21世紀の統計科学 <Vol. III>

Size: px
Start display at page:

Download "21世紀の統計科学 <Vol. III>"

Transcription

1 21 III HP, II 6 1 ( ) [email protected] 141

2 1 20 Journal of the Royal Statistical Society, Series B M.S. Bartlett, M.H. Quenouille, H. Wold, A.M. Walker, P. Whittle, E.J. Hannan, T.W. Anderson 1970 G.E.P Box G.M. Jenkins 1970 Time Series Analysis: Forecasting and Control identification estimation diagnostic checking Akaike (1973) AIC (Akaike s Information Criterion: ) GARCH

3 {X t } t {y t } 2 (i) E(y t )=μ (ii) Cov(y t,y t+h )=γ( h ) γ(h) =0(h = 0) 0 y t = α j ε t j, {ε t } i.i.d.(0,σ 2 ), α 0 =1, j=0 αj 2 < (2.1) j=0 i.i.d.(0,σ 2 ) 0 σ 2 i.i.d. 0 (2.1) {α j } {y t } E(y t )=0, Cov(y t,y t+h )=σ 2 j=0 α j α j+ h (2.2) 143

4 (2.1) Brockwell-Davis (1991), Fuller (1996) i.i.d. s t Cov(y s,y t ) s t γ( s t ) s t ρ(h) = γ(h) γ(0) = γ(h) V(y t ) = ρ( h) (2.3) h ρ(h) ρ(h) h

5 {y t } S = h= Cov(y t,y t+h ) = h= γ(h) (2.4) S (2.1) {α j } j α j = O( λ j ), ( λ < 1) S < α j = O(j d 1 ), (0 <d<1/2) S 145

6 {y t } ARMA(p, q) y t = m + φ 1 y t φ p y t p + ε t θ 1 ε t 1 θ q ε t q (2.5) {ε t } i.i.d.(0,σ 2 ) ARMA(p, q) φ(l) =1 φ 1 L φ p L p, θ(l) =1 θ 1 L θ q L q φ(l) y t = m + θ(l) ε t (2.6) ARMA(p, q) AR φ(x) =0 1 MA θ(x) =0 θ(x) =0 1 2 Anderson (1971) (2.6) ARMA(p, q) {y t } μ μ = m φ(1) = m 1 φ 1 φ p (2.6) ARMA(p, q) y t = μ + φ 1 (L) θ(l) ε t = μ + α j ε t j (2.7) j=0 α j φ 1 (L) θ(l) L j (2.7) ARMA MA( ) ARMA(p, q) AR( ) MA θ(x) =0 1 (2.7) ε t = θ 1 (L) φ(l)(y t μ) = β j (y t j μ) j=0 β j θ 1 (L) φ(l) L j ε t y t,y t 1, 146

7 ARMA(p, q) ARMA y t = ε t ε t 1 MA(1) ARMA MA MA 1 ARMA(2, 1) y t = y t y t 2 + ε t 0.5ε t L = L +0.64L ε 2 t (2.8) 5 ARMA(2, 1) σ 2 =1 AR ± i 0.48 = 0.8exp{±iπ/3} MA( ) (1 0.8L+ 0.64L 2 )(1 + α 1 L + α 2 L 2 + )=1 0.5L α 1 =0.3, α 2 = 0.4, α j =0.8α j α j 2 2 (2.8) ARMA(2, 1) 6 AR 6 re iω ω π/3 147

8 2 ARMA {y t } (2.4) S γ(h) Fourier f(ω) = 1 2π h= γ(h) e ihω ( π ω π) (2.9) f(ω) f(ω) {y t } 2π f(ω) [0,π] ω 2π/ω π

