<4D F736F F F696E74202D208FAC986690AF82CC89C28E8B91AA8CF58ACF91AA82A982E789BD82AA82ED82A982E982A92E B8CDD8AB B83685D>

Size: px
Start display at page:

Download "<4D F736F F F696E74202D208FAC986690AF82CC89C28E8B91AA8CF58ACF91AA82A982E789BD82AA82ED82A982E982A92E B8CDD8AB B83685D>"

Transcription

1 第 4 回系外惑星トランジット観測研究会 第 7 回小惑星ライトカーブ研究会合同研究会 小惑星の可視測光観測から 何がわかるか 安部正真 JAXA

2 本日の話 小惑星ライトカーブ研究会究会 ライトカーブから何がわかるか 上記の話に 多色測光観測から何がわかるか を加えてまとめてみます できれば最近の話題も

3 ライトカーブ観測から何がわかるか

4 ライトカーブとは 天体の 測光 値 ( 明るさ ) の時間的な変化 絶対測光 : 地上に届く光のフラックスを測定 相対測光 : フラックスの変化 ( 差 ) を相対的に測定 M 2.5log F F *M M は等級 F はフラックス

5 明るさの変化の要因 ( 小惑星の場合 ) 太陽光入射量の変化 太陽からの距離の変化 見た目の断面積の変化 地球からの距離による変化 自転による変化 観測方向の変化 他の天体による掩蔽 表面の光散乱特性の変化 反射率の変化 表面物質 ( 状態 ) の違い 太陽光の入射条件の変化 観測方向の変化 ( アウトバーストなどの突発現象 )

6 ライトカーブ観測から得られる情報 自転周期 形状 自転軸の向き 大きさ 反射率 表面の光散乱特性 衛星の有無 歳差運動 ( 非主軸回転 ) の有無 YORP 効果の検出 突発現象

7 るさ自転周期明時間 1 自転周期 W h 通常は最大光度 2 回 最小光度 2 回で1 自転周期 Relativ ve Magnitude Wachmann 自転 1 周期 Rotational Phase Minor Planet Bulletin 35 (2008)

8 形状 断面積 S は S=π(abc)[sin 2 A(sin 2 (ψ)/a 2 +cos 2 (ψ)/b 2 )+cos 2 (A)/c 2 ] 1/2 ここで a,b,c, は回転楕円体の各軸半径 A はaspect angle ψ は自転位相角 最大断面積は S M =π(abc)[sin 2 (A)/b 2 +cos 2 (A)/c 2 ] 1/2 最小断面積は S m =π(abc)[sin 2 (A)/a 2 +cos 2 (A)/c 2 ] 1/2 A=0 A0 のとき S M / S m =a/b 太陽位相角 α=00 のとき 明るさは 断面積にほぼ比例している Pospieszalska Surdej and Surdej(1985)

9 形状 Cellino et al. (1989)

10 形状 (Itokawa の例 ) Kaasalainen et al. (2003) Ostro et al. (2004)

11 自転軸の向き 振幅の変化から推定 (Amplitude d 法 ) 自転周期の変化から推定 (Epoch 法 ) Magnusson et al Magnusson et al. 1992

12 Amplitude 法 ライトカーブの振幅の変化から自転軸の向き 形状を推定する方法. 自転軸が横倒し 自転軸が垂直 自転軸が斜め ( b / c) cos sin B, ) 1.25log ( b / c) cos ( b / a) sin (1 ) ( 2 2 観測値 理論値 B は振幅 φ は Aspect angle α は太陽位相角 a,b,c は 3 軸の長さ Β は太陽位相角に伴う振幅の変化の補正係数 Magnusson (1986)

