Dipper-James 22 7

Size: px
Start display at page:

Download "Dipper-James 22 7"

Transcription

1 22 7

2 Frobenius GL n (E) Φ d -torus Young Tits GL n (E) GL n (q) Harish-Chandra Harish-Chandra Mackey Howlett-Lehrer Harish-Chandra Hall GL n(q) Hall Hall-Littlewood Hall Deligne-Lusztig A Hecke Hall Green

3 ii 4.5 Deligne-Lusztig cuspidal Brauer GL n (q) χ n,r GL n (q) cuspidal A Hecke Harish-Chandra Hecke Dipper Howlett-Lehrer Hecke Specht A (1) e 1 Kac-Moody Fock A Hecke F GL n (q)

4 1 1.1 G = GL n (C) G C ω (g, h) G G gh G g G g 1 G C ω C ω Lie n GL n (C) Lie Lie C ω E affine E- E E- R X = Spec R E X(E) = Hom E-alg (R, E) affine G = Spec R G R Hopf E-Hopf GL n (E) 1.1 L L- H Hopf

5 2 1 L- : H H L H L- ε : H L S : H H (1) ( Id) = (Id ) (2) (ε Id) = (Id ε) = Id (3) (S Id) = (Id S) = η ε η : L H λ λ 1 H H L H L- (h 1 h 1)(h 2 h 2) = h 1 h 2 h 1h 2 h H (h) = n (1) (2) (3) n i=1 n i=1 n i=1 (h (1) i ) h (2) i = n h (1) i=1 i=1 i (h (2) i ) H L H L H ε(h (1) i )h (2) i = n ε(h (2) i )h (1) i = h i=1 S(h (1) i )h (2) i = n h (1) i S(h (2) i ) = ε(h)1 H i=1 h (1) i h (2) i coproduct ε counit S antipode antipode E E[GL n ] := E[{X ij } 1 i,j n, det X ] ij X ij X = (X ij ) 1 i,j n (i, j)- X i j D ij ij = ( 1) i+j D ji

6 1.1 3 (X ij ) = n k=1 X ik X kj, ε(x ij ) = δ ij, S(X ij ) = 1 det X ij E[GL n ] Hopf σ S n γ(σ) = {(i, j) i < j, σ(i) > σ(j)} sgn(σ) = ( 1) γ(σ) S n sgn : S n {±1} det X = sgn(σ)x 1σ(1) X nσ(n) σ S n n (X ij ) = X ik X kj k=1 : E[{X ij } 1 i,j n ] E[GL n ] E E[GL n ] (det X) = n k 1,,k n =1 X 1k1 X nkn σ S n sgn(σ)x k1σ(1) X knσ(n) X k11 X k1n sgn(σ)x k1σ(1) X knnσ(n) = σ S n X kn1 X knn X k 1,, k n k 1,, k n τ S n k i = τ(i) (1 i n) σ S n sgn(σ)x k1σ(1) X knnσ(n) = sgn(τ) det X

7 4 1 (det X) = τ S n sgn(τ)x 1τ(1) X nτ(n) det X = det X det X. 1 ( det X ) = 1 det X 1 det X : E[GL n ] E[GL n ] E[GL n ] well-defined 1 ε( det X ) = 1 ε : E[GL n] E well-defined. S(X ij ) Y := X 1 (i, j) S(det X) = sgn(σ)y nσ(n) Y 1σ(1) = det Y = 1 σ S n det X. 1 S( ) = det X det X S : E[GL n] E[GL n ] well-defined E[GL n ] Hopf h = X ij (1)(2)(3) (1)(2) (3) 1.2 L L- H Hopf R L- G(R) := Hom L-alg (H, R) ϕψ := (ϕ ψ) (ϕ, ψ G(R)) ε : H L h ε(h)1 R H R ε G(R) ϕ G(R) ϕε = (ϕ ε) = ϕ (Id ε ) = ϕ εϕ = ϕ (ϕ 1 ϕ 2 )ϕ 3 = ((ϕ 1 ϕ 2 ) ϕ 3 )

8 1.1 5 = (ϕ 1 ϕ 2 ϕ 3 ) ( Id) = (ϕ 1 ϕ 2 ϕ 3 ) (Id ) = (ϕ 1 (ϕ 2 ϕ 3 ) ) = ϕ 1 (ϕ 2 ϕ 3 ). ϕ G(R) ϕ 1 H S H ϕ R ϕ L- R ϕ 1 (h 1 h 2 ) = ϕ(s(h 2 )S(h 1 )) = ϕ(s(h 2 ))ϕ(s(h 1 )) = ϕ 1 (h 2 )ϕ 1 (h 1 ) = ϕ 1 (h 1 )ϕ 1 (h 2 ) ϕ 1 G(R) ϕ ϕ : H H R ϕ H ϕϕ 1 = (ϕ ϕ 1 ) = (ϕ ϕ) (Id S) = ϕ((id S) ) = ϕ(η ε) = ε : H L R. ϕ 1 ϕ = ε 1.3 R E- ϕ GL n (R) = Hom E-alg (E[GL n ], R) (ϕ(x ij )) 1 i,j n GL n (R) R n GL n (R) Φ(ϕ) := (ϕ(x ij )) 1 i,j n Φ(ϕψ) ij = ϕψ(x ij ) = (ϕ ψ) (X ij ) = n k=1 Φ(ϕ) ik Φ(ψ) kj Φ(ϕψ) = Φ(ϕ)Φ(ψ) Φ(ε) ϕϕ 1 = ε Φ(ϕ) Φ GL n (R) R

9 6 1 n R n C ϕ(x ij ) = c ij Φ(ϕ) = C ϕ GL n (R) 1.2 E E- E[G] Hopf G(E) = Hom E-alg (E[G], E) E E[G] G(E) Hilbert G(E) f E[G] G(E) 0 f = 0 f = 0 E[G] reduced 0 E[G] reduced E[GL n ] reduced E[G] E[G]/ 0 G(E) E[G] reduced E[G] reduced f E[G] G(E) g G(E) g(f) f(g) (f) = f (1) i f (2) i f(g 1 g 2 ) = f (1) i (g 1 )f (2) i (g 2 ) f(g 1 ) = S(f)(g) G(E) 1 G ε(f) = f(1 G ) 1.2 Hopf coproduct, counit, antipode Hopf 1.4 G 1 (E), G 2 (E) Hopf ϕ : E[G 2 ] E[G 1 ] g g ϕ

10 1.1 7 ϕ : G 1 (E) G 2 (E) f E[G 2 ] f(ϕ(gh)) = (g h) 1 ϕ (f) = (g h) ϕ 2 (f) = (g ϕ ) (h ϕ ) 2 (f) = f(ϕ(g)ϕ(h)) ϕ(gh) = ϕ(g)ϕ(h) f(ϕ(g 1 )) = g S 1 ϕ (f) = g ϕ S 2 (f) = ϕ(g) S 2 (f) = f(ϕ(g) 1 ) ϕ(g 1 ) = ϕ(g) 1 1 G1 = ε 1, 1 G2 = ε 2 f(ϕ(1 G1 )) = ε 1 ϕ (f) = ε 2 (f) = f(1 G2 ) ϕ 1.3 GL n (E) = Hom E-alg (E[GL n ], E) E Hopf Spec E[GL n ] E G E[G]- Abel E[GL n ] E[GL n ] E- E q [GL n ] 1.2 E[GL n ] E q [GL n ] E GL n (E) E[GL n ] Hopf U(gl n ) E q [GL n ] E[GL n ] X ij r 0 r

11 8 1 E[GL n ](r) (E[GL n ](r)) E[GL n ](r) E[GL n ](r) S(n, r) := Hom E (E[GL n ](r), E) E S(n, r) Schur Schur U(gl n ) E q [GL n ] Schur q-schur gl n q-schur Lie GL n (F q ) q-schur q l q 1 q-schur Fock Cherednik O 1.2 Frobenius 1.4 E- H Hopf H F q - H 0 (1) E- H = H 0 Fq E (2) (H 0 ) H 0 Fq H 0 (3) ε(h 0 ) F q (4) S(H 0 ) H 0 H 0 H F q - σ q : H = H 0 Fq E H 0 Fq E = H h 0 λ h 0 λ q G(E) = Hom E-alg (H, E) E- F # : H H F # σ q (h) = h q (h H) F : G(E) G(E)

12 1.2 Frobenius 9 ϕ ϕ F # F F q - H 0 Frobenius F # H 0 q H 0 q H 0 F q - H E- F # σ q (h) = h q F q - H 0 F # det X ] ϕ GL n (E) = Hom E-alg (H, E) H = E[GL n ] H 0 = F q [GL n ] := F q [{X ij } 1 i,j n, H 0 H F q - F (ϕ)(x ij ) = ϕ(x q ij ) = ϕ(x ij) q GL n (E) E n Frobenius q 1.5 E- H Hopf H 0 H F q - H 0 Frobenius coproduct H F # H H E H F # F # H E H H H 0 h H 0 F # (h) = h q F # (h) = (h) q H 0 H 0 (h) = i h (1) i h (2) i (h (1) i, h (2) i H 0 ) (h) q = i h (1) i q (2) q h i (h) q = F # F # ( i h (1) i h (2) i ) = (F # F # ) (h). F # = (F # F # )

13 10 1 F (ϕ)f (ψ) = ((ϕ F # ) (ψ F # )) = (ϕ ψ) (F # F # ) = (ϕ ψ) F # = (ϕψ) F # = F (ϕψ). F GL n (E) Frobenius q Frobenius GL n (E) 1.5 G = GL n (E) G F = {g G F (g) = g} F q GL n (q) GL n (F q ) GL n (q) = {g = (g ij ) 1 i,j n g ij F q, det g 0} GL n (q) Frobenius Frobenius {X q ij X ij} 1 i,j n E[GL n ] I q E[GL n ]/I q Hopf GL n (q) = Hom E-alg (E[GL n ]/I q, E) 1.3 GL n (E) GL n (E) GL n (E)

14 1.3 GL n (E) L L- H Hopf H I Hopf (1) (I) I L H + H L I (2) ε(i) = 0 (3) S(I) I H/I Hopf 1.7 G(E) = Hom E-alg (E[G], E) E E[G] I K Hopf E[K] := E[G]/I K G(E) K(E) := Hom E-alg (E[K], E) G(E) I q = ({X q ij X ij} 1 i,j n ) E[GL n ] Hopf GL n (q) GL n (E) (X q ij X ij) = n k=1 (X q ik X ik) X q kj + n X ik (X q kj X kj) ε(x q ij X ij) = 0 (1), (2) (det X) q det X I q (det X) q (det X) 1 I q S(X q ij X ij) (1) S(X q ij X ij) I q (3) 1.6 (1) E[GL n ] {X ij } 1 j<i n I B k=1 E[GL n ] Hopf (2) E[GL n ] {X ij } 1 j i n I T E[GL n ] Hopf (1) i > j (X ij ) = n k=1 I B I T X ik X kj 1 k < i X ik I B i k n X kj I B

