e 2x 2e 2x e 4x 4e 4x ( c, c 2 ( c (x c 2(x = ( e 2x 2e 2x e 4x 4e 4x c (x c 2(x ( c, c 2 ( c (x 2 e x = c 2 (x 6 e 3x e x = ( = e x. 2 e x 2 e 3x. u = c (xe 2x + c 2 (xe 4x = 2 e x e 2x 6 e 3x e 4x = 3 ex L[y] = e x y = Ae 2x + Be 4x + 3 ex. 7

8 B.2 Oliver Heaviside 3 (85 925, London Devon ( p p pf(x = d dx f(x, p f(x = f(t dt ( Thomas John l Anson Bromwich ( , Wolverhampton Northampton Laplace. Laplace 2. (Jan Mikusiński Functional Analysis [32] [27] 3 Maxwell ( Maxwell Heaviside Heaviside.html 8

9 Laplace [32] ([28] ( [6] Laplace Laplace ( 4 B.3 Laplace Fourier Laplace B.4 L (n 2 y + py + qy = 4 9

10 D = d dx ( 2 ( d d y + p y + qy = dx dx D 2 y + pdy + qy = (D 2 + pd + qy = n F (λ = a j λ j j= F (Dy := n j= a j d j y dx j D 2 + pd + q { (F (D + G(Dy = F (Dy + G(Dy, (F (D G(Dy = F (D(G(Dy λ 2 + pλ + q = (λ α(λ β L[y] = (D 2 + pd + qy = ((D α(d βy = (D α((d βy L[y] = f (D α(d βy = f v := (D βy (D αv = f. v(x = C (9 v(x = Ce α(x x + x e α(x t f(t dt 5 v (D βy = v (C 5 x x =

11 y : ( y(x = C e β(x x + (9 v(t = Ce α(t x + t x e β(x t v(t dt. x e α(t s f(s ds ( ( y(x = C e β(x x + Ce α(t x + x e β(x t e α(t s f(s ds dt. x C = C = ( t u(x = e β(x t e α(t s f(s ds dt. x x x = e βx e αx f G(x = e βx e αx y = G f(x ( : x x G C = v(x = y (x βy(x, C = y(x C = C = y(x = y (x = B. α, β λ 2 + pλ + q = f I x I ( t ( u(x = e β(x t e α(t s f(s ds dt x x t y + py + qy = f(x ( u(x = u (x = x = u = e αx e βx f(x u(x = G f(x := G(x := e αx e βx G(x yf(y dy

12 (i α β G(x = e α(x y e βy dy = eαx e βx α β. (ii α = β G(x = e α(x y e αy dy = xe αx. B.2 ( α, β λ 2 + pλ + q = f I e αx e βx (α β (2 u(x := G(x yf(y dy, G(x := α β xe αx (α = β u + pu + qu = f(x, u( = u ( = G Green Green (? Green D.5. ( B. Mathematica B. ( Mathematica 6 F.3 Mathematica special[a_,b_,f_]:= Expand[Integrate[Exp[a(x-t]Integrate[Exp[b(t-s]f,{s,,t}],{t,,x}]] ( special[4,2,exp[s]] y = (2 special[2,,sin[s]] y = e 2(x t ( t e 4(x t ( t e 2(t s e s ds dt = 2 e2x + 6 e4x + 3 ex. e (t s sin s ds dt = 2 ex + 5 e2x + 3 cos x + sin x. 6 2

13 (3 special[-a,a,exp[a s]] y = e a(x t ( t (4 special[-,-,exp[-s]] y = (5 special[-,-,s^2] y = e a(t s se as ds dt = 8a 3 e ax + 8a 3 eax 4a 2 xeax + 4a x2 e ax. e (x t ( t (6 special[3,3,(s+exp[s]] y = e 3(x t ( t (7 special[3,3,cos[s]] y = e 3(x t ( t (8 special[2,,+s] y = e (x t ( t e (t s e s ds dt = 2 x2 e x. e (t s s 2 ds dt = 6e x 2xe x + x 2 4x + 6. e 3(t s (s + e s ds dt = 35 8 e3x + 8 xe3x + 9 x e 3(t s cos s ds dt = 2 25 e3x + 3 xe3x cos x 3 sin x. 5 e 2(x t ( t e (t s ( + s ds dt = 3 8 e2x x2 3 4 x. 3

14 ( f g(x = f(x tg(t dt f g f g L[y] = p (D y, D = d l dx, p(x = (x β j r j j= G j (x := (r j! xr j e β jx G := G G 2 G l, u := G f (j =, 2,, l, u L[u] = f(x B.5 Green n n y (n + a y (n + + a n y + a n y = f(x α,, α n u G(x = e α x e α 2x e α nx, u(x = G f(x u (n + a u (n + + a n u + a n u = f(x, u( = u ( = = u (n ( = Green G Laplace L[G](s = L[e αx e αnx ](s = L[e αx ](s L[e αnx ](s =. s α s α n n A j, A j = (α k α j s α j= j j k Laplace n G(x = A j e α jx G : j= G (n + a G (n + + a n G + a n G =, G( = G ( = = G (n 2 ( =, G (n ( =. 4

15 α = = α n = α G(x = xn e αx (n! Green G(x, y = { e αx e βx α β xe αx (α β (α = β G + pg + qg =, G( =, G ( = C Laplace Laplace L.Euler P.S. de Laplace ( (Euler Heaviside ( Heaviside ( Laplace [29] [6], [25] [3] Laplace ( Laplace Laplace ( C. C. (Laplace f C([, ; C L[f](s := e sx f(x dx L[f] f Laplace C. ( L[f + g](s = L[f](s + L[g](s. 5

16 C.2 ( Laplace Laplace [ ] x α L Γ(α eax = (s a. α ( (5 ( ( Laplace (2 ( Laplace L [e ax ] (s = s a L[](s = s (s > Re a, (s >. (3 ( x k Laplace [ ] x n L (s = (n! s, n (4 ( Laplace L [cos ωx] = (5 ( Laplace L [e ax xα Γ(α L [cosh ωx] = ] (s = (s ax = y [ ] L e ax xα ( y (s = e y Γ(α Γ(α s a = s s 2 + ω 2, L [sin ωx] = ω s 2 + ω 2. s s 2 ω, L [sinh ωx] = ω 2 s 2 ω. 2 e sx ax xα e Γ(α dx = Γ(α (s a α Γ(α Γ(α = (s a α. e (a sx x α dx α dy s a = (s a α Γ(α e y y α dy ( α = ( L [e ax ] (s = e sx e ax dx = e (a sx dx = [ ] e (a sx a s = ( = a s s a. (2 L[](s = e sx dx = s 6 [ e sx ] = s ( = s.