13 Epoch 法 ライトカーブの位相のズレから自転の方向 自転軸の向きを推定する方法. i 観測値 理論値 ( T T i 0 n i i 0 P 2 N 1 ) 2 T 0,T i はstandard featureの現れた時刻 Pは対恒星自転周期 n i はT 0 からT i までの自転数 θ 0,θ i はT 0,T i における小惑星中心座標での観測方向の経度 ( 太陽位相角が 0deg でない場合は 観測方向ではなくPAB 方向 ) Magnusson (1986)

14 自転軸の向き (Itokawa の例 ) Amplitude 法 Epoch 法 自転軸 : 黄経 320±30deg 黄緯 75±12deg 軸比 :a:b:c=1:0.47±0.09:0.29±0.06 という解を得た Ohba et al. (2003)

15 太陽位相角に伴うライトカーブの変化 自転位相がずれる 振幅が変わる 平均の明るさ が変わる Surdej and Surdej (1978)

16 太陽位相角に伴う自転位相のずれ PAB(phase angle bisector) を考えると自転位相のずれはなくなる 自転軸 最小光度最大光度 0 太陽方向 PAB 最大光度 最小光度 90 観測方向 PAB PAB PAB 方向の断面積が最大のとき最大光度

17 太陽位相角に伴う振幅の変化 Zappalaの式 B( ) (1 m ) B(0) B は振幅 α は太陽位相角 m は係数 Zappala et al.(1990) ではmはスペクトルタイプによって違っていて ていて S type , C type 0.015, M type 0.013とした 図 S type( 青 ) C type( ( 赤 ) の太陽位相角に伴う振幅の変化異なる形状に対する振幅の変化を表しており 上から順にa/b=1.25,1.50,2.00,2.50を仮定 両タイプ同様な変化をしていることがわかる Ohba et al.(2003) はラフネスと m に関係があることを見出した 図 θ(deg) vs.m. x 軸は θ y 軸は m

18 太陽位相角に伴う平均等級の変化 H ( ) H (0) 2.5 log[( 1 G ) ( ) G ( )] ( 1 2 H(α) は太陽位相角 α の時の Reduced magnitude Reduced magnitude: 日心距離 地心距離を 1AU に換算した等級 H(0): 絶対等級 : 大きさの指標 G: slope parameter: 反射率 ( スペクトルタイプ ) との関係 C type:g=0.09~0.15 S type:g=0.23~0.25 E type:g=0.40~0.42 H D [ km] / D: 直径 H:Vバンド絶対等級 Muinonen et al. (2002) Bowell et al. (1989) P v :Vバンド反射率( ジオメトリックアルベド ) Harris (1998) P V

19 光散乱特性 光散乱特性のモデルにはいろいろある ( 反射率の定義にもいろいろあるがここではろあるが Bidirectional reflectanceで考える ) AL Lambert: 等方拡散 r cos(i) cos( i) Lumme selger r 4 cos( i) cos( e) Hapke:L SL S に多重散乱やroughness の効果を導入 1 cos( i ) cos( e ) L&L S: r cos( i) c f ( ) 観測する方向に依らず一定の明るさ i=e (α=0) のとき一定 I Jr( i, e, ) Hapke (1993)

20 衛星の有無 Merline et al. (2002) Pravec et al. (2000)

21 MBA と TNO のバイナリ小惑星 NO TN MBA Merline et al. 2002

22 NEA のバイナリ小惑星 Merline et al. 2002

23 Rs/Rp と a/rp の分布 compiled by Wm. Robert Johnston last updated 29 November

24 小惑星の自転周期の分布 Pravec et al. 2002

25 小惑星の自転周期の分布 Paolicchi et al. 2002

26 非主軸回転が検出された小惑星 Paolicci et al. 2002

27 Toutatis の例 Hudson et al. (2003) Mueller et al. (2002)

28 YORP(Yarkovsky O keefe Radzievskii Paddack) 効果 Bottke et al. 2002

29 小惑星 Itokawa で YORP 効果が検出さ れる可能性 Itokawa での見積もり Vokrouhlicky et al. 2004

30 (1620) Geographos での YORP の検出例 Durech et al 2008 初めて YORP を検出した小惑星 (54509) 2000PH5 は YORP という名前が付けられた