15 12 1 ε(i B ) = 0 (I B ) I B E H + H E I B. S(X ij ) = ij / det X I B D ji I B D ji 1,, i 1, i + 1,, n k 1,, k j 1, k j+1,, k n ±X 1k1 X j 1kj 1 X j+1kj+1 X nkn 1 k 1,, j 1 k j 1, j + 1 k j+1,, n k n i j + 1 k n = n,, k i+1 = i + 1 i k i k i i 1 (2) i j i k k j (I T ) I T E H + H E I T ε(i T ) = 0 D ji 1,, i 1, i+1,, n k 1,, k j 1, k j+1,, k n ±X 1k1 X j 1kj 1 X j+1kj+1 X nkn 1 = k 1,, j 1 = k j 1, j + 1 = k j+1,, n = k n i j 1.8 E[B n ] := E[GL n ]/I B, E[T n ] := E[GL n ]/I T B n := Hom E-alg (E[B n ], E) GL n (E) GL n (E) Borel T n := Hom E-alg (E[T n ], E) GL n (E) GL n (E) torus GL n (E) E B n T n

16 1.4 Φ d -torus 13 B n GL n (E) GL n (E) Borel T n GL n (E) GL n (E) torus 1.1 F F q - F q [GL n ] Frobenius F (B n ) = B n F (T n ) = T n B n (q) := Bn F GL n(q) Borel T n (q) := Tn F GL n(q) torus GL n (E) Borel B F (B) = B B F GL n (q) Borel GL n (E) torus T F (T ) = T T F GL n (q) torus 1.9 GL n (E) P Borel B n P GL n (E) GL n (E) GL n (E) n (e 1,, e n ) {e 1,, e n } E n σ S n g(σ)e i = e σ(i) (1 i n) g(σ) GL n (E) W n = {g(σ) σ S n } σ g(σ) S n N GLn (E)(T n )/T n = W n T n /T n W n W n GL n (E) Weyl Weyl S n W n GL n (E) q S n GL n (q) = GL n (E) F 1.10 GL n (q) P Borel B n (q) P GL n (q) GL n (q) GL n (q) 1.4 Φ d -torus GL n (q) F n q n

17 14 1 GL n (q) = (q n 1)(q n q) (q n q n 1 ) n = q n(n 1) 2 (q i 1) i=1 O n (X) = X n(n 1) 2 n (X i 1) i=1 GL n (q) Φ d (X) 1 d n (X i 1) = Φ d (X) [ n d ] i=1 d a [ n d ] T n GL n (E) S Frobenius F F (S) = S S F = Φ d (q) a n = d a = 1 E 1 q d 1 ζ 1 q d 1 F q d ζ ζ q ζ qd 1 ζ 2 (ζ q ) 2 (ζ qd 1 ) 2 g =.... GL n (E)..... ζ d 1 (ζ qd 1 ) d 1

18 F (g) = g Φ d -torus 15 T = gt n g 1 F (T ) = T t 1 t 2 F : g... g 1 g t q d t q 1... g 1 t d t q d 1 T Frobenius t g t q... t qd 1 g 1 (t F ) q d ϕ(d) {1,, d 1} d Φ d (X) = X ϕ(d) + a 1 X ϕ(d) a ϕ(d) 1 X + 1 (a 1,, a ϕ(d) 1 Z) 1,, d Z/dZ t i t a ϕ(d) 1 i+1 t a 1 i+ϕ(d) 1 t i+ϕ(d) = 1 (i Z/dZ) T S F (S) = S T Frobenius t 1+a ϕ(d) 1q+ +a 1 q ϕ(d) 1 +q ϕ(d) = t Φ d(q) = 1 (t F q d ) S F = Φ d (q)

19 16 1 torus Φ d -torus T GL d (E) Coxeter torus Φ d -torus S S GL n (E) d- Levi GL n (q) 1.2 n = d = 6 T = gt 6 g 1 Coxeter torus Φ 6 (X) = X 2 X + 1 GL 6 (E) Φ 6 -torus t 1 t 2 g... t 6 g 1 (t 1 t 3 = t 2, t 2 t 4 = t 3,, t 5 t 1 = t 6, t 6 t 2 = t 1 ) T t 1,, t 6 t 1 = t 1 5 t 6, t 2 = t 1 5, t 3 = t 1 6, t 4 = t 5 t 1 6 Φ 6 -torus E E Frobenius GL 6 (q) t 5 = t 1 q 6, t q2 q+1 6 = 1 G G G l a G l a G Sylow l e q mod l e = min{k Z 1 q k 1 l } n Z 1 n = n 1 + k 0 n k el k (0 n 1 < e, 0 n k < l)

20 1.4 Φ d -torus 17 (e, l)- 1.8 S 0 GL e (q) Φ e -torus Frobenius Sylow l- l (1) S 0 GL e (q) Sylow l- (2) l- S k GL el k(q) Sylow l- S l k GL el k(q) l GL el k+1(q) i + el k (1 i el k+1 el k ) w(i) = i + el k el k+1 (el k+1 el k + 1 i el k+1 ) S el k+1 w l l S k+1 S k+1 GL el k+1(q) S l k Sylow l- (3) n (e, l)- n = n 1 + n k el k k 0 GL n (q) Sylow l- {1} k 0 S n k k GL n 1 (q) GL el k(q) n k GL n (q) k 0 (1) q 1, q 2 1,, q e 1 1 l GL e (q) Sylow l- Coxeter torus Frobenius F q e Sylow l- q e 1 = Φ k (q) k e Φ k (q) l q k 1 l l Φ e (q) GL e (q) Sylow l- S 0

21 18 1 (2) q k 1 l q mod l k 1 k e k = ek q e 1 l a l b q e = 1 + l a b q k = (1 + l a b) k = 1 + k l a b + k r=2 ( k r ) l ra b r c Z 0 l d k = l c d ( k r ) l ra (r 2) l a+c+1 r l c l 3 ra l c a = a + (l 1)(l c l + 1)a a + 2ca > a + c 0 i < c r l i l k 1 ([ k l k ] r [k l k ] [ r ) l k ] k = i + 1,, c [ k l k ] r [k l k ] [ r ( l k ] = k k l k l k [ r ) l k ] 1 [ r l k ] = 1 l c i i = 0 r 2 ra + c 2a + c > a + c i 1 l 3 l i i + 2 ra + c i l i a i + c (i + 2)a i + c = 2a + (a 1)i + c > a + c l a+c+1

22 1.5 Young 19 k l c q k 1 l a + c N l ν l (N) ν l ( GL n (q) ) = n k=1 ν l (q k 1) = [ n e ] k =1 ν l (q ek 1) = [ n e ] k =1 n (e, l)- ν l ( GL n (q) ) = n n 1 a + n k (l k l + 1) e k 1 = k 0 n k (l k a + l k l + 1) (a + ν l (k )) ν l ( GL el k(q) ) = l k a + l k l + 1 ν l ( GL el k+1(q) ) = lν l ( GL el k(q) ) + 1 ν l ( S k+1 ) = lν l ( S k ) + 1 = lν l ( GL el k(q) ) + 1 = ν l ( GL el k+1(q) ) S k+1 GL el k+1(q) Sylow l- (3) ν l ( GL n (q) ) = k 0 n k ν l ( GL el k(q) ) 1.5 Young Weyl + = + Weyl w γ(w) = w +

23 20 1 w S n w w(1) w(n) γ(w) = {(i, j) 1 i < j n, w(i) > w(j)} 1.12 s i S n i i + 1 (i, i + 1) s i (i) = i + 1, s i (i + 1) = i, s i (k) = k (k i, i + 1) {s i } 1 i<n S n Coxeter 1.13 w S n Coxeter w = s i1 s ir w r w w l(w) 1.9 w, s i w S n γ(w) + 1 (w 1 (i) < w 1 (i + 1)) γ(s i w) = γ(w) 1 (w 1 (i) > w 1 (i + 1)) {(j, k) j < k, s i w(j) > s i w(k)} (i) j, k {w 1 (i), w 1 (i + 1)} (ii) j = w 1 (i), k w 1 (i + 1) (iii) j = w 1 (i + 1), k w 1 (i) (iv) j w 1 (i + 1), k = w 1 (i) (v) j w 1 (i), k = w 1 (i + 1) (vi) {j, k} = {w 1 (i), w 1 (i + 1)} (i) (v) s i w(j) > s i w(k) w(j) > w(k)

24 1.5 Young w S n w = s i1 s ir γ(w) < r j < k w = s i1 ŝ ij ŝ ik s ir 1.9 γ(s i w) = γ(w) + 1 w 1 (i) < w 1 (i + 1) γ(s i w) = γ(w) 1 w 1 (i) > w 1 (i + 1) γ(w) = γ(w 1 ) γ(ws i ) = γ(w) + 1 w(i) < w(i + 1) γ(ws i ) = γ(w) 1 w(i) > w(i + 1) 1 k < r s i1 s ik (i k+1 ) < s i1 s ik (i k+1 + 1) 1 k < r γ(s i1 s ik+1 ) = γ(s i1 s ik ) + 1 γ(w) = r γ(w) < r 1 k < r s i1 s ik (i k+1 ) > s i1 s ik (i k+1 + 1) i k+1 < i k s ik, s ik 1,, s i1 j a = s ij+1 s ik (i k+1 ), b = s ij+1 s ik (i k+1 + 1) a < b s ij (a) > s ij (b) (1) a, b {i j, i j + 1} (2) a = i j, b {i j, i j + 1} (3) a = i j + 1, b {i j, i j + 1}

25 22 1 (4) a {i j, i j + 1}, b = i j (5) a {i j, i j + 1}, b = i j + 1 a = i j, b = i j + 1 w(i) = k, w(i + 1) = k ws i w 1 = (k, k ) s ij+1 s ik (i k+1 ) = i j, s ij+1 s ik (i k+1 + 1) = i j + 1 s ij+1 s ik s ik+1 s ik s ij+1 = s ij s ij s ij+1 s ik = s ij+1 s ik+1 w = s i1 s ij s ij+1 s ik+1 }{{} s ir s ij s ik w s ij s ik w S n γ(w) = l(w) w = s i1 s ir 1.9 γ(w) γ(s i2 s ir ) + 1 r = l(w) γ(w) < r s i1 s ir 1.14 S n Coxeter S = {s i } 1 i<n I S S n I S n Young S I 12 n s i I i i + 1 µ = (µ 1, µ 2, ) I µ I µ S I µ 1.15 µ = (µ 1, µ 2, ) I S µ n µ n

26 1.5 Young 23 I µ S Young S µ S µ = S µ1 S µ µ, ν n µ ν I µ I ν µ ν S ν = S ν1 S ν2 Young S µ 1.11 w = s i1 s ir w S µ {s i1,, s ir } I µ w S µ γ(sw) > γ(w) s I µ γ(w) = 0 w w S n γ(s i w) > γ(w) (1 i < n) 1.9 w 1 (1) < w 1 (2) < < w 1 (n) w 1 (i) = i (1 i n) γ(w) γ(w) = 0, 1 γ(w) > 1 γ(sw) < γ(w) s I µ sw = ss i1 s ir w = s i1 s ir S νi s s ik l(sw) = γ(sw) = γ(w) 1 = l(w) 1 s i1 ŝ ik s ir = sw S µ s ik s i1,, s ir I µ s ik S µ s ik I µ 1.12 µ n, ν n w S n S µ ws ν d µν

27 24 1 l(v 1 d µν v 2 ) = l(v 1 ) + l(d µν ) + l(v 2 ) v 1 S µ, v 2 S ν v 1 d µν v 2 u S µ ws ν u S µ ws ν v 1 S µ v 2 S ν u = v 1 uv 2 v 1, v 2 l(u ) = l(v 1 ) + l(u) + l(v 2 ) u, v 1, v 2 u = s i1 s ir, v 1 = s j1 s jm, v 2 = s k1 s kl u = s j1 s jm s i1 s ir s k1 s kl l(u ) < m + r + l v 1 s j1 s jm v 2 s k1 s kl u s i1 s ir s j s i u S µ ws ν s i s k u S µ ws ν l(u) s j s k v 1 = s j1 ŝ j s jm, v 2 = s k1 ŝ k s kl u = v 1uv 2 l(u ) = l(v 1 ) + l(u) + l(v 2 )