9 {γ(h)} (2.9) f(ω) f(ω) (2.9) e ihω [ π, π] ω γ(h) 1 γ(h) f(ω) γ(h) = π π f(ω) e ihω dω (2.10) 1 1 f(ω) (2.10) γ(0) ω f(ω) ω {u t } σ 2 f(ω) =σ 2 /(2π) y t = μ + α j ε t j, {ε t } i.i.d.(0,σ 2 ), j=0 αj 2 < (2.11) j=0 f y (ω) 2 f y (ω) = α j e ijω j=0 f ε (ω) = σ2 2π α(e iω ) 2 (2.12) α(x) = j=0 α j x j ARMA(p, q) (2.8) ARMA(2, 1) f y (ω) = σ2 2π 1 0.5e iω e iω +0.64e 2iω 2 (2.13) 149

10 3 σ 2 =1 ω = π/3 6 3 ARMA pi/2 pi ARMA Taniguchi- Kakizawa (2000) (2.10) (2006) 150

11 2.4 ARMA ARMA {y t } μ T y(t )=(y T,y T 1, ) h y T +h ŷ T +h (a) e T +h = y T +h ŷ T +h 0 (b) V(e T +h ) 2 y(t )=(y T,y T 1, ) y T +h y T +h V(e T +h ) y T +h =E(y T +h y(t )), V(e T +h) =E [ {y T +h E(y T +h y(t ))} 2] ARMA 0 ARMA(p, q) y T +h y T +h y T +h = φ 1 y T +h φ p y T +h p + ε T +h θ 1 ε T +h 1 θ q ε T +h q y j = y j (j T ), ε j = { εj (j T ) 0 (j>t) {ε t }. h MA( ) ARMA(p, q) y T +h = α j ε T +h j, α 0 = 1 (2.14) j=0 MA( ) y T +h = j=h α j ε T +h j, e T +h = h 1 j=0 α j ε T +h j, h 1 V(e T +h) =σ 2 αj 2 j=0 151

12 V(y t ) 2.5 ARMA ARMA AR p MA q ARMA(p, q) ARMA(p, q) φ(l) y t = θ(l)ε t, {ε t } i.i.d.(0,σ 2 ) (2.15) 0 0 φ =(φ 1,,φ p ), θ =(θ 1,,θ q ), σ 2 =V(ε t ) T φ θ 2 { } T T 2 φ(l) f(φ, θ) = ε 2 yt t = (2.16) θ(l) t=1 t=1 MA θ(l) MA ε t φ MA ε t NLSE ( 2 ) (2.16) Box-Jenkins-Reinsel (1994) 152

13 σ 2 φ θ NLSE ARMA(p, q) y =(y 1,,y T ) N(0,σ 2 Σ) Σ T φ θ L(φ, θ,σ 2 )= T 2 log(2πσ2 ) 1 2 log Σ 1 2σ 2 y Σ 1 y (2.17) φ θ (2.17) σ 2 y Σ 1 y/t σ 2 l(φ, θ) = T 2 log(y Σ 1 y) 1 log Σ (2.18) 2 φ θ MLE ( ) σ 2 ˆσ 2 = y ˆΣ 1 y/t ˆΣ Σ φ θ MLE MLE T Σ Σ 1 Box-Jenkins-Reinsel (1994) Brockwell-Davis (1991) MLE NLSE 3 ARMA β =(φ, θ ) NLSE MLE T (ˆβ β) N(0, Ω 1 ) ˆβ β MLE NLSE Ω β Fisher Ω= 1 ( E(ut u t ) E(u tv t ) ) σ 2 E(v t u t ) E(v tv t ) u t =(u t,,u t p+1 ), v t =(v t,,v t q+1 ) {u t }, {v t } AR(p) φ(l)u t = ε t AR(q) θ(l)v t = ε t