31 (2060) Chiron の増光 Bus et al, 2001

32 ライトカーブ観測まとめ ライトカーブ観測から 小惑星の自転周期 形状 自転軸の向きなどがわかる さらに光散乱特性を調べることにより小惑星の表面物質や状態が分かる可能性がある さらに衛星の検出や歳差運動および YORP 効果の検出ができると 小惑星の内部に関する情報 ( 密度など ) や熱物性の情報が得られる可能性がある 多くの観測結果をつないで総合的に解析することは重要である

33 多色測光観測から何が分かるか

34 多色測光とは 波長の異なる光を測光すること 小惑星は主に太陽光の反射で光っているので可視光の強度が強く 多色測光も主に可視光で行われる 熱輻射を調べるためには熱赤外の波長での多色測光もある 初期は写真による測光が行われ UBV U,B,V バンドの多色測光が主流であったが CCDの登場により CCDの感度の高い長波長側での観測が多くなり VRI V,R,I バンドの多色測光が主流 多色測光による色の違いは 主に小惑星の表面反射率の波長による違いを反映しており 調べたい目的に応じて観測する波長や使用するバンドパスフィルターが選択される

35 多色測光からわかる情報 小惑星の色の違いから小惑星を分類する 小惑星の色の違いによるグループと対応する隕石や鉱物種との関係を明らかにして 小惑星の表面物質を推定する 小惑星の色の違いの情報と別視点の情報を組み合わせて更なる議論を行う 軌道長半径との関係 ; 太陽系の大局的な物質分布の解明 小惑星の族メンバー内での関係 : 母天体の内部構造に関する議論 小惑星 ( 族 ) の年齢との関係 : 宇宙風化年代と小惑星の色の変化の関係 彗星との関連や流星群との関連など別の天体との関連を調べる際にも用いられる ライトカーブデータ : 小惑星の表面の物質分布や不均一性についての議論

36 多色測光観測と分光観測の違い 多色測光観測 (BVRIフィルター ) 1.4 < 中心波長 > B:429.3nm 1 V:542.9 nm 0.8 R: nm I: nm Reflectance 分光観測 1999YB wavelength (nm) 分類法 S, C +α 27 種類 どの望遠鏡にも一般的に装備されている (Bus & Binzel 2002) 詳細な鉱物吸収の特徴がわかる 細かい分類はできない 明るい天体しか観測できない

37 小惑星の分類 ~ 多色測光による分類 ~ standard UBV 1950 s~ μmの3 色 filter (Degewij et al., 1978) Asteroid 24 color Survey 1970 s~ μm100μm の 26 色 filter (Chapman & Gaffey 1972) Eight Color Asteroid Survey μmの8 色 filter (Zellner et al. 1985, Tholen 1984) Seven Color Asteroid Survey μmの7 色赤外フィルター (Clark et al., 1995) 1 Ceres (C) 2 Pallas (B) 3 Juno (S) 4 Vesta (V) 5 Astraea (S) ECAS database より

38 Tholen 方式 分類スキーム 1PCA( 主成分分析 ) 8 要素の組み合わせから 7 次元空間で最も分散の大きい軸から順に PC1( 第 1 主成分 ) PC2( 第 2 主成分 ) を求める PC1: 紫外域の吸収 PC2: 1μm の吸収 2クラスター分析主成分プロットで 最近傍点を結んで関連付ける 枝の長い順に切断してクラスターとしてグループ化する Minimal i Tree Diagram Tholen (1984) D X C T F G B S Tholen style 15 type 11complex C{B,F,G}, X{E,M,P}, S, A, D, T, Q, R, V V Q R A