28 1.5 Young 25 u l(u ) = l(v 1 ) + l(u) + l(v 2 ) v 1 S µ, v 2 S ν u = v 1 uv 2 l(u ) = l(u) l(v 1 ) = l(v 2 ) = 0 v 1, v 2 u = v 1 uv 2 = u 1.13 w S n S µ ws ν u = d µν S µ ws ν l(su) > l(u) ( s I µ ) l(us) > l(u) ( s I ν ) S µ ws ν u d µν u l(su) l(u) l(us) l(u) u 1.12 v 1 S µ, v 2 S ν u = v 1 d µν v 2 l(u) = l(v 1 ) + l(d µν ) + l(v 2 ) v 1 s I µ l(sv 1 ) < l(v 1 ) 1.9 l(su) l(sv 1 ) + l(d µν ) + l(v 2 ) < l(u) v 2 v 1, v 2 u = d µν. Young 1.17 S µ \S n /S ν D µν = { w S n l(su) > l(u) ( s I µ ), l(us) > l(u) ( s I ν ) } D µν distinguished

29 26 1 w S n w(1) w(n) s i w(1) w(n) i i + 1 s i i i + 1 a i = i 1 k=1 µ k + 1, b i = i 1 k=1 ν k + 1 D µν 1, 2,, n w(1) w(n) a i,, a i+1 1 (i = 1, 2, ) w(b i ) < w(b i + 1) < < w(b i+1 1) (i = 1, 2, ) 1.3 n = 4, µ = (2, 2) 4, ν = (1, 2, 1) 4 I µ = {s 1, s 3 }, I ν = {s 2 } D µν = {1234, 1342, 3124, 3142} 1342 = s 2 s 3, 3124 = s 2 s 1, 3142 = s 2 s 1 s s 2 s 1 s

30 1.5 Young ν n S ν = {w S n l(ws) > l(w) ( s I ν )} u S ν, v S ν l(uv) = l(u) + l(v) µ = (1 n ) S ν = D µν 1.12, 1.13 u us ν u v u = s i1 s ir, v = s j1 s jt l(uv) < r + t uv = s i1 s ir s j1 s jm u, v uv = s i1 ŝ i s ir s j1 ŝ j s jt u us ν l(uv) = l(u) + l(v) 1.15 s, t Coxeter, w S n l(sw) = l(wt) l(swt) = l(w) sw = wt l(wt) > l(w) l(sw) > l(w) swt s i1 s ir l(w) = r w = ss i1 s ir t w = ss i1 ŝ i ŝ i s ir t swt = s i1 ŝ i ŝ i s ir swt w = ss i1 ŝ i s ir t sw = s i1 ŝ i s ir l(sw) r 1 l(sw) > l(w) = l(swt) = r w = ŝs i1 ŝ i s ir t wt = s i1 ŝ i s ir l(wt) r 1 l(wt) > l(w) = r w = s i1 s ir = swt sw = wt l(wt) < l(w) w = wt l(w t) > l(w )

31 28 1 (1) l(sw ) = l(swt) = l(w) = l(w t) (2) l(sw t) = l(sw) = l(wt) = l(w ) w = sw t wt = sw Deodhar 1.16 µ n µ S = {w S n l(sw) > l(w) ( s I µ )} Coxeter s v µ S (a) vs µ S. (b) Coxeter t I µ vs = tv vs µ S t I µ l(tvs) < l(vs) v µ S l(tv) > l(v) l(vs) > l(tvs) l(tv) 1 l(v) l(tv) = l(v) + 1 = l(vs) l(tvs) = l(v) 1.15 tv = vs 1.1 d D µν d 1 S µ d S ν = S d 1 I µd I ν S d 1 I µ d I ν d 1 S µ d S ν w d 1 S µ d S ν dw S µ d ds ν v S µ dw = vd v S µ, w S ν d D µν 1.14 l(d) + l(w) = l(dw) = l(vd) = l(v) + l(d) l(w) = l(v) w = s i1 s ir d, ds i1, ds i1 s i2,, ds i1 s ir d i µ S (0 i r) (1) d 0 = d

32 1.6 Tits 29 (2) t 1,, t k I µ {1} ds i1 s ik = t 1 t k d k Deodhar d k s ik+1 = t k+1 d k+1 (t k+1 I µ {1}, d k+1 µ S) (a) d k s ik+1 (b) d k s ik+1 µ S t k+1 = 1, d k+1 = d k s ik+1. µ S t k+1 I µ, d k+1 = d k. vd = dw = t 1 t r d r v, t 1,, t r S µ d, d r µ S d r = d, v = t 1 t r l(v) = l(w) = r t k = 1 d k = d (0 k r) = d 1 t k d d 1 I µ d I ν w S d 1 I µd I ν s ik 1.6 Tits Tits BN 1.18 G G (B, N) (a) G B N (b) T = B N N (c) W = N/T 2 {s i } i I (d) s i Bs i B. (e) w W s i Bw Bs i wb BwB. (B, N) Tits BN (d) (e) n i T = s i nt = w N n i n n i Bn i B n i Bn Bn i nb BnB n i n

33 G (B, N) BN BN (f) B W wbw 1 (w W ) w W wbw 1 = T. (g) C G (T ) = T Hopf T (E ) r E[T ] E[T 1, T 1 1,, T r, T 1 r ] (h) B U (i) B T U B = T U U T = 1. (ii) U G GL n (E) u U (u 1) n = 0 GL n (E) Tits Bruhat G = w W BwB BN Bruhat 1.2 S n GL n (E) GL n (q) (1) GL n (E) = B n wb n. w S n (2) GL n (q) = B n (q)wb n (q). w S n (2) B n (q) op

34 GL n (q) = B n (q) op wb n (q) w S n (e 1,, e n ) 1.6 Tits 31 g GL n (q) g (i, 1) 1 i < i 1 0 i = i λ , λ 1 g = (e i1 ) λ i 1 (1, 0,, 0) i 1 1 (e i1 ) (e i1, e i2 ) (e i1, e i2,, e in ) S n GL n (q) = w S n B n (q) op wb n (q) w 0 1 i n (i, n + 1 i) 1 0 w 0 S n B n (q) op = w0 1 B n(q)w 0 GL n (q) = w 0 GL n (q) = w S n B n (q)w 0 wb n (q)

35 32 1 B n (q)w 1 B n (q) = B n (q)w 2 B n (q) w 1 = g 1 w 2 h (g, h B n (q)) w 1 2 gw 1e w 1 1 (i) = w 1 2 ge i = w2 1 (g iie i + ) = g ii e w 1 2 (i) + he w 1 1 (i) e w 1 2 (i) w 1 2 (i) w 1 1 (i) w 1 1 g 1 w 2 e w 1 2 (i) = g 1 ii e w 1 1 (i) + h 1 e w 1 2 (i) e w 1 1 (i) w 1 1 (i) w 1 2 (i) w 1 = w Z[t] w S n t l(w) = (1 + t)(1 + t + t 2 ) (1 + t + + t n 1 ) B n (q)wb n (q)/b n (q) B n (q) wb n (q)/b n (q) B n (q) wb n (q)w 1 b = (b ij ) 1 i,j n B n (q) i > j b w(i)w(j) = 0 i < j b ij F q w 1 (i) < w 1 (j) B n (q)wb n (q)/b n (q) = GL n (q)/b n (q) = q n(n 1) 2 l(w 1) (q 1) n q n(n 1) 2 (q 1) n q n(n 1) 2 l(w 1) (q 1) n = ql(w) q n(n 1) 2 n (q i 1) i=1 = n 2 (q 1) n q n(n 1) i=1 q i 1 q 1

36 1.6 Tits 33 Bruhat t = q q p BN 1.3 s i B n (q)w B n (q)s i wb n (q) B n (q)wb n (q) (1) w 1 (i) < w 1 (i + 1) s i B n (q)w B n (q)s i wb n (q). (2) w 1 (i) > w 1 (i + 1) s i B n (q)w B n (q)wb n (q). w(k) = i k g B n (q)w k ge k = gw 1 e w(k) = gw 1 e ik gw 1 B n (q) i k i k 0 i k + 1,, n 0 ( ) g B n (q)w g k i (1) i k > i + 1 ( ) (2) i k = i + 1 =0 ) ( (3) i k = i =0 ) 0 ( (4) i k < i ( 0 0 ) i + 1 w(a) = i, w(b) = i + 1 a, b s i g s i B n (q)w k k a, b i k i, i + 1 (1) (4) i i + 1 s i g k i k 0 i k + 1,, n 0 k {a, b} i k = i i k = i + 1 (A) w 1 (i) < w 1 (i + 1) a < b a b i 0 = 0 i + 1 = 0

37 a 12 0, a 21 0 ( ) 0 a12 1 a 22 ( ) 0 a12 a 21 = a 21 a a 21 0 B n (q) a b i 0 = 0 i + 1 = 0 0 k {a, b} B n (q)s i w s i B n (q)w B n (q)s i wb n (q) (B) w 1 (i) > w 1 (i + 1) a > b b a i = 0 0 i + 1 = 0 ( b =0 ) Bn (q)s i wb n (q) ( ) b =0 0 =0 (1) 2 a 11 0, a 21 0, a 22 0 ( ) a a 22 a 21 = a 11 a 11a 22 a 21 a 21 a a 21 0 B n (q)

38 1.7 GL n (E) GL n (q) 35 b a i = 0 = 0 i + 1 = 0 0 B n (q)wb n (q) s i B n (q)w B n (q)wb n (q) (i) γ(s i w) = γ(w) + 1 s i B n (q)w B n (q)s i wb n (q). (ii) γ(s i w) = γ(w) 1 s i B n (q)w B n (q)wb n (q) s i B n w B n s i wb n B n wb n (1) w 1 (i) < w 1 (i + 1) s i B n w B n s i wb n. (2) w 1 (i) > w 1 (i + 1) s i B n w B n wb n. 1.7 GL n (E) GL n (q) GL n (E) GL n (q) GL n (q) 1.17 S µ Young B n (q)s µ B n (q) GL n (q). B n (q), S µ g B n (q)s µ B n (q) g 1 B n (q)s µ B n (q) w S µ w = s i1 s ir 1.11 s i1,, s ir I µ 1.3 s i1 B n (q)s i2 B n (q) s ir B n (q)s µ B n (q) B n (q)s µ B n (q) w S µ

39 36 1 B n (q)wb n (q)s µ B n (q) B n (q)s µ B n (q) B n (q)s µ B n (q) 1.20 S µ Young P µ (q) := B n (q)s µ B n (q) µ GL n (E) P µ := B n S µ B n µ F GL n (E) Frobenius q F (P µ ) = P µ P µ (q) = Pµ F Frobenius Weyl Coxeter P µ (q) P µ (q) = µ 1 µ GL n (q) µ n P µ (q) GL µ1 (q) GL µ2 (q) L µ (q) P µ (q) Levi P µ (q) L µ (q) 1 U µ (q) P µ (q) L µ (q) 1 U µ (q) P µ (q) P µ (q) U µ (q) 1.18 w S n w = s i1 s ir