17 (3 a =, α = n L [ x k+] [ (s = e sx x k+ dx = ] ( s e sx x k+ e sx (k + x k dx s = k + L[x k ](s s 7 sx = y ( y n L [x n ] (s = e sx x n dx = e y dy s s = e y y (n+ Γ(n + dy = = n! s n+ s n+ s. n+ (4 L[cos ωx](s = e sx cos ωx dx 2 ( e sx cos ωx ( e sx sin ωx = se sx cos ωx + ( ωe sx sin ωx, = se sx sin ωx + ωe sx cos ωx ( se sx cos ωx ωe sx sin ωx ( ωe sx cos ωx + se sx sin ωx = (s 2 + ω 2 e sx cos ωx, = (ω 2 + s 2 e sx sin ωx (5 Euler Laplace L[cos ωx](s = L [ (e iωx + e iωx /2 ] = ( [ ] L e iωx (s + L [ e iωx] (s = ( 2 2 s iω + s + iω = s s 2 + ω, 2 L[sin ωx](s = L [ (e iωx e iωx /(2i ] = 2i = ω s 2 + ω. 2 ( [ ] L e iωx (s L [ e iωx] (s = ( 2i s iω s + iω ( cos ωx = Re e iωx ω L[cosh ωx](s = L [ (e ωx + e ωx /2 ] = 2 = s s 2 ω, 2 7 Γ 7 ( L [e ωx ] (s + L [ e ωx] (s = ( 2 s ω + s + ω

18 L[sinh ωx](s = L [ (e ωx e ωx /2 ] = 2 = ω s 2 ω. 2 C.3 (δ Laplace ( L [e ωx ] (s L [ e ωx] (s = ( 2 s ω s + ω L[δ](s =. Laplace C.4 (Laplace ( L [ f (n] n (s = s n L[f](s s j f (n j ( j= = s n L[f](s s n f( s n 2 f ( sf (n ( f n ( n = L[f ](s = = + s e sx f (x dx = [ e sx f(x ] ( se sx f(x dx n OK e sx f(x dx = sl[f](s. L [ f (n+] [ (f (n (s = L ] (s = sl [ ( f (n] n (s f (n ( = s s n L[f](s s j f (n j ( f (n ( = s n+ L[f](s n s j f (n+ j (. C.5 (Laplace [ ] L f(t dt (s = s L[f](s. L[F ](s = = s j= F (x = e sx F (x dx = f(t dt e sx f(x dx = s L[f](s. j= [ ] s e sx F (x s e sx F (x dx 8

19 C.6 (Laplace (2 d L[f](s = L [ xf(x] (s. ds ( n d L[f](s = L [( x n f(x] (s. ds d ds L[f](s = d ds e sx f(x dx = C.7 ( Laplace C.8 C.9 L [e αx f(x] (s = L[f g](s = L[f g](s = L[f](sL[g](s. = = e sx ( dy y e sy g(y dy = L[g](sL[f](s. [ ] L x f(x (s == e sx ( xf(x dx = L [( xf(x] (s. f(x yg(y dy dx e sx f(x yg(y dx s e st f(t dt L[f](tdt. L [e αx f(x] (s = L[f](s α. e sx e αx f(x dx = ] [ ] L [e αx x n x n = L (s α = (n! (n! e (s αx f(x dx = L[f](s α. (s α n. C. ( Laplace f T L[f](s = e st 9 T e sy f(y dy.

20 L[f](s = e sx f(x dx = n= (n+t nt e sx f(x dx. x = nt + y ( y T dx = dy, e sx = e s(nt +y = e nst e sy, f(x = f(y L[f](s = n= T e nst e sy f(y dy = T (e st n e sy f(y dy = n= e st T e sy f(y dy. C.2 C. y 5y + 6y = x + sin x + e 3x Laplace ( s 2 L[f](s sf( f ( (sl[f](s f( + 6L[f](s = s 2 + s s 3. (s 2 5s + 6L[f](s = f ( + f((s 5 + s + 2 s s 3. L[f](s L[f](s = f ( s 2 5s f( s 5 s 2 5s s 2 (s 2(s 3 + (s 2 + (s 2(s 3 + (s 2(s 3 ( 2 = f ( s 2 + ( 3 + f( s 3 s s 3 ( s + 6 s 2 4 s 2 + ( s s 3 s s 2 + s 3 ( + s 2 s 3 + (s 3 ( 2 = f ( s 2 + ( 3 + f( s 3 s s s + 6 s s s 3 + (s 3 + s + 2 s 2 + Laplace f(x = f ( ( e 3x e 2x + f( ( 3e 2x 2e 3x x + 2 e2x 7 9 e3x + xe 3x + (cos x + sin x. C. (Mathematica Mathematica Apart[] 2

21 solution=solve[(s^2-5s+6y==/s^2+/(s^2++/(s-3,y] Ly= y /. solution[[,]] Ly=Apart[Ly] Mathematica Laplace InverseLaplaceTransform[] InverseLaplaceTransform[Ly,s,x] e2x 7 9 e3x + x 6 + xe3x + (cos x + sin x ( C.2 ω R L [ e iωx] (s = s iω = C.3 L[cos ωx](s = f(x = sin ωx C.4 s + iω (s iω(s + iω = s s 2 + ω + i ω 2 s 2 + ω. 2 s s 2 + ω, L[sin ωx](s = ω 2 s 2 + ω. 2 L[f ](s = s 2 L[f](s sf( f ( ω 2 L[sin ωx](s = s 2 L[sin ωx](s s ω. (s 2 + ω 2 L[sin ωx](s = ω. L[sin ωx](s = L[f](s = f s 2 + 2s = s(s + 2 = 2 ω s 2 + ω 2. s 2 + 2s ( s s + 2 f(x = 2 ( e 2x. [ L s 2 + 2s [ ] L (x = e 2x, s + 2 ] (x = L [ s [ ] L f(t dt (s = s L[f](s ] (x = s e 2t dt = 2 ( e 2x.

22 C.5 n f n f(x = L [ s n ] (x = L [ s xn f (x f n (x = (n!. C.6 f L[f n ](s = s n ] (x = s n 2 L[f](s = ( d = ds s 2 + ω 2 s (s 2 + ω 2 2 [ ] L (t dt = x n 2s (s 2 + ω 2 2 s = ( d (s 2 + ω ds s 2 + ω 2 = d L [cos ωx] (s 2ω ds = 2ω ( d ω ds s 2 + ω 2 = [ x cos ωx 2ω L [ x cos ωx] (s = L 2ω ] (s. f n (t dt. C.7 [ ] sin ωx L (s = x = s π/2 f(x = L [sin ωx] (t dt = Arctan(s/ω x cos ωx. 2ω s ω t 2 + ω 2 dt ω ω 2 ( + tan 2 θ ω2 + ω 2 tan 2 θ dθ = π ( s ω 2 Arctan ω. C.8 L[f](s = log ( + ω2 f L [ xf(x] (s = d ( ds log + ω2 = 2ω2 s 3 s 2 + ω 2 /s = 2ω2 2 s(s 2 + ω 2 = s ( 2ω ω s 2 + ω = L [ 2ω sin ωx] (s [ 2 s x ] = L 2ω sin ωt dt (s = L [2 [cos ωt] x ] (s = L [2(cos ωx ]. s 2 22

23 xf(x = 2(cos ωx. f(x = 2( cos ωx. x C. H Heaviside { (x H(x = (x < L [H(x af(x a] = e as L[f](s. C.9 L [H(x af(x a] = = f e sx H(x af(x a dx = a e sx f(x a dx e as sy f(y dy = e as e st f(y dy = e as L[f](s. L[f](s = e as s 2 C.3 s C e s x f(x dx Lebesgue s Re s Re s e sx f(x dx ( s Re s inf σ (σ = Re s > σ =, Re s < σ =. σ ( (abscissa of convergence 23