39 小惑星の分類 ~ 分光観測による分類 ~ Asteroid At id52 color Survey μmの赤外分光測光 (Bell et al., 1988) Small Mainbelt Asteroid Spectroscopic Survey μmの可視分光 (Binzel et al., 2002) SS 3 OS 2 1 Ceres (C) μmの可視分光 (Lazzaro et al., 2004) 2 Pallas (B) 3 Juno (S) 4 Vesta (V) 5 Astraea (S) SMASS database より

40 分類スキーム slope, PC2, PC3 の 3 成分で分ける 10.55μm で規格化したスペクトルを fitting して, slope を求める Bus 方式 C-complex X-complex 2 求めた slope で normalize して flat にしたあとで PCA( 主成分分析 ) によって PC2 とPC3 を求める PC2 : 1μmの吸収 S-complex Bus style PC3 : <0.55μm と 0.7μm の吸収 26 type 13 Complex C{B,Cb,C,Cg,Ch,Cgh} S{A,K,L,Q,R,S,Sa,Sk,Sl,Sq,Sr} X{X,Xc,Xk,Xe} Xc Xk Xe} T, D, O, V, U

41 小惑星のタイプとスペクトル Johnson system のフィルター波長 U 3500A B 4350A V 5550A R 6800A I 8250A

42 小惑星の分類と推定される表面物質および対応する隕石 (Gaffey et al. (1989) Table III より )

43 小惑星のカラー決定の例 2001SN263 各バンドの R バンドとの等級差を求める. カラー変換 太陽カラーを引く / SN263 B Instrum mental Ma ag 14.6 I 14.4 V 14.2 R UT Kawakami 2009

44 小惑星の多色測光の例 2001SN 年の 2 月にかなり明るくなった NEO /12 木曽でライトカーブ取得, /28 多色測光実施 2/28 7 セット C 型の可能性が高い. C 型 ( アルベド0.04) の3 重小惑星. 自転周期は 3 時間以上. 自転周期は 時間. Nolan M.C. et al. (ACM2008)

45 小惑星の分類と 太陽からの距離による分布 より始原的な天体 タギシュレイク隕石? D-type 広義の S 型 太陽からの距離 岩石質 普通コンドライト S-type 広義の C 型 有機物や含水鉱物に富む 炭素質コンドライト 45 (Gradie et al. (1982) Fig.1 より ) C-type 反射スペクトルによる小惑星の分類

46 Sloan Digital Sky Survey (SDSS) で 観測された小惑星の色分け 横軸のa* はSDSSの観測で使用した5 色フィルタ (u, g, r, i, z それぞれの中心波長は 355.1nm, 468.6nm, 616.6nm, 748.0nm, 893.2nm) のうち4つを用いて a*=0 a=0.89(g -r )+0 )+0.45(r -i )-0 -i)-0.57 と定義されるカラー a*<0の小惑星を青い小惑星 a*>0を赤い小惑星として分布が二極化しているとしている SDSS で観測された 6612 個の小惑星の色分け (Ivezić et al. (2002) Fig.2 より )

47 SDSS で観測された 6612 個の 小惑星の場所による色の違い 太陽からの距離の遠い側に青い小惑星が多く 太陽から近い側に赤い小惑星が多いことがわかる また太陽からの距離が同じでも軌道傾斜角が違うと 場所ごとに小惑星の色が違っていて 同じ色の小惑星が狭い範囲に集中している様子も見受けられる SDSS で観測された 6612 個の小惑星の場所による色の違い (Ivezić et al. (2002) Fig.3 より )

48 小惑星 ( 族 ) の年齢との関係 : 宇宙風化年代と小惑星の色の変化の関係 Vernazza et al Fig.3 より

49 Torojan, Centaurs TNO のカラー Barucci et al. 2002

50 ライトカーブとカラー変化 2003 年 2004 年 Ito and Yoshida 2007

51 多色測光まとめ 表面物質を調べるという意味ではスペクトルの方が情報が多い しかし 暗い天体や短い積分時間でした観測できない天体については 多色測光の方が有利 幸い小惑星のスペクトルは吸収バンドがブロードなので 多色測光でもかなりのことは言える 多色測光の難しさは同時観測がしにくいこと ただし この点も同時多色観測装置を用いることで解消 そういった装置が実現しつつある