14 ARMA T ARMA(p, q) φ(l)y t = θ(l)ε t e t = y t p j=1 ˆφ j y t j + q j=1 ˆθ j e t j (t =1,,T) (2.19) h r h = T h t=1 e t e t+h Tt=1 e 2 t (h =1,,T 1) (2.20) ARMA(p, q) Trh N(0, 1) h 5% r h [ , ] T T 0 ±2/ T m p + q 2 Q = T m h=1 r 2 h, Q = T (T +2) m h=1 1 T h r2 h (2.21) ARMA(p, q) m p q χ 2 Q Box-Pierce Q Ljung-Box Q χ 2 154

15 Kullback-Leibler Akaike (1973) AIC ARMA(p, q) AIC AIC(p, q) = 2 +2(p + q + 1) (2.22) p q ARMA(p, q) AIC (2.22) 1 2 p + q AIC Schwarz (1978) SBC(p, q) = 2 +(p + q +1)logT (2.23) SBC 2 AIC 2 SBC SBC AIC 3 ARIMA ARFIMA d d I(d) I Integrated I(d) φ(l)(1 L) d y t = θ(l)ε t, {ε t } i.i.d.(0,σ 2 ) (3.24) d φ(l) =1 φ 1 L φ p L p, θ(l) =1 θ 1 L θ q L q 2 φ(x) =0,θ(x) =0 1 {y t } ARIMA(p, d, q) ARIMA I Integrated ARIMA ARIMA(0, 1, 0) y t = y t 1 + ε t = ε ε t, y 0 = 0 (3.25) 155

16 AR 1 y t = O p ( t) ARIMA(p, d, q) y t = O p (t d 1/2 ) ARIMA d ARMA (3.24) ARIMA(p, d, q) d ARFIMA(p, d, q) F Fractional d <1/2 d> 1/2 0 <d<1/2 (Hosking (1981)) 4 ARFIMA(p, d, q) 0 <d<1/2 ARFIMA(p, d, q) ARMA f(ω) = σ2 2π θ(e iω ) 2 1 e iω 2d φ(e iω ) 2, γ(h) = π π f(ω) e ihω dω (3.26) ARFIMA(0,d,0) γ(h) =σ 2 Γ(1 2d)Γ(h + d) Γ(d)Γ(1 d)γ(h d +1) (h >0) (3.27) (3.26) ω 0 f(ω) =O(ω 2d ) (3.27) ARFIMA(0,d,0) h γ(h) =O(h 2d 1 ) ARFIMA(p, d, q) Hosking (1981) ARFIMA(0, 0.45, 0) σ 2 =1 4 ARMA 156

17 ARFIMA ARMA Hosking (1996) 4 μ ARFIMA(p, d, q) T ȳ T 1/2 d (ȳ μ) = 1 ( ) T (y T d+1/2 t μ) N 0,σ 2 (d) θ2 (1) φ 2 (1) σ 2 (d) = lim T V ( 1 T d+1/2 t=1 ) T (1 L) d ε t = t=1 σ 2 Γ(1 2d) (1 + 2d)Γ(1+d)Γ(1 d) ARMA(p, q) d =0 157

18 ARFIMA d 1/4 Hosking (1996) ARIMA ARFIMA 1 L m SARIMA, SARFIMA S Seasonal Box-Jenkins-Reinsel (1994) Journal of Econometrics (1996), Vol AR(1) y t = ρy t 1 + ε t Δ y t = δy t 1 + ε t (Δ = 1 L, δ = ρ 1) (4.28) y 0 =0,{ε t } i.i.d.(0,σ 2 ) H 0 : ρ =1(δ =0) H 1 : ρ<1(δ<0) ρ δ LSE H 0 T δ LSE ˆδ H 1 : ρ =1 c/t (c ) (Phillips-Perron (1988)) T ˆδ = 1 Tσ 2 T t=2 y t 1 Δy t / 1 T 2 σ 2 T yt 1 2 t= Y (t) dy (t) Y 2 (t) dt {Y (t)} [0,1] Ornstein-Uhlenbeck (O-U) (4.29) dy (t) = cy (t) dt + dw (t), Y(0) = 0 Y (t) =e ct t 0 e cs dw (s) {W (t)} [0,1] (4.29) (Nabeya-Tanaka (1990)) 158