24 Laplace ( M R ( α R ( x R f(x Me αx 8 s > α Laplace C.4 Fourier, Laplace f Fourier g Fourier Laplace F[f](y = e ix y f(x dx, F [g](x = e ix y g(y dy 2π L[f](s = e sx f(x dx F[f](y = L[f](iy (Re s > a, y = iξ iy = ξ L[f](ξ = F[f]( iξ. Laplace Fourier Fourier f(x = F [Ff] (x = 2π = e xz L[f](z dz 2πi C e ix y F[f](y dy C z = a + it ( < t <. [2] ( C.2 ( Laplace ( P (x n a,, a n [ ] L P (s (x = (s a (s a n n k= P (a k e a kx j k (a k a j. (2 P (x n a C [ ] P (s L (x = (s a n n k= P (n k (ax k e ax (n k!(k!. 8 Laplace 24

25 C.5 Laplace Schwartz [8] Yosida [3] L 2 Laplace C.3 f L 2 (, Laplace g(z := e zt f(t dt Hardy-Lebesgue H 2 ( (i g {z C; Re z > } (ii x > y g(x + iy L 2 (R g(x + iy 2 dy <. sup x> R C.4 (Paley-Wiener g H 2 ( g y g(iy L 2 (R : lim g(x + iy g(iy x R 2 dy = ( L 2. f(t := N 2π l.i.m. g(iye ity dy N N f (, f Laplace g Payley-Wiener Yosida [3] Laplace Schwartz [9] Schwartz [7] Laplace [9] [8] ([33] I 4 C.6 ( Banach X C {U(t} t Ax = lim (U(h Ix h + h X A A D(A X 25

26 A M R β > ( λ C; Re λ > β n N (λ A n M(Re λ β n {U(t} Laplace A : (λ A x = e st U(tx dt (x X, Re λ > β. s a = L [ e at] (s U(tx = lim T c+it c it e λt (λ A x dλ (c > β, t >, x D(A ({U(t} x X t A L(X (X U(t = e ta def. = U(tx = lim n e ta n x, n= U(tx = lim n A n = A t n n! An ( ( + t n A n x, ( + n A (. C.7 f(x L[f](s s s > x n n! s n+ s > e αx s α s > Re α cos ωx s s 2 + ω 2 s > sin ωx ω s 2 + ω 2 s > cosh ωx s s 2 ω 2 s > ω sinh ωx ω s 2 ω 2 s > ω 26

27 ϕ(s := L[f](s Laplace f(x ϕ(s x n f(x ( n ϕ(s x f(x ϕ(t dt s e ax f(x ϕ(s a f (x sϕ(s f( f(t dt s ϕ(s f(x ah(x a f(ax (a > e as ϕ(s ( s a ϕ a D ( a j (j =, 2,, n I f : I C y = y(x y (n + a y (n + + a n y + a n y = f(x p(x = x n + a x n + + a n x + a n, D = d dx p(dy = f(x 27

28 D. ( f(x = n j= a jx j f(dy := n a j y (j j= (f(d + g(dy = f(dy + g(dy, (f(dg(d y = f(d (g(dy (f + g(x (f g(x ( f(d + g(d := (f + g(d, f(d g(d := (f g(d ( X, Y C T : X Y { T (x + y = T (x + T (y (x, y X, T (λx = λt (x (λ C, x X T x T (x T x ( L(X, Y := {T ; T : X Y }. L(X, Y C { (T + Sx := T x + Sx (T, S L(X, Y, x X, (λt x := λ(t x (T L(X, Y, λ C, x X, L(X, Y T x = (x X T : X Y T X = Y L(X, Y L(X L(X : T, S L(X ST L(X (ST x := S(T x (x X 28

29 S T (RST = R(ST L(X C (algebra id X : X x x X I λ C T λ x := λx (x X T λ L(X T λ λ ( C L(X X id X L(X T L(X, n N {} T n T n T} T {{ T} (n T n := n (n = T n+m = T n T m, (T n m = T nm (n, m T : T n T m = T m T n. T T n T n := ( T n (n Z, n < T n n T n T n+m = T n T m, (T n m = T nm (n, m Z n T L(X, f(x = a j x j C[x] j= f(t = n a j T j j= f(t L(X f(t y = n a j (T j y. j= 29

30 X X n C n C X X X D(T X T : D(T X L(X (L(X T T D(T T + S, λt, ST (T + S(x = T x + Sx (x D(T D(S (λt (x = λ(t x (x D(T (ST (x = S(T x (x {y D(T ; T y D(S} T L(X R(T := {T x; x D(T } T T L(X S : R(T y x X ( T x = y x T T D.2 D I R X = C (I; C D. ( D D L(X Dy = y (y (C X m := C m (I; C, X := X D D(D X D.2 ( f X T f y := fy ( T f L(X f ( α e αx 3

31 D. f(x C[x], α C f(de αx = f(αe αx. D k e αx = α k e αx (k =,, 2, ( ( D.2 ( u X, α, β C (, (, (2 ( D(e αx u = e αx (D + αu. ( m N e αx (D α m (e αx u = D m u. (2 m N e αx (D β m (e αx u = (D + α β m u. ( D(e αx u = αe αx u + e αx Du = e αx (D + αu. ( ( e αx D (e αx u = (D + αu. e αx αe αx u = αu e αx (D αe αx u = Du. m [ e αx (D αe αx] m u = D m u. e αx (D α m e αx u (Cf. (P AP m = P A m P (2 m = e αx (D β(e αx u = e αx [(D α + (α β] e αx u = e αx (D αe αx u + (α βu = Du + (α β = [D + (α β] u. (Cf. P (λi AP = λi P AP. ( m 3

32 D.3 D.3. D.3 ( f, g C([, ; C f g (, convolution f g f g(x = f(x yg(y dy (x [,. ( f +g h = f +(g h D.3 ( ( ( f (g h = (f g h. (2 ( f g = g f. (3 ( f (g + g 2 = f g + f g 2, f (cg = c(f g. (4 ( (f + g h = f h + g h. (5 ( a f g = f = g =. ( a E.C.Titchmarsh Injectivity (926 (5 [3] ( f, g f g( = d x df f(x, t dt = f(x, x + (x, t dt dx a a dx D. ( f C r (I; C, g C r (I; C f g C r (I; C r (f g (r (x = f (j (g (r j (x + f (r (x yg(y dy. j= 32

33 (f g (x = f(g(x + (f g (x = f(g (x + f (g(x + f (x yg(y dy, f (x yg(y dy, (f g (3 (x = f(g (x + f (g (x + f (g(x + f (3 (x yg(y dy, D. f C k ([, ; C, g C k ([, ; C, f( = f ( = = f (k ( = (f g (r ( = (R =,,, k. x = D.4 g, g 2,, g m C([, ; C f = g g 2 g m f( = f ( = = f (m 2 ( =. m m = 2 g g 2 ( =. m f = g g m h = g g m f = h g m. h( = h ( = = h (m 3 ( =. D. f( = f ( = f (m 2 ( =. D.3.2 e m,α e m (x = xm (m! (m =, 2, e m(x = e m (x = e m l e (l m D.4 (e m,α α C, m Z x m (3 e m,α (x := (m! eαx (m (m e m,α 33

34 e m, (x = x m /(m!, e,α (x = e αx D.5 (e m,α (D α α C, m N (D α l e m,α (x = e m l,α (x (l N. e m,α(x = xm 2 (m 2! eαx + xm (m! αeαx = e m,α (x + αe m,α (x. (D αe m,α (x = e m,α (x. D.2 P = (e,α, e 2,α,, e m,α, D.6 u(x = J = (D αp = P J. m c j e j,α (x j= D.5 c j = (D α j u( (D α l u(x = e k,α ( = { (j =, 2,, m. m c j e j l+,α (x j=l (k = (k x = D.4 (D α m u = f D.2 34