52 参考文献 (1) A.Pospieszalska Surdej and J.Surdej, Determination of the pole orientation of an asteroid. The amplitude aspect relation revisited Astron. Astropys. 149, (1985) A.Cellino and V.Zappala and P.Farinella, Asteroid Shape and lightcurve morphology Icarus 78, (1989) S. Ostro et al., Radar observations of asteroid Itokawa (1998 SF36) Meteoritics &Planetary Science 39, (2004) M.Kaasalainen et al., CCD photometry and model of MUSES C target (25143) 1998 SF36 A&A 405, L29 L32 (2003) P.Magnusson et al., Determination of pole orientations and shapes of asteroids in Asteroids II (eds. Binzel et al), (1989) P.Magnussonet al., Asteroid 951 Gaspra:Pre Galileo Galileo physical model Icarus 97, (1992) P.Magnusson, Distribution of spin axes and senses of roation for 20 large asteroids Icarus 68, 1 39 (1986) A.Surdej and J. Surdej, Asteroid lightcurves simulated by the rotation of a three axes ellipsoid model Astron. Astrophys. 66, (1978) V.Zappala et al., An analysis of the amplitude phase relationship among asteroids Astron. Astrophys. 231, (1990) Y.Ohba et al., Pole orientation and triaxial ellipsoid shape of (25143) 1998 SF36, a target asteroid of the MUSES C mission Earth Planets Space, 55, (2003) K.Muinonen et al., Asteroid photometric and polarimetric phase effects in AsteroidsIII (eds. Bottke et al.), (2002)

53 参考文献 (2) E.Bowell et al., Application of photometric t models to asteroids in Asteroids II (eds. (d Binzel et al.), l) (1989) A.Harris, A thermal model for near earth asteroids Icarus 131, (1998) B.Hapke, Theory of reflectance and emittance spectroscopy py pp.455, Cambridge Univ. Press (1993) W.Merline et al., Asteroids do have satellites in Asteroids III (eds. Bottke et al.), (2002) P.Pravec et al., Two period lightcurves of 1996 FG3, 1998 PG, and (5407) 1992 AX: One probable and two possible binary asteroids Icarus 14, (2000) P.Pravec et al., Asteroid rotations in Asteroids III (eds. Bottke et al.), (2002) P.Paolicchi et al., Side effects of collisions: Spin rate changes, tumbling rotation states, and binary asteroids in Asteroids III (eds. Bottke et al.), (2002) R.Hudson et al., High resolution model of asteroid 4179 Toutatis Icarus 161, (2003) B. Mueller et al., The diagnosis of cmplex rotation in the lightcurve of 4179 Toutatis and potential applications to other asteroids and bare cometary nuclei Icarus 158, (2002) W. Bottke Jr et al., The effect of Yarkovsly thermal forces on the dynamical evolution of asteroids and meteoroids in Asteroids III (eds. Bottke et al.), D. Vokrouhlicky et al., Detectability of YORP rotational slowing of asteroid Itokawa A&A 414, L21 24 (2004)