40 1.7 GL n (E) GL n (q) 37 I(w) = {s S s = s ij j } µ n I µ = I(w) P µ (q) = B n (q), w l(w) l(w) = 0 l(w) > 0 w = s i2 s ir I µ = I(w ) P µ (q) = B n (q), w 1.4 s i1 B n (q)w B n (q)wb n (q) b 1, b 2, b 3 B n (q) s i1 b 1 w = b 2 wb 3 s i1 = b 2 wb 3 w 1 b 1 1 B n (q), w w = s i1 w B n (q), w P µ (q) = B n (q), w B n (q), w s i2,, s ir B n (q)s µ B n (q) = P µ (q) B n (q), w s i1 B n (q), w P µ (q) B n (q), s i1,, s ir B n (q), w P µ (q). P µ (q) = B n (q), w I(w) w supp(w) GL n (q) {P µ (q)} µ n 1.6 P GL n (q) µ n P = P µ (q) Bruhat S n W

41 38 1 P = w W B n (q)wb n (q) w W µ n I µ = w W I(w), I(w) = {s S s w }. W S µ P P µ (q) w W 1.18 I(w) B n (q)s I(w) B n (q) = B n (q), w P I P S µ P P µ (q) = B n (q)s µ B n (q) P P = P µ (q) 1.19 w S n (1) P µ (q)wp ν (q) = B n (q)s µ ws ν B n (q) (2) (P µ (q)wp ν (q)) S n = S µ ws ν 1.3 s i B n (q)w B n (q)s i wb n (q) B n (q)wb n (q) v S µ S µ B n (q)w B n (q)s µ wb n (q) wb n (q)s ν B n (q)ws ν B n (q) S µ wb n (q)s ν = w B n (q)s ν w S µw w S µw B n (q)w S ν B n (q) = B n (q)s µ ws ν B n (q) P µ (q)wp ν (q) = B n (q)(s µ B n (q)w)b n (q)s ν B n (q) B n (q)(s µ wb n (q)s ν )B n (q) B n (q)s µ ws ν B n (q) P µ (q)wp ν (q). P µ (q)wp ν (q) = B n (q)s µ ws ν B n (q) (1) Bruhat (B n (q)wb n (q)) S n = {w}

42 1.7 GL n (E) GL n (q) 39 (P µ (q)wp ν (q)) S n = (B n (q)s µ ws ν B n (q)) S n = S µ ws ν (2) 1.7 D µν P µ (q)\ GL n (q)/p ν (q) w P µ (q)wp ν (q) D µν P µ (q)\ GL n (q)/p ν (q) Bruhat (P µ (q), P ν (q))- P µ (q)wp ν 1.19(1) P µ (q)wp ν (q) = B n (q)s µ ws ν B n (q) w S µ \S n /S ν D µν P µ (q)w 1 P ν (q) = P µ (q)w 2 P ν (q) 1.19(2) S µ w 1 S ν = S µ w 2 S ν w 1, w 2 D µν w 1 = w {P µ (q)} µ n g GL n (q) P µ (q) = gp ν (q)g w D µν P µ (q) = wp ν (q)w 1 w(1) w(n) 1,, µ 1 w(i) = i (1 i µ 1 ) 1 a < b n w(a) > µ 1, w(b) µ 1 E ij 1 + F q E w(a)w(b) = w(1 + F q E ab )w 1 wp ν (q)w 1 = P µ (q) w P µ (q) = P ν (q) µ = ν P = wp µ (q)w 1 w S n Levi 1.22 P P = wp µ (q)w 1 w S n

43 40 1 U := wu µ (q)w 1 P L := wl µ (q)w 1 P Levi Levi L P = wp µ (q)w 1 L = {( 0 0 )} µ = (2, 2) 4 P = {( )} P = {( )}

44 2 Harish-Chandra 2.1 Harish-Chandra Lie Harish-Chandra Harish-Chandra Harish- Chandra F GL n (q)- Harish- Chandra G H G FG- M Ind G H(M) := FG FH M m 1 m (m M) ι : M Ind G H(M) (Ind G H(M), ι) FG- N FH- M Res G H(N) FG- Ind G H(M) N 1 F M N ι 1 Ind G H(M) N FG- mod f f M := f ι Hom FG (Ind G H(M), N) Hom FH (M, Res G H(N))

45 42 2 Harish-Chandra Frobenius f : M N FH- f Ind G H(f) : Ind G H(M) Ind G H(N) 1 Ind G H(f)(g m) = g f(m) (g G, m M) Ind G H : FH- mod FG- mod 2.1 (1) Frobenius FH- M FG- N 2 FH- M M FG- N N Hom FG (Ind G H(M), N) Hom FH (M, Res G H(N)) Hom FG (Ind G H(M ), N ) HomFH (M, Res G H(N )) (2) Ind G H ResG H (1) ψ : M Hom FG (Ind G H(M), N) M ϕ : N N f (ϕ f Ind G H(ψ)) M = ϕ f M ψ (2) Frobenius 2 Frobenius

46 2.1 Harish-Chandra Ind G H ResG H. G/H = {g i H} 1 i G/H FG (FH, FG)- FH- N Φ : Hom FH (FG, N) FG FH N = Ind G H(N) Φ(f) = g i f(g 1 i ) Φ FG- g G g 1 g i = g i h i (h i H) Φ(gf) = g i f(g 1 i = i g i h 1 i g) = g i f(h 1 i g 1 i ) f(g 1 i ) = gg i f(g 1 i ) = gφ(f) i Φ FG- Φ(f) = 0 f(g 1 ) = 0 f(hg 1 ) = hf(g 1 ) = 0 i G = Hg 1 i f G 0 Φ gi n i FG FH N f(hg 1 ) = hn i (h H) f Hom FH (FG, N) Φ(f) = g i n i Φ i i Φ FG- Φ N FH- N N Hom FH (FG, N) Ind G H(N) Hom FH (FG, N ) Ind G H(N ) FG- M M i Hom FG (M, Ind G H(N)) Hom FG (M, Hom FH (FG, N)) Hom FG (M, Ind G H(N )) Hom FG (M, Hom FH (FG, N )) Hom FG (M, Hom FH (FG, N)) Hom FH (FG FG M, N) = Hom FH (Res G H(M), N)

47 44 2 Harish-Chandra f Hom FG (M, Hom FH (FG, N)) g m f(m)(g) Hom FG (M, Hom FH (FG, N)) Hom FH (Res G H(M), N) Hom FG (M, Hom FH (FG, N )) HomFH (Res G H(M ), N ) 2.1 µ n, ν n µ ν P ν µ (q) := P µ (q) L ν (q), U ν µ(q) := U µ (q) L ν (q) e ν µ FUµ(q) ν e ν µ := 1 Uµ(q) ν u u Uµ ν (q) ν = (n) e ν µ e µ 1 Uµ(q) ν Pµ ν (q) L µ (q) 1 M FL µ (q)- Uµ(q) ν 1 M FP µ ν (q)- Infl ν µ(m) Infl P ν µ L µ (M). M Infl ν µ(m) Infl ν µ : FL µ (q)- mod FP ν µ (q)- mod {le ν µ l L µ (q)} FP µ ν (q)e ν µ leν µ = e ν µl (l L µ (q)) FPµ ν (q)e ν µ (FP µ ν (q), FL µ (q))- Infl ν µ(m) = FP ν µ (q)e ν µ FLµ(q) M 2.2 µ n, ν n µ ν R L ν L µ (M) := Ind Lν(q) P ν µ (q) Inflν µ(m)

48 2.1 Harish-Chandra 45 R Lν : FL µ (q)- mod FL ν (q)- mod L µ (q) L µ L ν (q) Harish-Chandra Pµ ν (q) R Lν M e ν µm Infl ν µ : FP ν µ (q)- mod FL µ (q)- mod L µ P ν µ l L µ (q) le ν µl 1 = e ν µ eν µm L µ (q)- f : M M FP µ ν (q)- Maschke M FUµ(q)- ν Infl ν µ : M = e ν µm (1 e ν µ)m e ν µm Res P ν µ (q) Uµ ν (q)(m) Infl ν µ(f) : e ν µm e ν µm f e ν µ M Infl ν µ 2.3 µ n, ν n µ ν R L ν L µ R L ν L µ (N) := Infl ν µ Res L ν(q) P ν µ (q)(n) : FL ν (q)- mod FL µ (q)- mod L ν (q) L µ (q) Harish-Chandra R L ν L µ Pµ ν Pµ ν (q) 2.1 R L ν L µ R L ν L µ. Res L ν(q) Pµ ν (q) IndL ν(q) (q) Infl ν µ Inflν µ P ν µ M FPµ ν (q)- mod, N FL µ (q)- mod M Infl ν µ(n) FU µ(q)- ν

49 46 2 Harish-Chandra f : M Infl ν µ(n) f : Infl ν µ(n) M FL µ (q)- e ν µm f M Infl ν µ(n), Infl ν f µ(n) M. f f e ν µm (1 e ν µ)m e ν µm e ν µm Hom FP ν µ (q)(m, Infl ν µ(n)) Hom FLµ (q)(e ν µm, N) f f Hom FP ν µ (q)(infl ν µ(n), M) Hom FLµ (q)(n, e ν µm) f f M M, N N Hom FP ν µ (q)(m, Infl ν µ(n)) Hom FLµ (q)(e ν µm, N) Hom FP ν µ (q)(m, Infl ν µ(n )) Hom FLµ (q)(e ν µm, N ) 2 M, N Infl ν µ Inflν µ 2.3 G := L (n) µ n, ν n µ ν R G L ν R L ν L µ (M) R G L µ (M), R L ν L µ R G L ν (N) R G L µ (N) U ν (q) U µ (q) e µ = ( 1 U ν µ(q) ) ( u u Uµ ν (q) 1 U ν (q) u U ν(q) u ) = e ν µe ν

50 2.1 Harish-Chandra 47 R L ν L µ RL G ν (N) = e ν µe (n) ν N = e (n) µ N = RL G µ (N) R G L µ (M) = F GL n (q) FPµ (q) FP µ (q)e µ FLµ (q) M = F GL n (q)e µ FLµ (q) M RL G ν R Lν L µ (M) = F GL n (q)e ν FLν (q) FL ν (q)e ν µ FLµ (q) M F GL n (q)e ν e ν µ FLµ (q) M = R G L µ (M) GL n (q) P ν (q) L ν (q) Pµ ν (q) = GL n (q) U ν (q) L µ (q) Uµ(q) ν = GL n(q) L µ (q) U µ (q) = GL n(q) P µ (q) R G L ν R Lν L µ (M) R G L µ (M) 2.4 G := L (n), µ n (1) P F GL n (q)- RL G µ (P ) FL µ (q)- (2) P FL µ (q)- RL G µ (P ) F GL n (q)- (1) P P F GL n (q) {P µ (q)g i } 1 i GLn (q)/p µ (q) P µ (q)\ GL n (q) FP µ (q)- F GL n (q) = FP µ (q)g i FP µ (q) GL n(q)/p µ (q) P F GL n (q) e µ R G L µ (P ) = e µ P (e µ FP µ (q)) GLn(q)/Pµ(q) FL µ (q)- e µ FP µ FL µ (q) RL G µ (P ) FL µ (q)-