19 Fuller (1996), Tanaka (1996) ARMA AR MA AR MA MA(1) y t = ε t αε t 1, {ε t } i.i.d.(0,σ 2 ) (4.30) y t H 0 : α =1vs.H 1 : α<1 {y t } y t =(1 L)x t H 0 (1 L)x t =(1 L)ε t 1 L AR H 1 AR MA AR (4.30) {ε t } S T = 1 T y Ω 2 y y Ω 1 y (4.31) H 0 (LBIU) Ω y H 0 S T α =1 (c/t ) Tanaka (1996), (2006) S T n=1 [ 1 n 2 π 2 + c2 n 4 π 4 ] Z 2 n, {Z n } NID(0, 1) (4.32) MA Elliott- Rothenberg-Stock (1996) (2006) 159

20 5 1 Perron (1989) T B D t (T B )= { 0 (t TB ) 1 (t>t B ) (5.33) y t = α 0 + α 1 D t (T B )+η t, η t = ρη t 1 + ε t, {ε t } i.i.d.(0,σ 2 ) (5.34) ρ Perron (1989) Zivot-Andrews (1992), Vogelsang-Perron (1998) 1 Tong (1983) threshold ( ) AR y t = φ (1) 1 y t φ (1) p 1 + ε (1) t φ (2) 1 y t φ (2) p 2 + ε (2) t (x t <a ) (x t a a x t y t Hamilton (1989) 0 1 S t P (S t =1 S t 1 =1)=p, P (S t =0 S t 1 =1)=1 p 160

21 P (S t =0 S t 1 =0)=q, P(S t =1 S t 1 =0)=1 q ARCH GARCH EM MCMC 6 2 {x t } x =(x 1,x 2,,x T ) T T =2 J J x DWT Discrete Wavelet Transform w 1 w = W x, w =. w J v J, W = W 1. W J V J (6.35) W W j T/2 j j V J W J 1/ T w w j j T/2 j 1 T/2 j w J w v J 161

22 J V J v J = V J x = T x x x 3 (a) (b) (c) ARFIMA (a) (b) (c) (b) 5 1 ARFIMA(0, 0.45,0) T =

23 (c) ARFIMA ARFIMA Percival-Walden (2000) 7 VARMA m (p, q) y t =Φ 1 y t 1 + +Φ p y t p + ε t Θ 1 ε t 1 Θ q ε t q (7.36) {ε t } i.i.d.(0, Σ) y t ε t m Φ k,θ l,σ m m Φ(L) =I m Φ 1 L Φ p Θ(L) =I m Θ 1 L Θ q L q Φ(L) y t =Θ(L) ε t (7.37) Φ(x) =0 1 VMA m ( ) VARMA MA ARMA VAR VAR (1988), Hamilton (1994) VAR {y t } I(1) Δ y t Δ y t = C j ε t j = C(L) ε t (7.38) j=0 = [C(1) + (C(L) C(1))] ε t = C(1) ε t +Δ C(L) ε t C(L) { C(L)ε t } (7.37) (7.38) Φ(L)Δy t =Δε t =Φ(L) C(L) ε t 163

24 Φ(L) C(L) =ΔI m I m m Φ(1) C(1) = 0 (7.39) (7.38) Φ(1) (7.39) Φ(1) y t =Φ(1) C(L) ε t {y t } {y t } cointegration Φ(1) Johansen (1995) r VAR(p) (7.37) Φ(L) Φ(L) =Φ(1)L +Φ(L) Φ(1) L =Φ(1)L +ΔΓ(L) Γ(L) =I q Γ 1 L 1 Γ p 1 L p 1, p Γ j = Φ i i=j+1 VAR(p) Δy t = γα y t 1 +Γ 1 Δ y t 1 + +Γ p 1 Δ y t p+1 + ε t (7.40) γα = Φ(1) γ α q r r (7.40) ECM Error Correction Model: 1 {α y t 1 } I(1) r r ARIMA 4 1 Hamilton (1994), Johansen (1995) 164