54 参考文献 (3) J.Durech et al., Detection ti of the YORP effect in asteroid id(1620) Geographos A&A 489,L25 L28 L28 (2008) S. J., Bus et al., (2060) Chiron Evidence for Activity near Aphelion Icarus 150 pp (2001) C.R., Chapmann and M.J., Gaffey Refrectancespectrafor277asteroids Asteroids,pp (1979) B. Zellner, D.J., Tholen, and E.F.,Tedesco The eight colorasteroid survey: results for 589 minor planets Icarus, 61, pp (1985) D.J., Tholen Asteroid Taxonomy from Cluster Analysis of Photometry PhD thesis, University of Ai Arizona, R.P., Binzel, D.F., Lupishko, M.D., Martino, R.J., Whiteley, and G.J., Hahn. Physical properties of Near Earth Objects Asteroids III,pp (2002) D.Lazzaro, C.A.Angeli, J.M.Carvano, T.Mothe Diniz, R.Durard, and M.Florczak. s3os2: the visible spectroscopic survey of 820 asteorids Icarus, 172, pp (2004) Clark, B. E., J. F. Bell, F. P. Fanale, and D. J. O Connor, Results of the Seven Color Asteroid Survey: Infrared Spectral Observations of ~50 km Size S, K, and M Type Asteroids, Icarus, 113, , Gaffey, M. J., J. F. Bell, and D. P. Cruikshank, Reflectance Spectroscopy and Asteroid Surface Mineralogy, in Asteroids II (Eds. R. P. Binzel, T. Gehrels, and M. S. Matthews), , Gradie, J., and E. Tedesco, Compositional Structure of the Asteroid Belt, Science,, 216, , 1982.

55 参考文献 (4) Ivezić, Ž., R. H. Lupton, M. Jurić, S. Tb Tabachnik, hikt. Quinn, J. E. Gunn, G. R. Knapp, C. M., Rockosi, and J. Brinkmann, Color Confirmation of Asteroid Families, Astron. J., 124, , Vernazza et al, Solar wind as the origin of rapidredening of asteroid surfaces Nature, 458, , 2009 M.A. Barucci, D.P. Cruikshank, S. Mottola, and M. Lazzarin Physical Properties of Trojan and Centaur Asteroids Asteroids III,pp (2002) T. Ito and F. Yoshida Colr Variation of a Very Young Asteroid, Karin PASJ, 59, (2007)

ライトカーブ観測から何がわかるか

ライトカーブ観測から何がわかるか 2004.7.2 M 2.5log F F 10 0.4*M M F S= (abc)[sin 2 A(sin 2 ( )/a 2 +cos 2 ( )/b 2 )+cos 2 (A)/c 2 ] 1/2 a,b,c A aspect angle S M = (abc)[sin 2 (A)/b 2 +cos 2 (A)/c 2 ] 1/2 S m = (abc)[sin 2 (A)/a 2 +cos

More information

Microsoft PowerPoint - Abe.ppt

Microsoft PowerPoint - Abe.ppt 日本の小惑星探査候補天体の地上観測 安部正真西原説子北里宏平猿楽祐樹長谷川直 観測の目的 探査対象となりうる Itokawa より始原的な小惑星を探す (2543) Itokawa 小惑星探査機 HAYABUSA 次期小惑星探査計画では 始原的タイプの小惑星での サンプルリターンを目指す 今まで探査機が訪れた小惑星 小惑星のタイプ スペクトルタイプ 表面組成を反映している 小惑星は隕石の故郷と考えられる

More information

高軌道傾斜角を持つメインベルト 小惑星の可視光分光観測

高軌道傾斜角を持つメインベルト 小惑星の可視光分光観測 高軌道傾斜角を持つメインベルト小惑星の可視光分光観測 天文 天体物理夏の学校 @ 福井神戸大学 M2 岩井彩 背景 小惑星岩石質の太陽系小天体であり 彗星活動を行わない 分類軌道長半径による空間分布可視光波長域のスペクトル形状 ( 大きく 5 種類 ) 空間分布による分類 メインベルト ( 小惑星帯 ) 太陽から 2.1-3.3AU 離れた環状の領域軌道が確定した小惑星の約 9 割が存在 トロヤ群木星のラグランジュ点

More information

3

3 3 Introduction... Ceres, Juno, Vesta, Ida, Mathilde, Eros, Gaspra, Itokawa Ceres Juno, Vesta, Ida, Eros, Gaspra. Surface Color Variation of Ida and Vesta Ida: 48-49 37-40 352-355 337-341 307-311 277-280