35 D.7 ((D α m u = α C, m N, I R u C m (I; C (i (D α m u =. (ii (c,, c m C m s.t. u(x = m c j x j e αx. j= u = e αx v v := e αx u (D α m u = e αx (D α m u = e αx (D α m e αx v = D m v = (ii (c,, c m C m s.t. v = m c j x j j= m (c,, c m C m s.t. u = e αx c j x j. u(x = m c j e j,α (x D.6 j= c j = (D α j u( I ( D.8 ((D α m u = f α C, m N, I R f C(I; C u(x := e m,α f(x = j= (x y m e α(x y f(y dy (m! (D α m u = f, u( = u ( = = u (m ( = ( v = e αx u (D α m u = f e αx (D α m e αx v = e αx f(x D m v = e αx f(x, 35

36 u( = u ( = u (m ( = v( = v ( = v (m ( = e αx f(x m v v(x = m e αy f(y dydx dx m. F (x = e αx f(x v m F : v(x = } {{ } F (x. m v(x = xm (m! F (x = } {{ } (x = m u = e αx v u(x = xm (m! (x y m F (y dy = (m! (x y m e α(x y f(y dy. (m! (x y m e αy f(y dy. (m! ( D. ((D α m u = f I, f X = C(I; C, α C, m N u (D α m u = f (I u(x = m c j e j,α (x + e m,α f(x = j= m j= c j x j (j! eαx + (x y m e α(x y f(y dy. (m! c j = (D α j u( (j =, 2,, m. D.5 p(du = f p(x C[x] p(du = f p(x r (4 p(x = (x λ j m j (λ j, a C; j k = λ j λ k, m j j= 36

37 D.2 (e k,λj p(dy = p(x (4 (5 e k,λj (x = xk (k! eλ jx (j =, 2,, r; k =, 2,, m j p(dy = c jk y = m r j c jk e k,λj (x j= k= p(dy = j {, 2,, r} ( [ ] p(d = (D λ j m j e k,λj (k =, 2,, m j j j (D λ j mj (D λ j m j y = p(dy = D.3 (5 {e k,αj } (6 m r j c jk e k,λj (x = (x I j= k= c jk = J {, 2,, r} c Jk = (k =, 2,, m J [ ] T l := (D λ j m j (D λ J l (l =,,, m J j J (D λ J m J e k,λj (x = e k mj +,λ J (x = { e,λj (x = e λ J x (k = m J (k < m J 37

38 (6 T mj ( r m j = T mj c jk e k,λj (x = j= k= [ ] ( m j m J (D λ j m j (D λ J m J c jk e k,λj (x + c Jk e k,λj (x j J [ ] = + (D λ j m j c J,mJ e λ J x j J = j J(λ J λ j m j c J,mJ e λ J x. j J k= k= c J,mJ =. (6 j J (D λ j m j ( D.2 ( p(dy = ( p(x (4 p(dy =, D = d dx C (I; C n e k,λj (x = xk (k! eλ jx (j =, 2,, r; k =, 2,, m j y = m r j c jk e k,λj (x j= k= (c jk p(dy = D.9 ( p(dy = f p(x (4 R I f C(I; C u(x := e mr,λ r e mr,λ r e m2,λ 2 e m,λ f(x p(du = f, u( = u ( = u ( = = u (n ( = y = e m,λ f 38

39 (D λ m y = f. y 2 = e m2,λ 2 y = e m2,λ 2 e m,λ f (D λ 2 m 2 y 2 = y, (D λ m (D λ 2 m 2 y 2 = y, y j = e mj,λ j y j = e mj,λ j e m2,λ 2 e m,λ f (D λ j m j y mj = y mj, (D λ m (D λ 2 m2 (D λ j m j y j = f, y r = e mr,λ r e m2,λ 2 e m,λ f p(dy r = (D λ m (D λ 2 m2 (D λ r mr y r = f G(x := e mr,λ r e mr,λ r e m2,λ 2 e m,λ (x u(x = G f(x = G(x yf(y dy G Green Green n = 2 e αx e βx (7 e αx e βx (α β = α β xe αx (α = β. β α e αx e βx e αx e αx } e αx e αx {{ e αx } = xm (m! eαx = e m,α (x m ( G λ e λx 39

40 α j (j =, 2,, n n e αx e αnx e α jx = (α j α k. j= k j (7 α β Laplace L [e α x e αnx ] (s = n L [e αjx ] (s = j= n j= s α j. n n A j = s α j s α j j= = j= n A j (s α k s = α l [ = A l (α l α k A l = (α l α k ]. k l j= k j e α x e αnx = k l n A j e αjx. j= (Laplace Green Green p(s = r (s α j m j j= ( Heaviside Green [2] 9 9 ( [5] Green ( Green [], [2] ( [3] u = G f [] [2] ( Green Green ( 4

41 D. (Green n p(d (p(x C[x] p(dg(x =, G( = G ( = = G (n 2 ( =, G (n ( = G f C([, ; C u := G f p(du = f, u( = u ( = = u (n ( = G u(x = u (x = G(f(x + G(x yf(y dy G (x yf(y dy, u (x = G(f (x + G (f(x +. u (r (x =.. r G (j (f r j (x + j=. G (x yf(y dy, G (r (x yf(y dy, u (n (x = G(f (n 2 (x + + G (n 2 (f(x + u (n (x = G(f (n (x + + G (n (f(x + G (n (x yf(y dy, G (n (x yf(y dy. u ( = u ( = = u (n ( = G( = G ( = = G n 2 ( =. p(du = G (n (f(x + p(dg(x yf(y dy. G p(dg(x =, G (n ( = p(du = f. f p(du = f G (n ( =, p(dg(x = Green Titchmarsh injectivity theorem 4

42 D.5. 2 [2] y + py + qy = f(x, y( = y ( = Green G = G(x y y(x = G(x yf(y dy Duhamel α, β (8 G(x = eαx e βx α β α, β = a ± ib (a, b R, b ax sin bx G(x = e b α (9 G(x = xe αx = xe px/2 e αx e βx lim β α α β ( D. λ 2 + pλ + q = 2 α, β u(x := G(x yf(y dy, G(x := eαx e βx α β u u + pu + qu = f(x, u( = u ( = u( = G( = u (x = G(x xf(x + G (x yf(y dy = G (x yf(y dy J.M.C.Duhamel ( , 834 Duhamel 42

43 u ( =. G ( = u (x = G (x xf(x + G (x yf(y dy = f(x + G + pg + qg = u + pu + q = f(x + G (x yf(y dy. [G (x y + pg (x y + qg(x y] f(y dy = f(x D.2 λ 2 + pλ + q = α u(x := G(x yf(y dy, G(x := xe αx u u + pu + qu = f(x, u( = u ( = (xe αx G (9, (8 u(x = G(x yf(y dy G u( = u (x = G(f(x + G (x yf(y dy u ( = G(f(. f u ( = (2 G( = u (x = G (f(x + = u (x + pu (x + qu(x = G (f(x + G (x yf(y dy [G (x y + pg (x y + qg(x y] f(y dy. f (2 G ( =, G + pg + qg = 43