51 48 2 Harish-Chandra (2) P P FL µ (q) Infl (n) µ (P ) = FP µ (q)e µ FLµ (q) P FP µ (q)e µ Infl (n) µ (P ) FP µ (q) RL G µ (P ) Ind GLn(q) P µ (q) (FP µ (q)) = F GL n (q) RL G µ (P ) F GL n (q)- 2.4 F GL n (q)- S cuspidal µ n FL µ (q)- X µ (n) Hom F GLn (q)(r G L µ (X), S) 0 S cuspidal cuspidal 2.5 S F GL n (q)- (1) S cuspidal (2) µ (n) RL G µ (S) = 0 G = L (n) (1) (2) µ (n) RL G µ (S) 0 FL µ (q)- X X Soc( RL G µ (S)) Hom F GLn (q)(r G L µ (X), S) Hom FLµ (q)(x, R G L µ (S)) 0. S cuspidal (2) (1) µ (n) RL G µ (S) = 0 FL µ (q)- X Hom F GLn (q)(r G L µ (X), S) Hom FLµ (q)(x, R G L µ (S)) = 0. S cuspidal

52 2.1 Harish-Chandra A A- M M Rad M M A Rad A A/ Rad A A- A/ Rad A- 2.6 A M A- P M A- p : P M P N p(n) M A- S P (S) P (S)/ Rad P (S) S A A = S P (S) dim S A- M S M [M : S] = dim Hom A (P (S), M) Hiss Dipper-Du 2.6 S F GL n (q)- P (S) S µ n G = L (n) triv (a) R G L µ (S) 0 (b) Hom F GLn (q)(ind GL n(q) U µ(q) (triv), S) 0 (c) FL µ (q)- Q Hom F GLn (q)(rl G µ (Q), S) 0

53 50 2 Harish-Chandra (d) R G L µ R G L µ (S) S (e) FL µ (q)- Q P (S) R L G µ (Q) (f) P (S) R G L µ R G L µ (P (S)) (a) (b) Ind P µ(q) U µ(q) Ind GL n(q) U µ(q) (triv) = Ind GL n(q) P µ(q) Ind P µ(q) U (triv) µ(q) (triv) FP µ(q)/u µ (q) FL µ (q)- FL µ (q) U µ (q) 1 Ind Pµ(q) U µ (q)(triv) Infl(n) µ (FL µ (q)) (triv) RL G µ (FL µ (q)) (a) Ind GLn(q) U µ (q) Hom F GLn(q)(Ind GLn(q) U µ (q) (triv), S) Hom F GLn(q)(R G L µ (FL µ (q)), S) Hom FLµ (q)(fl µ (q), R G L µ (S)) 0. (b) (c) FL µ (q) FL µ (q) Q: FL µ (q)- dim(q/ Rad Q) Q (triv) RL G µ (FL µ (q)) (b) Ind GL n(q) U µ (q) Hom F GLn (q)(r G L µ ( Q dim(q/ Rad Q) ), S) 0. Q Hom F GLn(q)(RL G µ (Q), S) 0. (c) (a) Hom FLµ(q)(Q, R G L µ (S)) Hom F GLn(q)(R G L µ (Q), S) 0 RL G µ (S) 0 (a) (d) [R G L µ R G L µ (S) : S] = dim Hom F GLn(q)(P (S), R G L µ R G L µ (S))

54 2.1 Harish-Chandra 51 = dim Hom FLµ (q)( R G L µ (P (S)), R G L µ (S)) P (S) S e µ RL G µ (P (S)) RL G µ (S) (a) RL G µ (S) 0 0-map Hom FLµ(q)( RL G µ (P (S)), RL G µ (S)) 0. (d) (a) (d) Hom FLµ (q)( R G L µ (P (S)), R G L µ (S)) 0 RL G µ (S) 0 (c) (e) Hom F GLn(q)(RL G µ (Q), S) R G L µ (Q) P (S) S 0 φ 0 RL G µ (Q). φ Rad P (S) P (S) Im(φ) Rad P (S) φ P (S) S 0-map φ RL G µ (Q) P (S) 0 P (S) P (S) RL G µ (Q) (e) (c) R L G µ (Q) P (S) P (S) S 0-map Hom F GLn (q)(rl G µ (Q), S) 0 (d) (f) (d) Hom F GLn(q)(P (S), RL G µ RL G µ (S)) 0 Hom F GLn (q)(r G L µ R G L µ (P (S)), S) 0

55 52 2 Harish-Chandra P (S) S 0 0 RL G µ RL G µ (P (S)) RL G µ RL G µ (P (S)) P (S) 0 P (S). P (S) RL G µ RL G µ (P (S)) (f) (d) R L G µ RL G µ (P (S)) P (S) P (S) S Hom F GLn(q)(R G L µ R G L µ (P (S)), S) 0 Hom F GLn (q)(p (S), R G L µ R G L µ (S)) Hom FLµ (q)( R G L µ (P (S)), R G L µ (S)) Hom F GLn (q)(r G L µ R G L µ (P (S)), S) 0 [RL G µ RL G µ (S) : S] Mackey 2.7 µ, ν n, w D µν, P 1 = P µ, P 2 = wp ν w 1 Levi L 1 = L µ, L 2 = wl ν w 1 U 1 = U µ, U 2 = wu ν w 1 (1) µ µ P µ L 1 L 1 (2) µ µ P µ (q) L µ (q) L µ (q) (3) L 1 P 2 L 1 L 2 Levi L 1 (4) L µ (q) wp ν (q)w 1 L µ (q) wl ν (q)w 1 Levi L µ (q)

56 2.2 Mackey 53 (5) P 1 P 2 P 1 U 2 P 1 L 2 (6) P 1 (q) P 2 (q) P 1 (q) U 2 (q) P 1 (q) L 2 (q) (1) I µ I µ I µ L 1 Q := (B n L 1 )S µ (B n L 1 ) Q = P µ L 1 Q (B n S µ B n ) L µ = P µ L µ Q P µ L µ L µ Bruhat L µ = (B n L µ )S µ (B n L µ ) P µ L µ b 1, b 2 B n L µ, u S µ b 1 ub 2 b 1 ub 2 P µ = B n S µ B n u S µ P µ L µ (B n L µ )S µ (B n L µ ) = Q. (2) P µ (q) L µ (q) P µ L 1 Frobenius (1) (3) I µ = I µ wi ν w 1 µ n µ µ I 1 = {w(1),, w(ν 1 )}, I 2 = {w(ν 1 + 1),, w(ν 1 + ν 2 )}, I (1) = {1,, µ 1 }, I (2) = {µ 1 + 1,, µ 1 + µ 2 }, = I a I (α) w(1)w(2) w(n) 1,, µ 1 I a (α) I (1) 1 = {1,, I (1) 1 }, I(1) 2 = { I (1) 1 + 1,, I(1) 1 + I(1) 2 }, I (α) = I (α) 1 I (α) 2 s i I µ {i, i + 1} a,α I (α) a

57 54 2 Harish-Chandra µ = ( I (1) 1, I(1) 2,, I(2) 1, I(2) 2,, ) P µ, L µ, P 1, L 1, P 2, L 2 { ( ) } i I (α), j I (β) (α > β) P µ = g = (g ij ) G i I a (α), j I (α) g ij = 0 b (a > b) { ( ) } i I (α), j I (β) (α β) L µ = g = (g ij ) G i I a (α), j I (α) g ij = 0 b (a b) { ( ) } P 1 = g = (g ij ) G i I (α), j I (β) (α > β) g ij = 0 { ( ) } L 1 = g = (g ij ) G i I (α), j I (β) (α β) g ij = 0 { ( ) } P 2 = g = (g ij ) G i I a, j I b (a > b) g ij = 0 { ( ) } L 2 = g = (g ij ) G i I a, j I b (a b) g ij = 0 L µ = L 1 L 2 L 1 P 2 = P µ L 1 (1) P µ L 1 = (B n L 1 )S µ (B n L 1 ) L 1 P 2 L µ (= L 1 L 2 ) Levi L 1 1 U µ L µ P µ L µ L µ 1 L 1 P 2 L 1 L 2 L 1 P 2 U µ L µ = L 1 U 2 (4) Frobenius (3) (5) U 1 P 2 P 1 P 2 L 1 U 1 = 1 P 1 P 2 = (L 1 P 2 )(U 1 P 2 ) p P 1 p = lu (l L 1, u U 1 ) l p p P 1 P 2 l L 1 P 2

58 2.2 Mackey 55 u U 1 P 2 (6) Frobenius (5) 2.7(4) R Lµ L µ wl νw 1 L µ wp νw : F(L 1 µ (q) wl ν (q)w 1 )- mod FL µ (q)- mod w 1 D νµ w 1 P µ (q)w L ν (q) w 1 L µ (q)w L ν (q) Levi L ν (q) R wl νw 1 L µ wl νw 1 P µ wl νw : F(wL 1 ν (q)w 1 )- mod F(L µ (q) wl ν (q)w 1 )- mod 2.7 µ, ν n FL ν (q)- M g wl ν (q)w 1 g m := (w 1 gw)m FwL ν (q)w 1 - w M w M G, H, K G Res G K Ind G H : FH- mod FK- mod Ind K L Res H L (L K H) Mackey Harish-Chandra Mackey 2.1 µ, ν n, G = L (n). R L µ L µ wl ν w 1 := R L µ R wl νw 1 L µ wl νw 1 L µ wl ν w 1 L µ wp ν w 1 := R wl νw 1 L µ wl νw 1 P µ wl νw 1 FL ν (q)- M R G L µ R G L ν (M) w D µν R Lµ L µ wl ν w 1 R wl νw 1 L µ wl ν w 1 ( w M)

59 56 2 Harish-Chandra M Res GL n(q) P µ(q) M(w) = FP µ (q)wp ν (q) Res GLn(q) P µ (q) Ind GL n(q) P ν(q) (Infl P ν L ν (M)) 1.7 GL n (q) = P µ (q)wp ν (q) w D µν FP ν (q) Ind GLn(q) P ν (q) (Infl Pν L ν (M)) FL µ (q)- Infl P ν L ν (M) w D µν M(w) e µ M(w) R Lµ L µ wl νw 1 L µ wp νw 1 R wl νw 1 L µ wl νw 1 P µ wl νw 1 ( w M) e µ = 1 U µ (q) u U µ (q) w m w m (m M) Res wp ν(q)w 1 P µ (q) wp ν (q)w ( w Infl P 1 ν L ν (M)) wp ν (q) u FP ν(q) Infl P ν L ν (M) M(w) FP µ (q) wp ν (q)w 1 - FP µ (q)- Ind Pµ(q) P µ(q) wp ν(q)w 1 Res wp ν(q)w 1 P µ(q) wp ν(q)w 1 ( w Infl Pν L ν (M)) M(w) P µ (q)wp ν (q)/p ν (q) P µ (q) wp ν (q)/p ν (q) P µ (q) wp ν (q)w 1 M(w) P µ (q) P µ (q) wp ν (q)w 1 dim M