More information

PowerPoint Presentation

PowerPoint Presentation Sgr A* の赤外線観測 西山正吾 ( 京都大学 ) NIR obserbvations of the Galactic center 2/46 NIR obserbvations of the Galactic center 3/46 NIR obserbvations of the Galactic center 4/46 Dereddened flux density [mjy] 40 20

More information

SFN

SFN THE STAR FORMATION NEWSLETTER No.291-14 March 2017 2017/04/28 16-20 16. X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics 17. The evolution

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

(2010 Sep April) Titan s global crater population: A new assessment Neish & Lorenz, PSS in-press Distant secondary craters from Lyot crater, Mar

(2010 Sep April) Titan s global crater population: A new assessment Neish & Lorenz, PSS in-press Distant secondary craters from Lyot crater, Mar 2011.5.12 D1 1 (2010 Sep.-2011 April) Titan s global crater population: A new assessment Neish & Lorenz, PSS in-press Distant secondary craters from Lyot crater, Mars, and implications for surface ages

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5.

Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Type Ia Supernova Survey w/ WISH Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Type Ia Supernova + +?? (single degenerate)?

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

Microsoft PowerPoint CPSセミナー.ppt [Compatibility Mode]

Microsoft PowerPoint CPSセミナー.ppt [Compatibility Mode] 小惑星の可視 近赤外反射スペクトル解析法とその応用 二村徳宏 日時 : 202 年 2 月 8 日水曜日 5:00-6:00 場所 : CPS セミナー室 目次 はじめに 宇宙風化モデル 鉱物の吸収帯の特徴を組み込んだ修正ガウス関数モデル 目的 6 Hebe 433 Eros 2543 Itokawaの宇宙風化度および組成の推定と解釈 はじめに 固体天体の岩石 それを構成する鉱物鉱物 鉱物を構成する化学組成化学組成

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

族小惑星の観測(D0401)

族小惑星の観測(D0401) ? 10/14,15 -K.3T :4796, 6611 11/12,13,15-Schmidt :2508, 10285, 10320 amplitude (phase angle=0deg) [mag] 0 0.1 0.2 0.3 0.4 2508 Alupka (P=17.70 hour) 11/12-1.05m Schmidt 11/13-1.05m Schmidt 11/15-1.05m

More information

LEDの光度調整について

LEDの光度調整について 光測定と単位について 目次 1. 概要 2. 色とは 3. 放射量と測光量 4. 放射束 5. 視感度 6. 放射束と光束の関係 7. 光度と立体角 8. 照度 9. 照度と光束の関係 10. 各単位の関係 11. まとめ 1/6 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

untitled

untitled 小惑星探査ミッション はやぶさ 2 第 回宇宙科学シンポジウム 年 月 日 宇宙航空研究開発機構宇宙科学研究所 吉川真 ( ) はやぶさ 2 プロジェクト準備チーム 1 現状のまとめ はやぶさ のカプセルが地球帰還し はやぶさ ミッションの経験がフルに生かせる状況になった 来年度 (H23 年度 ) に はやぶさ 2 の予算が認められた 今年度内のプロジェクト移行を目指して いろいろな作業を継続している

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

プラズマ バブルの到達高度に関する研究 西岡未知 齊藤昭則 ( 京都大学理学研究科 ) 概要 TIMED 衛星搭載の GUVI によって観測された赤道異常のピーク位置と 地上 GPS 受信機網によって観測されたプラズマ バブルの出現率や到達率の関係を調べた 高太陽活動時と低太陽活動時について アジア