44 (2, (2 G C, C 2 { C e αx + C 2 e βx ( 2 α, β G(x = (C + C 2 xe αx ( α. u( = u ( = C, C 2 (8, (9 D.6 TO DO LIST [4] E 2 (? (22 y + py + qy = f(x. (23 y + py + qy =. E. E. ( 2 ( λ 2 + pλ + q = 2 α, β (24 y = Ae αx + Be βx (A, B (23 (a A, B (24 y (23 (b (23 A, B y = Ae αx + Be βx 44

45 E.2 ( 2 (2 λ 2 + pλ + q = α (25 y = Ae αx + Bxe βx (A, B (23 (a (25 y (23 (b (23 A, B y = Ae αx + Bxe βx 2 2 ( E.2 ( E.2. y + ω 2 y = (ω y y y + ω 2 yy =. ( 2 (y ω2 y 2 = C s.t. 2 (y ω2 y 2 = 2 ω2 C 2. y = ± ω 2 C 2 ω 2 y 2 = ±ω C 2 y 2. dy C2 y = ±ω dx. 2 45

46 Arcsin y C = ±ωx + C (C. y C = ± sin(ωx + C. y = A cos ωx + B sin ωx (A, B y y ω 2 y = y = A cosh ωx + B sinh ωx (A, B y = y = Ax + B (A, B. E.2.2 E. D = d/dx α C, m N (26 (D αy = e αx D(e αx, (27 (D α m y = e αx D m (e αx. E. y = e px/2 z y = e px/2 z y + py + qy = z + y = p 2 e px/2 + e px/2 z, y = p ( p 2 2 e px/2 z + e px/2 z + (q p2 z =. 4 ( p ( p 2 z + z e px/2 2 = 4 z pz + z e px/2 46

47 y + py + qy = ( p 2 4 z pz + z e px/2 + ] (q p2 z. 4 = e px/2 [z + 2 E. y + py + qy = D 2 y + pdy + qy = = e px/2 D 2 (e px/2 y + e px/2 (e px/2 y ( p2 2 z + pz e px/2 + qe px/2 z ( D + p 2 y + (q p2 y 2 4 y + py + qy = e px/2 D 2 (e px/2 y + e px/2 (e px/2 y =. D 2 (e px/2 y + (e px/2 y =. y + py + qy = y = e px/2 z z z + (q p2 z = 4 (i q p 2 /4 > ω = q p2 4 z + ω 2 z = z = A cos ωx + B sin ωx (A, B. (28 y = e px/2 (A cos ωx + B sin ωx (A, B. (ii q p 2 /4 = z = Ax + B z = (A, B. (29 y = e px/2 (Ax + B (A, B. 47

48 (iii q p 2 /4 < p 2 ω = 4 q z ω 2 z = z = A cosh ωx + B sinh ωx (A, B. (3 y = e px/2 (A cosh ωx + B sinh ωx (A, B. E.3 ( E.2 ( y = ay + f(x, y(x = y y = y e a(x x + x e a(x y f(y dy. y + py + qy =, y(x = y, y (x = y λ 2 + pλ + q = 2 α, β v := (D βy (D α [(D βy] =. (D αv = i.e. v = αv, v(x = y (x βy(x = y βy. (3 v(x = (y βy e α(x x. y (D βy = v i.e. y = βy, y(x = y y(x = y e β(x x + 48 x e β(x y v(y dy.

49 (3 y(x = y e β(x x + α = β x e β(x y (y βy e α(y x dy = y e β(x x + (y βy e βx αx x e (α βy dy. (x x (α = β e (α βy dy = x e e (α βx α β (α β. y = y e α(x x + (y αy e αx αx (x x = e α(x x [y + (y αy (x x ], α β y(x = y e β(x x + (y βy e βx αx e(α βx e (α βx α β = y e β(x x + y βy [ e α(x x e ] β(x x α β = y βy α β eα(x x + y αy β α eβ(x x. E.3 p, q, y, y C, x R y + py + qy =, y(x = y, y (x = y α, β : e α(x x [y + (y αy (x x ] (α = β y = y βy α β eα(x x + y αy β α eβ(x x (α β. E.4 y ω 2 y = y = y + ω 2 y = E.4. y + py + qy = 49

50 y + ω 2 y =, y =, y ω 2 y = y(x = y, y (x = y ( y = y = y E.4.2 y + ω 2 y = E(x E(x := 2 [(y 2 + ω 2 y 2 ] E (x = y y + ω 2 yy = y [ y + ω 2 y ] = y = x y = y = E(x E(x = [ (y 2 + ω 2 (y 2] = 2 y y. E.4.3 y = y = y (x x + y E.4.4 y ω 2 y = ( 5

51 E.5 E.3 (32 y + py + qy = λ 2 + pλ + q = 2 α, β ( α β e αx, e βx (32 (2 α = β e αx, xe αx (32 ( E.4 y + py + qy =, y(x = y, y (x = y u := y, u 2 := y, u := (u, u 2 T ( ( d dx u = u = u 2 y y u(x = = ( ( y py qy u (x u 2 (x = ( = ( y(x y (x u 2 pu 2 qu = ( y y = ( q p u, A := ( q p u, u := ( y y d dx u = A u, u(x = u. u(x = u + x A u(y dy u = u(x, v = v(x u(x v(x = x A ( u(y v(y dy, u(x v(x = w(x := u(x v(x w(x = A w(y dy, w(x =. x 5

52 x I n N M := max w(x x I w(x A M x x n n n! w(x = (x I. I w. u = v. E.6 ( E.5 E.6 E.7 f(de λt = f(λe λt (f + g(d = f(d + g(d, (f g(d = f(dg(d. D j (e λx u = e λx (D + λ j u f(d ( e λx u(x = e λx f(d + λu(x. e λx f(de λx = f(d + λ. α β e αx e βx C e αx + C 2 e βx = D α C 2 (β αe βx =. C 2 =. C = C = C 2 = α = β e αx xe αx C e αx + C 2 xe αx = D α C 2 (β αe βx =. C 2 =. C = C = C 2 = 52

53 E.7 n F 24 IV ( F ( 27 2 ( x 3 y + y 2 = (2 y = 3y 2/3 (3 y = y (4 x 2 y + y 2 = (5 y 3 + x 6 y = (6 y xy = x 2 y (7 y + ay 2 = (8 sin x sin 2 y y cos x = (9 ( + xy + ( yxy = ( y tan x = cot y ( ( + x 3 y + x 2 y 2 = (2 y = a(b 2 y 2 (3 y = cos2 y + x (4 2 y = + sin x (5 y = xy sec 2 x x 2 (6 x( + y2 y = y( + x 2 (7 yy = x(y + (8 xy y 2 + = (9 y = e 2(x+y (2 y = e (x+y (2 y = y (22 y = x y (23 y = x (24 y = y (25 y = y2 x (26 2 y = y2 x (27 3 y = x + y 2 y + x 2 ( dy y = dx 2 x 3 y = 2 x 2 + C = 2Cx2. 2x 2 y x 2 y = Cx 2 /2. (2 y 2/3 dy = 3dx y x 3 3y /3 = 3x + 3C y /3 = x + C y = (x + C 3. (3 (y /2 dy = dx 2 [ ] [2] 53

54 2(y /2 = x + C. y (4 y (5 y = + (x + C2. 4 dy y 2 = x 2 dx y = x + C = Cx x y = x Cx. y 3 dy = x 6 dx y 2 y 2 = 5 x 5 + C y = ( 2 C. 5x 5 p.2 y 2 = 5x2 Cx 5 2 y 2 = 5x5 Cx 5 2 (6 dy/dx log y = dx x(x + = y = (x + x 2 dy dx dy y = dx x + x 2 ( x dx = log x log x + + log C = log C x + y = C x x +. x x + 54