60 2.2 Mackey 57 e µ M(w) e µ Ind P µ(q) P µ(q) wp ν(q)w 1 Res wp ν(q)w 1 P µ(q) wp ν(q)w 1 ( w Infl P ν L ν (M)) w Infl Pν L ν (M) wu ν (q)w 1 Res wp ν(q)w 1 P µ (q) wp ν (q)w 1 ( w Infl P ν L ν (M)) Infl P µ wp ν w 1 P µ wl ν w 1 Res wpν(q)w 1 P µ (q) wl ν (q)w 1 ( w Infl Pν L ν (M)) Infl Pµ wpνw 1 P µ wl νw 1 Res wl ν(q)w 1 P µ(q) wl ν(q)w 1 ( w M) N = Infl Pµ wpνw 1 P µ wl νw Res wl ν(q)w 1 1 P µ(q) wl ν(q)w ( w M) 1 e µ M(w) e µ Ind P µ(q) P µ (q) wp ν (q)w 1 (N) P µ (q) wp ν (q)w 1 U µ (q) wp ν (q)w 1 L µ (q) wp ν (q)w 1 e = 1 U µ (q) wp ν (q)w 1 u u U µ (q) wp ν (q)w 1 (FL µ (q), F(P µ (q) wp ν (q)w 1 ))- e µ FP µ (q) FL µ (q) e FP µ (q) wp ν (q)w 1 FL µ (q) wp ν (q)w 1 l e p (l L µ (q), p P µ (q) wp ν (q)w 1 ) e µ le p = e µ lp e µ M(w) e µ Ind P µ(q) P µ (q) wp ν (q)w 1 (N) Ind L µ(q) L µ (q) wp ν (q)w 1 (e N) L µ (q) wp ν (q)w 1 - e N X FP µ (q) wl ν (q)w 1 - P µ (q) wl ν (q)w 1 U µ (q) wl ν (q)w 1 L µ (q) wl ν (q)w 1

61 58 2 Harish-Chandra e = 1 U µ (q) wl ν (q)w 1 u u U µ (q) wl ν (q)w 1 e X FL µ (q) wl ν (q)w 1 - e Infl P µ wp ν w 1 P µ wl ν w 1 (X) Infl L µ wp ν w 1 L µ wl ν w 1 (e X) 2.7(6) U µ (q) wp ν (q)w 1 = (U µ (q) wl ν (q)w 1 )(U µ (q) wu ν (q)w 1 ) Infl P µ wp ν w 1 P µ wl ν w (X) U 1 µ (q) wu ν (q)w 1 e Infl Pµ wpνw 1 P µ wl νw (X) e X 1 L µ (q) wp ν (q)w 1 L µ (q) wu ν (q)w 1 Infl Lµ wpνw 1 L µ wl νw (e X) 1 X = Res wl ν(q)w 1 P µ (q) wl ν (q)w ( w M) N = Infl P µ wp ν w 1 1 P µ wl ν w (X) 1 e N Infl Lµ wpνw 1 L µ wl νw 1 (e Res wl ν(q)w 1 P µ(q) wl ν(q)w 1 ( w M)) e Res wl ν(q)w 1 P µ (q) wl ν (q)w 1 ( w M) = R wl νw 1 L µ wl ν w 1 P µ wl ν w 1 ( w M) e N Infl Lµ wpνw 1 L µ wl νw 1 ( R wl νw 1 L µ wl νw 1 P µ wl νw 1 ( w M)) e µ M(w) Ind L µ(q) L µ (q) wp ν (q)w (e N) 1 e µ M(w) R L µ L µ wl ν w 1 L µ wp ν w 1 R wlνw 1 L µ wl ν w 1 P µ wl ν w 1 ( w M) M

62 2.3 Howlett-Lehrer Howlett-Lehrer Harish-Chandra RL P G P F GL n (q)- RL G, RL G Dipper-Du Howlett-Lehrer 2.8 w a,b w a,b = ( ) 1 a a + 1 a + b 1 + b a + b 1 b n a + b 0 c n (a + b) S a+b S c S a+b S n (a+b+c) S n w a,b w a,b [c] l(w a,b [c]) = l(w a,b ) = ab S a+b S a S b ( ) ( ) 1 a + b 1 a a + 1 a + b w 0 =, w 0 = a + b 1 a 1 a + b a + 1 w a,b = w 0 w 0 Weyl w a,b w a,b Howlett-Lehrer Weyl 2.9 µ n µ = (µ 1,, µ r ) n σ S r µ = (µ σ(1),, µ σ(r) ) µ µ 2.8 µ µ w S n (i) wi µ w 1 = I µ (ii) s k I µ w(k) < w(k + 1)

63 60 2 Harish-Chandra µ = µ (0), µ (1),, µ (r) = µ w 1,, w r S n (a) w = w r w 1 w i w a,b [c] (b) l(w) = r l(w i ) (c) i=1 (i) w i I µ (i 1)w 1 i = I µ (i) (ii) s k I µ (i 1) w i (k) < w i (k + 1) l(w). l(w) = 0 I µ = I µ µ = µ. l(w) > 0 i w(i) > w(i + 1) s i I µ s i I µ µ 12 n 12 } {{ }}{{} µ 1 µ 2 i }{{} µ d i + 1 } {{ } µ d+1 d µ d µ d+1 µ (1) a = µ d, b = µ d+1, c = d 1 j=1 (1) w 1 I µ w1 1 = I µ (1) (2) s k I µ w 1 (k) < w 1 (k + 1) µ j w 1 = w a,b [c] w = ww1 1 (i) (1) w I µ (1)w 1 = Iµ s k I µ (1) (1) (2) (w1 1 (k), w 1 1 (k + 1)) I µ 1 (ii) w 1 (k) < w 1 1 (k + 1) w (k) = ww1 1 (k) < ww 1 1 (k + 1) = w (k + 1).

64 2.3 Howlett-Lehrer 61 l(w) = l(w ) + l(w 1 ) µ (2),, µ (r) w 2,, w r α = w(i), β = w(i + 1) k µ d µ d+1 i µ d + 1 k < k + 1 i i + 1 k < k + 1 i + µ d+1 ws k w 1 = (w(k), w(k + 1)) I µ w(k) < w(k + 1) w(k + 1) = w(k) + 1 α > β i µ d + 1,, i i + 1,, i + µ d+1 } {{ }} {{ } µ d µ d+1 w µ β, β + 1, β + µ d+1 1 } {{ } µ d+1 α µ d + 1,, α } {{ } µ d µ 1 n w 1 i µ d µ d+1 w 1 (i) = w 1 (i) γ(w 1 ) = γ(w 1 ) + µd µ d+1 l(w) = l(w ) + l(w 1 ) 2.2 µ µ w S n (i) wi µ w 1 = I µ (ii) s k I µ w(k) < w(k + 1) e µ F GL n (q)e µ we µ I µ

65 62 2 Harish-Chandra I µ = 0 µ = µ = (1 n ) e µ F GL n (q)e µ we µ l(w) l(w) = 0 l(w) = 1 s S w = s e µ se µ se µ F GL n (q)e µ se µ q (n 2) (= Uµ (q) ) u U µ(q) e µ suse µ F GL n (q)e µ se µ U 1 = {u U µ (q) sus B n (q)} U 2 = {u U µ (q) sus B n (q)sb n (q)} sb n (q)s B n (q) B n (q)sb n (q) U µ (q) = U 1 U 2 u U 1 sus = sus 1 B n (q) µ = (1 n ) U µ (q) = U n (q) sus U µ (q) e µ suse µ = e µ U 1 = U µ (q) s 1 U µ (q)s = U 1 = q (n2) 1 u U 1 e µ suse µ = q (n 2) 1 e µ u U 2 t T n (q), u, u U µ (q) sus = tu su te µ = e µ t e µ suse µ = t(e µ u )s(u e µ ) = te µ se µ F GL n (q)e µ se µ

66 2.3 Howlett-Lehrer 63 u U 2 e µ suse µ F GL n (q)e µ se µ q (n2) 1 e µ F GL n (q)e µ se µ l(w) > 1 w = w s, l(w) = l(w ) + 1 e µ F GL n (q)e µ w e µ se µ l(w) = 1 e µ F GL n (q)e µ se µ F GL n (q)e µ w e µ se µ l(w s) = l(w ) + 1 w B n (q)s B n (q)wb n (q) U µ (q) = {u 1, u 2, } t i T n (q), u i, u i U µ (q) (i = 1, 2, ) w u i s = t i u iwu i 2) e µ w e µ se µ = q (n 2) q(n t i e µ we µ F GL n (q)e µ we µ. i=1 e µ F GL n (q)e µ w e µ se µ F GL n (q)e µ we µ I µ > 0 I ν I µ wi ν w 1 I µ µ ν I ν e ν F GL n (q)e ν we ν U ν (q) U µ ν (q) = L µ (q) U ν (q) U µ (q) ( e ν = e µ 1 ν e µ = U ν µ (q) u U µ ν (q) s k I µ (ii) w(k) < w(k + 1) u ) w(l µ (q) U n (q))w 1 U n (q) i < j u wu ν µ (q)w 1 (i, j) i j ν e µ s i, s i+1,, s j 1 I ν w 1 (i) w 1 (j) ν u (i, j) w 1 uw (w 1 (i), w 1 (j)) 0

67 64 2 Harish-Chandra wu µ ν (q)w 1 U ν (q) u U ν µ (q) e ν wuw 1 = e ν ( ) 1 e ν we ν = e ν w U ν µ u e µ (q) u U ν µ (q) ( ) 1 = e ν U ν µ wuw 1 we µ = e ν we µ (q) u U µ ν (q) e ν F GL n (q)e ν we ν e ν = e ν e µ e ν F GL n (q)e ν we µ = F GL n (q)e ν e µ we µ F GL n (q)e µ we µ l L µ (q) wlw 1 L µ (q) e µ e ν l F GL n (q)e µ (wlw 1 )we µ = F GL n (q)e µ we µ l(w) e µ F GL n (q)e µ we µ 2.8 w 1,, w r w = w r w 1 r. r = 0 µ = µ w r = 1 w = w a,b [c] e µ w 1 e µ we µ F GL n (q)e µ we µ u U µ (q) 1 n e µ w 1 uwe µ F GL n (q)e µ we µ c {}}{ µ : }{{} }{{} µ 1 µ k 1 µ : }{{} }{{} µ 1 µ k 1 }{{} µ k }{{} µ k+1 }{{} µ k+1 }{{} µ k }{{} }{{} w µ µ k µ k+1 µ µ k µ k+1 µ n

68 2.3 Howlett-Lehrer 65 µ = (µ 1,, µ k 1, µ k + µ k+1, µ k+2, ) w S eµ u U µ (q)( B n (q)) w 1 uw P eµ (q) 1.7 D µµ P µ (q)\ GL n (q)/p µ (q) D µµ S eµ P µ (q)\p eµ (q)/p µ (q) t D µµ S eµ U t = {u U µ (q) w 1 uw P µ (q)tp µ (q)} U µ (q) = U t t D µµ S eµ t D µµ S eµ e µ ( u U t w 1 uw)e µ F GL n (q)e µ we µ t D µµ t D µµ I ν = t 1 I µ t I µ ν = n 1.1 t 1 S µ t S µ = S ν ( 1 e ν = L µ (q) U ν (q) u L µ (q) U ν (q) u ) e µ e µ te ν = 1 L µ (q) U ν (q) u L µ (q) U ν (q) e µ (tut 1 )te µ. u L µ (q) U ν (q) tut 1 U µ (q) t D µµ s k I µ t(k) < t(k + 1) t(l µ (q) U n (q))t 1 U n (q) ts k t 1 I µ s k I ν tut 1 U µ (q) e µ te ν = e µ te µ u U t w 1 uw = u l tl u (u, u U µ (q), l, l L µ (q)) e µ (w 1 uw)e µ = l e µ te µ l = l e µ te ν l I ν I µ e ν l F GL n (q)e µ we µ