25 8 ARIMA ARFIMA SARIMA, SARFIMA S Seasonal SARIMA Box-Jenkins-Reinsel (1994) SARFIMA Journal of Econometrics (1996), Vol. 73 (2006) Arellano-Bond (1991), Blundell-Bond (1998) Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley, New York. Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, Review of Economic Studies, 58, Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New York. Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models, Journal of Econometrics, 87, Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control, 3rd Edition, Holden-Day, San Francisco. Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 3rd Edition, Springer, New York. Elliott, G., Rothenberg, T. J., and Stock, J. H. (1996). Efficient tests for an autoregressive unit root, Econometrica, 64,

26 Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd Edition, Wiley, New York. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton. Hosking, J. R. M. (1981). Fractional differencing, Biometrika, 68, Hosking, J. R. M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series, Journal of Econometrics, 73, Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford. (2006). X-12-ARIMA CIRJE No. R-5 Nabeya, S. and Tanaka, K. (1990). A general approach to the limiting distribution for estimators in time series regression with nonstable autoregressive errors, Econometrica, 58, Percival, D. B. and Walden, A. T. (2000). Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis, Econometrica, 57, Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression, Biometrika, 75, Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, Tanaka, K. (1996). Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Wiley, New York. (2006).. Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series, Springer, New York. 166

27 Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis, Springer, New York. Vogelsang, T. J. and Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time, International Economic Review, 39, (1988).. Zivot, E. and Andrews, D. W. (1992). Further evidence on the great crash, the oil price shock, and the unit root hypothesis, Journal of Business and Economic Statistics, 10,

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

50-4 平井健之.pwd

50-4 平井健之.pwd GDP GNP Gupta 1967, Wagner and Weber 1977, Mann 1980, Abizadeh and Gray 1985, Ram 1987, Abizadeh and Yousefi 1988, Nagarajan and Spears 1990 GDP GNP GDP GNP GDP GNP Adolph Wagner Wagner 1967 Ram 1987,

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

橡同居選択における所得の影響(DP原稿).PDF

橡同居選択における所得の影響(DP原稿).PDF ** *** * 2000 13 ** *** (1) (2) (1986) - 1 - - 2 - (1986) Ohtake (1991) (1993) (1994) (1996) (1997) (1997) Hayashi (1997) (1999) 60 Ohtake (1991) 86 (1996) 89 (1997) 92 (1999) 95 (1993) 86 89 74 79 (1986)

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

2 [email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

(CFW ) CFW 1

(CFW ) CFW 1 DSGE * 1 * 2 2012 11 *1 2012 11 22 25 ( ) ( ) *2 3 (CFW ) CFW 1 1 3 1.1....................................... 3 1.2.................................. 5 2 DSGE 6 2.1.............................. 6 2.2.....................................

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

本文/YAZ092F

本文/YAZ092F pd qpdq pdqd pdq ytt f s e is s scovytyts fc d d L d ytt d LLytyt twn ytl d t L d jd jjd L j x z x e z dz pd q LL d ytltt twn z zd ytpdq f e i d e i e i f d pdq pdq d LL d ytlt fracdiff tt d d d pdq pdq

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

評論・社会科学 123号(P)☆/1.福田

評論・社会科学 123号(P)☆/1.福田 VECM 2002 1 2007 12 VECM 55 VECM 1 2 3 3-1ECM 3-2 3-3VECM 3-4 4 1 2017 9 28 2017 10 16 2 1 1 2015, 79-85 BLUEBest Linear Unbiased Estimator 1 Vector Error-Correction Model VECM II III VECM VECM 55 15-34

More information