55 (8 y dy sin 2 y = tan x dx cot y = log cos x log C y = Arccot (log C cos x (9 ( ( dy = + dx y x y log y = x + log x + C. F (y = y log y F < y < y > ( tan y dy = cot x dx log cos y = log sin x + log C = C sin x cos y cos y = C sin x ( C y = Arccos. sin x F.2 a, b, c, d ( y + ay = (2 y + ay = b (3 y + y cot x = cosec x ( < x < π/2 (4 y + 2xy = x (5 y y tan x = sin x ( π/2 < x < π/2 (6 y 2xy = e x2 (7 xy + y = x log x (x > (8 y + ay = e bx (9 y + a x y = ( y xy = x ( y + x y = x2 (x > (2 xy + y = 4x( + x 2 (3 xy (y + x 2 sin 2 x = (4 y + y cos x = sin xe sin x (5 x( x 2 y + (x 2 y = x 3 ( < x < (6 y ay = sin x (7 ( + x 2 y = xy + x 2 (8 y + ( + x 2 y = e x3 /3 (9 y + ay = bx 2 + cx + d (2 xy + ( + xy = e x ( y = Ce ax (2 y = ay + b y = ay y = Ce ax (C y = c(xe ax y = c (x e ax + c(x e ax ( a = ay + c (xe ax. c (xe ax = b. 55

56 c (x = be ax c(x = a b eax + C (C. y = c(xe ax = Ce ax + a b. (3 y = (cot xy + sin x y = (cot xy dy y = ( cot x dx = log sin x + log C = log sin x + log C = log C sin x y = ± C sin x = C sin x y = c(x sin x y = c (x cos x + c(x sin x sin 2 x = (C. y sin x + c (x sin x. c (x sin x = sin x. c (x =. c(x = x + C (C. y = c(x sin x = x + C sin x. (4 y = 2xy + x y = 2xy dy y = ( 2x dx = x 2 + C (C y = ±e C e x2 = C e x2 (C. y = c(xe x2 y = c (x e x2 + c(x e x2 ( 2x = 2xy + c (xe x2. c (x = xe x2. c (xe x2 = x. c(x = ex2 2 + C (C. ( y = c(xe x2 = 2 ex2 + C e x2 = C e x

57 (5 y = 2xy + e x2 y = 2xy dy y = 2x dx = x 2 + C (C. y = ±e C e x2 = C e x2 (C. y = c(xe x2 y = c (x e x2 + c(x e x2 (2x = 2xy + c (xe x2. c (xe x2 = e x2. c (x =. c(x = x + C (C. y = c(xe x2 = (x + C e x2. (6 y = 2xy + e x2 y = 2xy dy y = 2x dx = x 2 + C (C. y = c(xe x2 y = ±e C e x2 = C e x2 (C. y = c (x e x2 + c(x e x2 (2x = 2xy + c (xe x2. c (xe x2 = e x2. c (x =. c(x = x + C (C. (7 y = y x y = c(xe x2 = (x + C e x2. + log x y = y x dy dx y = x = log x + log C = log C x (C. y = ± C x = C x y = c(x/x y = c (x x + c(x 57 (C. ( x 2 = y x + c (x x.

58 c (x x = log x. c (x = x log x. ( x 2 c(x = x log x dx = log x dx = x2 log x x y = c(x x = x log x 2 x 4 + C x. x dx = x2 log x 2 x2 4 +C (C (8 y = ay + e bx y = ay y = Ce ax (C y = c(xe ax y = c (x e ax + c(x e ax ( a = ay + c (xe ax. c (xe ax = e bx. (9 c (x = e (a+bx. c(x = e(a+bx a + b + C (C. y = c(xe ax = ebx a + b + C e ax. ( ( y = y x + ( x2 y = y/x ( dy y = Dx = log x + log C = log C x x y = ± C x = C x y = c(x/x y = c (x x + c(x (C. ( x 2 = y x + c (x x. (C c (x = x x 3. c(x = x2 y = c(x x c (x x = x2. 2 x4 + 4 C (C. = x 2 x3 4 + C x. 58

59 (2 (3 (4 y = y cos x sin xe sin x y = y cos x dy y = ( cos x Dx = sin x + C (C y = ±e C e sin x = C e sin x (C. y = c(xe sin x y = c (x e sin x + c(x e sin x ( cos x = (cos xy + c (xe sin x. c (xe sin x = sin xe sin x. c (x = sin x. c(x = cos x + C (C. y = c(xe sin x = C e sin x + e sin x cos x. (5 (6 (7 y /y = x/ + x 2 dy y = x dx = + x 2 + C (C. + x 2 y = ±e C exp + x 2 = C exp + x 2 (C. (8 (9 (2 y = + x x y + ex x y = ( + xy/x ( dy y = + Dx x log y = (x + log x + log C = log y = ± C xe x = C xe x C x e x (C. (C. 59

60 y = c(x xe x y = c (x + x + c(x = xex x y + c (x xe. x c (x xe x = ex x. c (x = e 2x. c(x = 2 e2x + C (C. y = c(x xe x = C xe x + ex 2x. F.3 2 ( y 6y + 8y = e x. L[y] = y 6y + 8y L[z] = λ 2 6λ + 8 = λ = 2, 4 z = Ae 2x + Be 4x (A, B. L[y] = e x u u = Ce x (C L[u] = L[Ce x ] = (C 6C + 8Ce x = 3Ce x u 3C = C = 3. L[y] = ex y = u + z = 3 ex + Ae 2x + Be 4x. (2 y 3y + 2y = sin x. L[y] = y 3y + 2y L[z] = λ 2 3λ+2 = λ =, 2 z = Ae x +Be 2x (A, B. L[y] = sin x u u = k cos x + l sin x (k, l L[u] = L[k cos x+l sin x] = ( k cos x l sin x 3( k sin x+l cos x+2(k cos x+l sin x = (k 3l cos x + (3k + l sin x u k 3l =, 3k + l =. k = 3, l =. u = 3 cos x + y = u + z = 3 cos x + sin x + Aex + Be 2x. sin x. L[y] = sin x (3 y a 2 y = xe ax. L[y] = y a 2 y L[z] = λ 2 a 2 = λ = ±a. a a =. (i a 2 z = Ae ax + Be ax (A, B. L[y] = xe ax u = (px 2 + qxe ax 3 L[u] = L[(px 2 + qxe ax ] = ( = [4apx + 2(aq + p] e ax. xe ax 4ap =, aq + p =. 3 a e ax u = pe ax x u = (px + qe ax a x u = (px 2 + qxe ax 6