69 66 2 Harish-Chandra l e µ te ν l F GL n (q)e µ we µ ( e µ t D µµ S eµ ti µ t 1 =I µ u U t e µ (w 1 uw)e µ F GL n (q)e µ we µ u U t w 1 uw ) e µ F GL n (q)e µ we µ w(a, b ) (0 a a, 0 b b, a + b = a) 1, 2, a, a + 1,, a + b, a + 1,, a, a + b + 1,, a + b S a+b D µµ S eµ = {w(a, b )[c] 0 a a, 0 b b, a + b = a} a = a w(a, b )[c] = 1 t D µµ S eµ ti µ t 1 = I µ t 1 t = w(a, b )[c] 1 a < a (a, a + 1) I µ a = 0 a = b < b (a, a + b + 1) I µ a = b t = w, µ = µ ti µ t 1 = I µ t 1 t = w, µ = µ u U t=w w 1 uw = u l wl u (u, u U µ (q), l, l L µ (q)) e µ (w 1 uw)e µ = l e µ (wl w 1 )we µ = l e µ (wl w 1 )we µ = l (wl w 1 )e µ we µ e µ (w 1 uw)e µ F GL n (q)e µ we µ e µ ( u U 1 w 1 uw)e µ F GL n (q)e µ we µ

70 2.3 Howlett-Lehrer 67 U 1 = {u U µ (q) w 1 uw P µ (q)} = U µ (q) wp µ (q)w U µ (q) = I b., wp µ (q)w 1 = 0. 0 I a I a, I b a, b... U 1 = U µ (q) wp µ (q)w 1 = I b 0 0 I a U 1 wu µ (q)w 1 = I b 0 I a... u U 1 e µ (w 1 uw)e µ = e µ u U 1 e µ (w 1 uw)e µ = U 1 e µ e µ F GL n (q)e µ we µ r = 1 r > 1 w = w r w 2 w = w w 1 e µ (1) F GL n (q)e µ w e µ (1) w 1 e µ e µ F GL n (q)e µ (1)w 1 e µ F GL n (q)e µ w e µ (1)w 1 e µ w 1 = w a,b [c] µ µ (1) a b l(w) = l(w ) + l(w 1 ) µ (1) µ

71 68 2 Harish-Chandra a b I b w 1 Uµ (q)w U µ (1)(q) 0 I a... U µ (1)(q) w 1 U µ (q)w 1 1 =... I b 0 0 I a... r = 1 u U µ (1)(q) u U µ (q), u U µ (q) u = (w 1 u w )(w 1 u w1 1 ) = w 1 u wu w1 1 e µ w uw 1 e µ = e µ we µ u U µ (1) (q) e µ w uw 1 e µ = U µ (1)(q) e µ we µ e µ F GL n (q)e µ w e µ (1)w 1 e µ = F GL n (q)e µ we µ 2.2 µ, µ n, w S n P = P µ P = wp µ w 1 L = L µ Levi RL P G RL P G R G L P (M) = F GL n (q)e µ FL µ(q) RL P G (M) = F GL n(q)we µ w 1 M, FL µ(q) M

72 2.3 Howlett-Lehrer 69 L µ (q) = wl µ (q)w 1 w uwv (u S µ, v S µ ) (i) w 1 I µ w = I µ (ii) s k I µ w 1 (k) < w 1 (k + 1) 2.2 e µ F GL n (q)e µ w 1 e µ F GL n (q) g g 1 e µ e µ we µ F GL n (q) (i) (ii) (iii) wi µ w 1 = I µ (iv) s k I µ w(k) < w(k + 1) e µ F GL n (q)e µ we µ = F GL n (q)e µ e µ we µ ξ F GL n (q)e µ e µ = ξe µ we µ Φ : F GL n (q)e µ F GL n (q)e µ w 1, x xe µ we µ w 1 Φ(ξ) = ξe µ we µ w 1 = e µ w 1 Φ Φ x F GL n (q)e µ Φ(x) = 0 e µ e µ we µ F GL n (q) x = xe µ (xe µ we µ w 1 )wf GL n (q) = Φ(x)F GL n (q) = 0. Φ F GL n (q)- l L µ w 1 lw L µ (q) Φ(xl) = xle µ we µ w 1 = xe µ w(w 1 lw)e µ w 1 = xe µ we µ (w 1 lw)w 1 = Φ(x)l Φ (F GL n (q), FL µ (q))-.

73 70 2 Harish-Chandra 2.4 Harish-Chandra 2.10 F GL n (q)- S B(S) := {µ n R G L µ (S) 0} µ ν I µ I ν B(S) 2.9 S F GL n (q)- µ, ν B(S) w D µν wi ν w 1 = I µ P S 2.6 (a) (f) P R G L µ R G L µ (P ) R G L ν R G L ν (P ) 1 dim Hom F GLn (q)(p, S) dim Hom F GLn (q)(r G L µ R G L µ (P ), S) = dim Hom F GLn(q)(P, R G L µ R G L µ (S)) dim Hom F GLn(q)(R G L ν R G L ν (P ), R G L µ R G L µ (S)) = dim Hom F GLn (q)( R G L µ R G L ν R G L ν (P ), R G L µ (S)) RL G µ RL G ν ( RL G ν (P )) Mackey Q w = R wl νw 1 L µ wl ν w 1 ( w ( R G L ν (P ))) 2.4 Q w F(L µ (q) wl ν (q)w 1 )- dim Hom FLµ (q)(r Lµ L µ wl νw (Q 1 w ), RL G µ (S)) 0 w D µν w D µν F(L µ (q) wl ν (q)w 1 )- Q Hom FLµ (q)(r L µ L µ wl ν w 1 (Q), R G L µ (S))

74 2.4 Harish-Chandra 71 Hom F GLn (q)(rl G µ wl νw 1(Q), S) 0 I µ = I µ wi ν w 1 2.7(3) L µ (q) wl ν (q)w 1 = L µ (q) R G L µ 2.6 (a) (c) (S) 0 µ I µ = I µ I µ wi ν w 1 µ ν w D νµ I ν w I µ w 1 I µ = I ν I µ = wi ν w S F GL n (q)- µ B(S) RL G µ (S) X 1, X 2 w S n (i) wl µ (q)w 1 = L µ (q) (ii) X 1 w X 2 FL µ (q)- X 1 Soc( RL G µ (S)) X 2 w S n (i) (ii) P (X 2 ) X 2 [ RL G µ (S) : X 2 ] 0 Hom F GLn(q)(R G L µ (P (X 2 )), S) Hom FLµ(q)(P (X 2 ), R G L µ (S)) 0 RL G µ (P (X 2 )) S S P (S) P (S) S 0 φ 0 RL G µ (P (X 2 )) φ Rad P (S) P (S) Im(φ) Rad P (S) φ P (S) S φ

75 72 2 Harish-Chandra RL G µ (P (X 2 )) P (S) 0 P (S) P (S) R L G µ (P (X 2 )) X 1 0 Hom FLµ (q)(x 1, R G L µ (S)) Hom F GLn (q)(r G L µ (X 1 ), S) RL G µ (X 1 ) S [RL G µ (X 1 ) : S] 0 Hom F GLn(q)(P (S), R G L µ (X 1 )) 0 P (S) R L G µ (P (X 2 )) Hom F GLn (q)(r G L µ (P (X 2 )), R G L µ (X 1 )) 0 Mackey 1 dim Hom F GLn (q)(r G L µ (P (X 2 )), R G L µ (X 1 )) = dim Hom FLµ (q)( RL G µ RL G µ (P (X 2 )), X 1 ) = dim Hom FLµ(q)(R L µ L µ wl µ w R wl µw 1 1 L µ wl µ w ( w P (X 1 2 )), X 1 ). w D µµ w D µµ F(L µ (q) wl µ (q)w 1 )- Q Q R wlµw 1 L µ wl µw ( w P (X 1 2 )) R L µ L µ wl µ w 1 (Q) X 1 RL G µ R G L µ wl µ w 1(Q) RG L µ (X 1 ) RL G µ (X 1 ) S RL G µ wl µw 1(Q) S

76 2.4 Harish-Chandra 73 I ν = I µ wi µ w (a) (c) RL G ν (S) 0 ν B(S) µ I ν = I µ I µ wi µ w 1 I µ = wi µ w 1 wl µ (q)w 1 = L µ (q) Q = R L µ L µ wl µ w 1 (Q) X 1 Q R wl µw 1 L µ wl µ w ( w P (X 1 2 )) = w P (X 2 ) Q = w P (X 2 ) w P (X 2 ) w X 2 X 1 w X µ = n X cuspidal FL µ (q)- (L µ, X) cuspidal 2.12 S F GL n (q)- cuspidal (L µ, X) RL G µ (X) S S (L µ, X) F GL n (q)- S (L µ, X)- µ B(S) ν < µ RL G ν (S) (a) (c) FL ν (q)- Q RL G ν (Q) S RL G µ (X) S 0 RL G ν (Q) Hom F GLn(q)(RL G ν (Q), RL G µ (X)) 0 Mackey R G L µ R G L ν (Q) w D µν R Lµ L µ wl ν w 1 R wlνw 1 L µ wl ν w 1 ( w Q) w D µν P = R wl νw 1 L µ wl νw ( w Q) 1

77 74 2 Harish-Chandra Hom FLµ (q)(r L µ L µ wl νw 1 (P ), X) 0 X cuspidal I µ wi ν w 1 = I µ I µ wi ν w 1 I µ I ν ν < µ I ν I µ µ B(S) 2.3 S F GL n (q)- cuspidal (L µ, X) S n S (L µ, X)- S (L µ, X)- µ B(S) X Soc( RL G µ (S)) ν < µ R L µ L ν (X) = 0 R L µ 0 X R G L µ (S) 0 R Lµ L ν (X) R Lµ L ν RL G µ (S) = RL G ν (S) µ RL G ν (S) = 0 R L µ L ν (X) = X cuspidal FL µ (q)- Hom F GLn (q)(r G L µ (X), S) Hom FLµ (q)(x, R G L µ (S)) 0 RL G µ (X) S S (L µ, X)- S (L µ, X)- (L ν, Y ) µ ν B(S) 2.9 w D µν wi ν w 1 = I µ wl ν (q)w 1 = L µ (q) 2.2 R G L µ ( w Y ) = R G L µ wp ν w 1(w Y ) F GL n (q)- RL G µ ( w Y ) RL G ν (Y ) m wm (m RL G ν (Y )) F GL n (q)- w RL G ν (Y ) RL G ν (Y ) RL G µ ( w Y ) w RL G ν (Y ) N = GL n (q) / P ν (q) GL n (q) P ν (q) L ν

78 2.4 Harish-Chandra 75 N GL n (q)/p ν (q) = h i P ν (q) i=1 w R G L ν (Y ) = N i=1 h i FP ν (q) Infl Pν(q) L ν (q) (Y ) wgw 1 (g GL n (q)) wgw 1 h i y = gh i y (y Y ) GL n (q)/wp ν (q)w 1 = RL G µ ( w Y ) = N wh i w 1 i=1 N (wh i w 1 )wp ν (q)w 1 i=1 1 Infl wp ν(q)w FwP ν(q)w 1 L µ(q) ( w Y ) wgw 1 (g GL n (q)) wgw 1 wh i w 1 y = w(gh i )w 1 y (y Y ) Ψ : w RL G ν (Y ) RL G µ ( w Y ) h i y wh i w 1 y gh i = h j p (p P ν (q)) Ψ(wgw 1 h i y) = Ψ(gh i y) = Ψ(h j p y) = Ψ(h j py) = wh j w 1 py = wh j w 1 (wpw 1 ) y = wh j pw 1 y = wgw 1 wh i w 1 y = wgw 1 Ψ(h i y) Ψ F GL n (q)- RL G ν (Y ) RL G µ ( w Y )