61 p = y = u + z = 4a, q = ( 4a. u = 2 4a x2 4a x ( 2 4a x2 4a x e ax + Ae ax + Be ax. 2 e ax. L[y] = xe ax (ii a = ±a = ( z = Ae x + Bxe x = A + Bx (A, B. a = L[y] = xe ax y = x u = x3 6 L[y] = xe ax y = u+z = x3 6 +A+Bx. (4 y + 2y + y = e x. L[y] = y + 2y + y L[z] = λ 2 + 2λ + = λ = ( z = Ae x + Bxe x (A, B. L[y] = e x u u = kx 2 e x (k 4 L[u] = L[kx 2 e x ] = ( = 2ke x u 2k = k = 2. y = u + z = 2 x2 e x + Ae x + Bxe x. u = 2 x2 e x. L[y] = e x (5 y +2y +y = x 2. L[y] = y +2y +y ( L[z] = z = Ae x +Bxe x (A, B. L[y] = x 2 u u = px 2 +qx+r (p, q, r 5 L[u] = L[px 2 +qx+r] = ( = px 2 + (4p + qx + (2p + 2q + r u 2k = k = 2. u = 2 x2 e x. L[y] = e x y = u + z = 2 x2 e x + Ae x + Bxe x. (6 y 6y + 9y = x + e x. L[y] = y 6y + 9y L[z] = λ 2 6λ + 9 = λ = 3 ( z = Ae 3x + Bxe 3x (A, B. L[y] = x u u = px + q (p, q L[u] = L[px + q] = ( = 9px + (9q 6p u 9p =, 9q 6p =. p = /9, q = 2/27. u = 9 x L[y] = e x v u = ke x (k L[u] = L[ke x ] = ( = 4ke x u 4k = k = 4. u = 4 ex. L[y] = x + e x y = u + v + z = 9 x ex + Ae x + Bxe x. (7 y 6y + 9y = cos x. L[y] = y 6y + 9y L[z] = λ 2 6λ + 9 = λ = 3 ( z = Ae 3x + Bxe 3x 4 u = ke x x

62 (A, B. L[y] = x u u = k cos x + l sin x (k, l L[u] = L[k cos x + l sin x] = ( = (8k 6l cos x + (8l 6k sin x u 8k 6l =, 6k + 8l =. k = 2 25, l = u = 2 25 x L[y] = cos x y = u + z = 2 25 x Ae3x + Bxe 3x. (8 y 2y = + x. L[y] = y 2y L[z] = λ 2 2λ = λ =, 2 z = Ae 2x + B (A, B. L[y] = x u u = (kx + lx (k, l 6 L[u] = L[kx 2 + lx] = ( = 2kx + (2k l u 2k =, 2k l =. k =, l = 2. 2 u = 2 x2 2x. L[y] = cos x y = u + z = 2 x2 2x + Ae 2x + B. G ( 23 II [23] [8] ( G. Newton Newton (Isaac Newton, ( ( 7 (, 687 Kepler 8 6 u = kx + l x u = (kx + lx 7 [3] 8 Yohannes Kepler (57 63 Ticho Brahe (546 6 Brahe Kepler

63 9 ( 2 Gamov [5], [], Arnold [] [5] Kepler [] [] Newton Leibniz [7] Newton 676 ( Leibniz (Gottfried Wilhelm Leibniz, aaaaaa cc d æ eeeeeeeeeeeeee ff iiiiiii lll nnnnnnnnn oooo qqqq rr ssss ttttttttt vvvvvvvvvvvv x Data æqvatione qvotcvnqve flventes qvantitates involvente flvxiones invenire, et vice versa. Newton (? ( H Mathematica, Maple Mathematica DSolve H. ( x 3 y + y 2 = 9 (Kepler Kepler 63

64 DSolve[x^3 y [x]+y[x]^2==,y,x] 2 2 # Out[3]= {{y -> ( & }} # C[] y = 2x2 cx 2 (2, y = 3y 2/3 DSolve[y [x]==3 (y[x]^(2/3,y,x] Out[4]= {{y -> (# - 3 # C[] + 3 # C[] - C[] & }} y = x 3 3Cx 2 + 3C 2 x C 3 = (x C 3 (3, y = y DSolve[y [x]==sqrt[y[x]-],y] # - 2 # C[] + C[] Out[5]= {{y -> ( & }} 4 y = 4 + x2 2Cx + C 2 4 = (x C = + (x C2 4 (4 x 2 y + y 2 = 64

65 DSolve[x^2 y [x]+y[x]^2==,y,x] # Out[6]= {{y -> ( & }} - + # C[] y = x Cx (6 y xy = x 2 y DSolve[y[x]-x y [x]==x^2 y [x],y,x] Log[#] - Log[ + #] Out[7]= {{y -> (E C[] & }} y = Ce log x log(+x = Cx x + (9 ( + xy + ( yxy = DSolve[(+xy[x]+(-y[x]x y [x]==,y,x] InverseFunction::ifun: Inverse functions are being used. Values may be lost for multivalued inverses. Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found. -# - C[] E Out[8]= {{y -> (-ProductLog[-( ] & }} # y log y = x + log x + C (C 65

66 y ( y tan x = cot y DSolve[y [x]tan[x]==cot[y[x]],y,x] y = Arccos C sin x (C I Kepler ( [2] ( [4] [3] J,, (. K Lipschitz Picard Picard Lindölef Cauchy K. K. dy dx = f(x, y y(x = y (x I, y = ϕ (x (x x x, y = ϕ 2 (x (x x x 2 ϕ (x = ϕ 2 (x (x x x := min{x, x 2 }. 66

67 ϕ, ϕ 2 ϕ j (x = y + x f(t, ϕ j (t dt (j =, 2 ϕ(x = ϕ (x ϕ 2 (x ϕ(x ϕ(x = x f(t, ϕ (t f(t, ϕ 2 (t dt M = max x [x,x ] ϕ(x ϕ(x LM(x x, ϕ(x L ϕ(x L x [f(t, ϕ (t f(t, ϕ 2 (t]. x L ϕ (t ϕ 2 (t dt = L LM(t x dt = L 2 M (x x 2, x 2 L 2 M (t x 2 dt = L 3 M (x x 3, x 2 3! x ϕ(t dt. ϕ(x M [L(x x ] n. n! ϕ(x M [L(x x ] n. n! ϕ. ϕ ϕ 2. K.2 ( Lipschitz dy dx = f(x, y (x I, y(x = y y = ϕ (x (x x x, y = ϕ 2 (x (x x x 2 ϕ (x = ϕ 2 (x (x x x + := min{x, x 2 }. x := sup E, E := {β [x, x + ]; x [x, β] ϕ (x = ϕ 2 (x} x E E x + E E sup E 67

68 : ϕ = ϕ 2 on [x, x] ϕ = ϕ 2 on [x, x x [x, x sup x (x, x E. ϕ = ϕ 2 on [x, x ] ϕ (x = ϕ 2 (x. ϕ (x = ϕ 2 (x x n x {x n } ϕ (x n = ϕ 2 (x n n ϕ, ϕ 2 ϕ (x = ϕ 2 (x. 2 x = x ϕ = ϕ 2 on [x, x ]. x E x sup E x. x < x y := ϕ (x = ϕ 2 (x ϕ, ϕ 2 dy dx = f(x, y (x (x, x, y(x = y < x x + s.t. ϕ = ϕ 2 on [x, x]. x < x, x E x = sup E L L. ( ( n sin n (2 cos n n 2 (3 (4 n= n= n n 2 π (5 ( n n n= n= n= n ( ( n 2 2n + x2n+ R x < R x n= f(x = n= ( n 2n + x2n+ ( R (2 f (x (3 f(x (4 lim f(x x R ( y, y dy dx, d2 y dx 2 3 ( y = xy (2 y = xy + x x = y = 68

69 4 (a y + 2y 3y =, (b y + 2y 3y = e x ( (a (2 (a y( =, y ( = 2 lim (3 (b x y 69

70 M 5 ( lim x sin x x (2 (3 = lim n n sin n = M. ( a n n lim a n =. lim a n = a n n n n n, n= n = =. n n= M.2 ( n a n b n b n a n n n a n b n n n : a n b n a n b n n n <, = a { a x α dx = (α > α (α cos n n 2 n 2, n= n 2 cos n n 2 M.3 a n ( a n a n n n n n 7

71 M.4 ( n a n b n b n n a n ( a n n M.5 ( α n= n α = { (α > (α. : n n 2 n= (4 a n = n2 π n n a n+ a n ( (n + 2 n 2 = π n+ π = + 2 n n π π < an a n+ M.6 (d Alembert (ratio test lim n a n a n n r < = ( r > =. n n= = r r = ( ( r n n= r < r (5 a n = ( n n n a n = n a n an 7

72 M.7 ( (Leibniz a n a a 2 a 3 (n a n n 2 ( ( ( x ( n ( ( x 2 n 2n + n= ( n ( 2n + y2 R a n+ lim n a n n= 2n + = lim n 2(n + + R =. a n = ( n 2n + 2n = lim n 2n + 3 = lim n n n = 2 2 = = R y < = (, y > = (. x < y <, x > y > R =. x < = (, x > = (. (2 ( x < R = f ( n (x = 2n + (2n + x2n = ( x 2 n. n= x 2 x < x 2 < f (x = ( x 2 = + x n=

73 (3 f( = f(x = f( + f (t dt = + (4 f(x = Arctan x x = + t dt = [Arctan 2 x]x = Arctan x. lim f(x = lim Arctan x = Arctan = π x R o x 4. 3 ( ( dy dx = xy log y = x2 2 dy y = x dx. + C (C. ( x 2 y = exp 2 + C = e C exp ( ( x y = ±e C 2 x exp = C 2 exp 2 2 ( x 2 (2 y = C(xe x2 /2 dy dx = C (xe x2 /2 + C(x 2. (C ( x 2 e x2 /2 = xc(xe x2 /2 + C (xe x2 /2 = xy + C (xe x2 /2. 2 C(x = C (xe x2 /2 = x. C (x = xe x2 /2. xe x2 /2 dx = e x2 /2 + C (C. y = C(xe x2 /2 = ( e x2 /2 + C e x2 /2 = + C e x2 /2. 73

74 4 ( λ 2 + 2λ 3 = λ =, 3. (a y = Ae x + Be 3x (A, B. (2 y( = A + B =, y ( = 2 A 3B = 2 A = 5/4, B = /4. y = 4 ex 5 4 e 3x. lim y =. x (3 e x ( ( n =, α =, m = u = px m e αx = pxe x u + 2u 3u = 4pe x. e x 4p =. p = /4. u = 4 xex (b y = Ae x + Be 3x + 4 xex (A, B. f(x y + py + qy = f(x. f(x = n e αx α m (m u(x = (n x m e αx L[u] = { } 2. f(x = (n e ax cos bx a + ib m (m sin bx u(x = n x m e ax (A cos bx + B sin bx M. ( ( cos n (2 n 4 3 (3 + sin n (4 ( n sin n n 2 n n= n= n= n= 74

75 2 n xn R x < R x n= f(x = n= n xn ( R (2 f (x (3 f(x (4 lim f(x x R+ ( y, y dy dx, d2 y dx 2 3 ( y = x y (2 y = x y + ex x = y = 4 (a y + y + y =, (b y + y + y = + x ( (a x y (2 (a y( =, y ( = (3 (b 75

76 23 IV ( lim cos n n = (2 a n = n4 3 n lim a n+ a n = lim n n (n n+ n 4 3 n ( (n + 4 = lim 3n n 3 n+ n = lim n n 3 = 3 = 3. an (3 + sin n n 2 + = 2 n 2 n 2 2 n + sin n 2 n 2 n= n= (4 < n n y = sin x x n sin n lim sin n n = < sin n ( (i, (ii sin n, (iii lim sin n n = 3 ( ( (2, (3 (4 ( 2 ( x n a n : a n = n. lim a n+ n a n = lim n n n + = lim n + n =. /R R =. (2 ( x < R = f (x = n nxn = x n = x n. n=, x = x < (3 f( = n= f (x = x. n n = n= f(x = f( + f (t dt = + n= x t dt = dt = log x = log( x. t 76

77 (4 lim f(x = lim ( log( x = log [ ( ] = log 2. x R+ x + ( a n x a n (2 ( (3 dt = log t ( t t dt = dt = log t t dy 3 ( y = x C dx log y = log x + log C = log x ( C. y = C x. (2 y = c(x x y = ±C x = C x y = c (x x c(x x 2 (C. = y x + c (x x. y y = y x + ex c (x x = ex. c (x = xe x c(x = xe x dx = xe x (x e x dx = xe x e x dx = xe x e x + C (C. y = c(x x = ex ex x + C x. x = y = y = e x ex x. = + C = + C = C C =. 77

78 ( log y = log x + C y = e log x +C = e C e log x = C log x e e log x (a x 2 a 2 x (a x 2 (2 4 ( λ 2 + λ + = λ = ± = ± 3 2 = ± 3i. 2 3x 3x y = Ae x/2 cos + Be x/2 sin 2 2 (A, B. cos, sin e x/2 (x lim y =. x (2 y( = = A + B = A. ( 3x y = e x/2 cos A ( 3B 3x 3A e x/2 sin B y ( = ( = A 2 + 3B 2 + = A 2 + 3B 2. A = B = 3. 3x y = e x/2 cos + 3x 3e x/2 sin 2 2. (3 u = px + q (p, q u = p, u = u + u + u = + p + (px + q = px + (p + q. x + p =, p + q =. p =, q =. u = x. 3x 3x y = Ae x/2 cos + Be x/2 sin + x (A, B

79 ( 2 ( y = Ae + 3i 2 x + Be 3i x 2 cos, sin ( cos, sin lim (lim (2 ( (3 ( ( (3 ( N ( [7] ( ( [] [3] [5] ( 2 N. N.. 2 ( 79

80 ( [2] (2 [] (999 ( [25] ( = [4] (982, [5] (988, [2] (99, [24] (963, [26] (993 ( [9] ( 2/3 [] V I,, (999. [2],, (2. [3],, (99. [4],, (, 982. [5] (George Gamow (,, (977. [6], Fourier-Laplace,, (993. [7] L. (L.Schwartz,,,,, (97. [8] L. (L.Schwartz,,,, (966. [9] Laurent Schwartz, Transformation de Laplace des distributions, Comm.Sém.Math. de l Univ. de Lund, tome suppl. dédié à M.Riesz, (952. [],, (999. [] (,, (998. 8

81 [2], [ ], (984. [3] (23.,, [4],, (994. [5],, (988. [6],, (989. [7], (, G5, (96. [8],,,, (97. [9],,, (997. [2],, (99. ( V [2] (2. [22],, (99. [23] E.T.,,,,, (976. [24] (L.S.Pontryagin (,,, (963. [25], 5, (997. [26], I,, (993., (23 [27] (Jan Mikusiński,,, (965. (Jan Mikusiński,,, (967. [28],, (984. [29], II, (957. [3],, (957. [3] Kôsaku Yosida, Functional analysis, sixth edition, Springer (98. [32],, (982. 8

82 [33],,,,,,, 4, (976. [34] E.C.Titchmarsh, The zeros of certain integral functions, Proceedings London Mathematical Society 25 (926,

24 3, 28 7 5.............................................. 5........................................ 5..2 ( )................................ 6.2....................................... 7 2 2............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information