79 76 2 Harish-Chandra S (L ν, Y )- (L µ, w Y )- (L ν, Y ) (wl ν w 1, w Y ) = (L µ, w Y ) S (L µ, X)- (L µ, w Y )- µ = ν µ = ν Hom F GLn (q)(r G L µ (X), S) 0, Hom F GLn (q)(r G L µ (Y ), S) 0 X, Y Soc( RL G µ (S)) 2.11 µ B(S) 2.10 w S n (i) wl µ (q)w 1 = L µ (q) (ii) X w Y (L µ, X) (L µ, Y ) 2.3 { F GL n (q)- } = (L µ, X)- (L µ,x) µ X (1) {µ = n} µ ν w S n wi µ w 1 = I ν {µ n}/s n µ (2) µ {µ n}/s n cuspidal FL µ (q)- X Y w S n wl µ (q)w 1 = L µ (q) X w Y X

80 F GL n (q)- Harish-Chandra (1) cuspidal (2) Harish-Chandra A Hecke (3) A Hecke (4) l- F GL n (q)- (1) GL n (q) cuspidal Gelfand (2) modular Howlett-Lehrer GL n (q) Dipper (3) Specht (4) foot index head index G FG- G l- (1), (2), (3) F GL n (q)- foot index GL n (q) l- head index (4) F GL n (q)- GL 2 (q) GL 2 (q) ( ) ( ) α 0 α 1, 0 α 0 α (α F q ) ( α ) 0 0 β ({α β} F q )

81 78 2 Harish-Chandra ( ) 0 α q+1 1 α + α q ([α] = {α, α q } F q 2 \ F q ) α F q 2 X α (α F q ) f α = (X α)(x α q ) (α F q 2 \ F q ) µ : F P F α F q f α (1 2 ), (2) F q {α β} F q f α, f β (1) [α] F q 2 \ F q f α (1) 1 ϕ, ψ : F q F T 2 (q) 1 ϕ ψ ( ) α 0 ϕ(α)ψ(β) (α, β F q ) 0 β (T, ϕ ψ) cuspidal (T, ϕ ψ) Harish-Chandra GL 2 (q)- End F GL2 (q)(rt G (ϕ ψ))- 1 F q F q l- (i) ϕ ψ End F GL2 (q)(rt G (ϕ ψ)) F Harish- Chandra (ii) ϕ = ψ End F GL2(q)(R G T (ϕ ψ)) F[T ]/(T 2 (q 1)T q) Harish-Chandra (a) l 3 q 1 2 (b) l q + 1 1

82 (i) ( ) α 0 0 β ({α β} F q ) l- (ii) (b) (a) RT G (ϕ det) ϕ det 2 cuspidal F GL 2 (q)- (a) RT G (ϕ det) cuspidal F GL 2 (q)- 2.1 P 1 (F q ) 1 ( ) a b z = az + b c d cz + d (z P 1 (F q )) GL 2 (q) P 1 (F q ) F GL 2 (q)- L l q + 1 L M = { c x x c x F, cx = 0} N = F ( x) x P 1 (F q ) M/N cuspidal F GL 2 (q)- cuspidal (iii) ψ : F q F 1 U 2 (q)- Fv ( ) 1 b v = ψ(b)v 0 1 GL 2 (q) V 2 (q) {( ) } 1 b V 2 (q) = b F q, d F q 0 d

83 80 2 Harish-Chandra M = Ind V 2(q) (Fv) M FV 2(q)- U 2 (q) M FV 2 (q)- (a) l 3 q 1 F q \ F 2 q l- Frobenius (b) l q + 1 F q l- Frobenius 2 F GL 2 (q)- cuspidal F GL 2 (q)- (iii) (a) (b) F q 2 \ F q l- Frobenius ( ) 0 α q+1 1 α + α q ([α] = {α, α q } F q 2 \ F q ) l- (ii) (b) l q + 1 (iii) (b) F q l- cuspidal F GL 2(q)- ( ) α 0, 0 α ( ) α 1 0 α (α F q ) l- 2.1 cuspidal F q l- cuspidal F GL 2(q)-

84 3 Hall 3.1 GL n (q) Brauer GL n (q) Lie 3.1 s GL n (E) E n E n = λ E{v E n sv = λv} g GL n (E) s GL n (E) gsg 1 GL n (E) GL n (q) 3.2 u GL n (E) (u 1) n = 0 u GL n (E) gsg 1

85 82 3 Hall GL n (E) 3.1 g GL n (E) (i) g = su = us (ii) u s (s, u) (iii) s p u p g GL n (E) p r m m p x, y xp r + ym = 1 s = g xpr, u = g ym (i) s m = 1 s s (ii) (u 1) pr = u pr 1 = 0 u g = su = us (s, u) (s, u ) s, u g = s u s s = g xpr u u = g ym s 1 s = u u 1 1 s 1 s = u u 1 = g = su Jordan 3.4 G p (a) g G p- g p (b) g G p- g p p GL n (q) q p g GL n (E) Jordan g GL n (q) GL n (E) GL n (q) g GL n (q) p- 3.1

86 3.1 GL n (q) 83 GL n (q) F GL n (q)- l- l F 3.5 (a) g GL n (q) l- g l (b) g GL n (q) l- g l l = 0 l- l- l- l p g = su Jordan u l- s 3.2 s GL n (q) (i) s = s l s l = s l s l (ii) s l l- s l (s l, s l ) (iii) s l, s l 3.1 l- l- l- l- (iii) s p (s l, s l, u) g GL n (q) (s l, s l, u) (gs l g 1, gs l g 1, gug 1 ) 3.3 GL n (q) (s l, s l, u) l- s l = 1

87 84 3 Hall g = s l s l u g = s l s lu h GL n (q) g = hgh 1 s = s l s l, s = s l s l s u = (hsh 1 )(huh 1 ) hsh 1, huh s l s l = s = hsh 1 = (hs l h 1 )(hs l h 1 ), u = huh s l = hs l h 1, s l = hs l h 1 F q - 1 F q [X] F = {f(x) F q [X] f(0) 0, f(x) } f F f(x) = X d + a 1 X d a d (a 1,, a d F q ) J(f) J(f) = 0 a d a2 1 a 1 s GL n (q) X s F q [X]- s 1 F q [X] n = F n q F q F q [X] F q [X]- F q F n q 0 F q [X] n X s F q [X] n F n q 0 X X F q [X] X s m f Z 0

88 3.1 GL n (q) 85 F n q f F (F q [X]/(f)) m f f F q [X]/(f) F q deg(f) F q [X]- F n q s GL n(q) GL n (q) {(m f ) f F m f Z 0, f F m f deg(f) = n} 3.6 s GL n (q) C G (s) = {g GL n (q) gs = sg} s C G (s) p C G (s) 3.4 g = su GL n (q) (i) s GL n (q) (ii) u C G (s) GL n (q) s GL n (q) g C G (s) 3.3 s GL n (q) C G (s) C G (s) = Aut Fq[X](F n q ) := End Fq[X](F n q ) GL n (q) X s F n q F q[x]- F n q f F (F q [X]/(f)) m f (A) (B) (C)

89 86 3 Hall 3.5 (A) f F F q [X]/(f) F q [X]- (B) f, f F f f Hom Fq [X](F q [X]/(f), F q [X]/(f )) = 0. (C) f F End Fq [X](F q [X]/(f)) F q deg(f). F q [X]/(f) V 0 c V F q [X]/(f) c 1 f X 1 V V = F q [X]/(f) F q [X]/(f) F q [X]- (A) f, f F f f F q [X]- ϕ : F q [X]/(f) F q [X]/(f ) (A) ϕ F q [X]- f 0 f (f ) f (f) (f) = (f ) f, f f = f (B) ϕ End Fq[X](F q [X]/(f)) ϕ(1) = a F q [X]/(f) ϕ a ϕ ϕ(1) F q - End Fq [X](F q [X]/(f)) F q [X]/(f) (C) 3.7 λ = (λ 1, λ 2, ) n λ = n λ 1 λ 2 λ n P = {λ n n Z 0 }

90 3.1 GL n (q) 87 λ n λ Young Young k λ k 3.1 λ = (5, 2, 2, 1, 0, 0, ) λ Young λ n Young k t λ k λ t λ n t λ = ( t λ 1, t λ 2, ) t λ k > 0 t λ k = max{j λ j k} λ = (5, 2, 2, 1, 0, 0, ) t λ = (4, 3, 1, 1, 1, 0, ) Jordan GL n (q) n 3.6 s GL n (q) C G (s) = Aut Fq [X](F n q ) f F GL mf (F q deg(f)) (m f ) f F C G (s) µ(f) m f F P {µ : F P µ(f) m f }

91 88 3 Hall (B) (C) p Jordan X F q [X]/(f) F q deg(f) f(x) = 0 α f α f F q deg(f) s C G (s) 3.6 s s End Fq [X](F q [X]/(f)) X End Fq[X](F q [X]/(f)) F q [X]/(f) F q deg(f) 3.6 s C G (s) f F GL mf (F q deg(f)), s (α f ) f F α f m f s l, s l s s = s l s l F q deg(f) α f F q deg(f) l- l- 3.8 α F Frobenius {α qk k Z/dZ} [α] q d #[α] 3.9 I = ( d1,, d N m 1,, m N [α 1 ],, [α N ] µ (1),, µ (N) ) (n, l)-index (i) µ (i) m i. (ii) α i F q d i l- l- β i F q #[α d i iβ i ] = d i β i F q d i

92 3.1 GL n (q) 89 (iii) N m i d i = n. i=1 1,, N (n, l)-index l = 0 α i Frobenius [α] F q d i f [α] = x [α] (X x) F q [X] (n, 0)-index f F deg(f) µ(f) = n µ : F P 3.10 (n, l)-index ( d1,, d N m 1,, m N I = [α 1 ],, [α N ] µ (1),, µ (N) ) head (i) #[α i ] = d i. (ii) [α 1 ],, [α N ] 3.1 (1) GL n (q) (n, 0)-index (2) GL n (q) l- head (n, l)-index GL n (q) (n, 0)-index 3.6 g l- g = su Jordan s l- (m f ) f F C G (s) µ(f) m f µ : F P

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

untitled

untitled W1A W1B W1C W1D W1E W1F W1G W1H W1I W1J W1K W1L W1N W1O W1P W1Q W1R W2A W2B W2C W2D W2F W2G W2H W2I W2J W2K W2L W2N W2O W2P W2Q W2R W3A W3B W3C W3D W3E W3F W3G W3H W3I W3J W3K W3N W3O W3P W3Q W3R W4A W4B

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Khovanov Lauda Rouquier Categorification,

Khovanov Lauda Rouquier Categorification, Khovanov Lauda Rouquer Categorfcaton, , 2011 12 5 9, Khovanov Lauda Rouquer Khovanov Lauda Rouquer Khovanov Lauda Rouquer Seok-Jn Kang, Shunsuke Tsuchoka, Myungho Km, Se-jn Oh ) 2013 12 1 Introducton 1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

<93FA97A AC C837288EA97972E786C7378>

<93FA97A AC C837288EA97972E786C7378> 日立ブラウン管テレビ一覧 F-500 SF-100 FMB-300 FMB-490 FMB-790 FMB-290 SMB-300 FMB-310G FMB-780 FMY-480 FMY-110 TOMY-100 FMY-520 FMY-320G SMY-110 FMY-510 SMY-490 FMY-770 FY-470 TSY-120 FY-340G FY-280 FY-450 SY-330

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information