プラズマ バブルの到達高度に関する研究 西岡未知 齊藤昭則 ( 京都大学理学研究科 ) 概要 TIMED 衛星搭載の GUVI によって観測された赤道異常のピーク位置と 地上 GPS 受信機網によって観測されたプラズマ バブルの出現率や到達率の関係を調べた 高太陽活動時と低太陽活動時について アジア プラズマ バブルの到達高度に関する研究 西岡未知 齊藤昭則 ( 京都大学理学研究科 ) 概要 TIMED 衛星搭載の GUVI によって観測された赤道異常のピーク位置と 地上 GPS 受信機網によって観測されたプラズマ バブルの出現率や到達率の関係を調べた 高太陽活動時と低太陽活動時について アジア地域とアメリカ地域においてそれらの関係を調べたところ 赤道異常高度とプラズマ バブルの出現頻度に強い相関が見られたのは

More information

理論懇2014

理論懇2014 Proposal for a project of high-precision stellar radial velocity work, Struve (1952)! But there seems to be no compelling reason why the hypothetical stellar planets should not, in some instances, be much

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

天文データ解析概論

天文データ解析概論 天文データ解析概論 ~ もし天 2012 に向けて ~ by 2011 年度観測班 : チーム 48 2 0 天体観測序論 天文における天体観測とは ( イメージ ) きれいな天体に望遠鏡を向けて覗き込んで見てる : 間違ったイメージ! 天文における天体観測とは ( 現実 ) 目 ではなく カメラ 目のデメリット 1 一瞬の画像しか見れない ( 光を貯められない ) 2 見れる波長域 ( 色 ) が限られてるカメラのメリット

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

1. : 1.5 2. ( ): 2.5 3. : 1 ( ) / minimum solar nebula model ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif ( ) SDSS : d 2 r i dt 2 ÿ j i

More information

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を回るカリストまたはその内側のガニメデが 木星から最も離れる最大離角の日に 200~300mm の望遠レンズ

More information

03a_imamura_k

03a_imamura_k 矮新星 QZ Vir, IY UMa 及び AY Lyr の 2009 年 superoutburst 期におけるにおける連続連続測光観測 今村和義 (imako@pc.7.cx)* * 岡山理科大学大学院総合情報研究科生物地球システム専攻田辺研究室. Introduction 矮新星とは激変星の一種で 白色矮星 ( 主星 ) と赤色矮星 ( 伴星 ) から成る近接連星系である 伴星から主星への質量降着により

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

スライド 1

スライド 1 評価標準化研究会 2011 年 8 月 12 日 衛星データの大気補正と放射伝達 Atmospheric correction and radiation transfer 千葉大学環境リモートセンシング研究センター Center for Environmental Remote Sensing Chiba University 久世宏明 Hiroaki Kuze 環境リモートセンシング研究センター

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

C型小惑星の探査における可視・近赤外分光の役割

C型小惑星の探査における可視・近赤外分光の役割 36 日本惑星科学会誌 Vol. 19, No. 1, 2010 特集 始原天体研究のこれまでとこれから : 探査を仲介とした異分野交流 C 型小惑星の探査における可視 近赤外分光の役割 廣井孝弘 1 2, 杉田精司 ( 要旨 ) 現在, 近地球 C 型小惑星の探査および試料回収が検討されている. 本稿は, それが実現したときに得られるであろう科学的知見を可視 近赤外反射分光によるリモートセンシングの観点から考えることを目的とする.

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

Microsoft PowerPoint - 20111029第8回ライトカーブ研究会_並木則行.ppt

Microsoft PowerPoint - 20111029第8回ライトカーブ研究会_並木則行.ppt 小 惑 星 探 査 における ダストその 場 観 察 並 木 則 行, 小 林 正 規, 千 秋 博 紀, 和 田 浩 二 2011 年 10 月 29 日 第 8 回 ライトカーブ 研 究 会 国 立 天 文 台 三 鷹 キャンパス 本 日 の 予 定 惑 星 探 査 研 究 センターの 紹 介 小 惑 星 ダスト 観 測 の 科 学 はやぶさの 成 果 を 発 展 させるために, 次 に 日 本

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

基礎地学

基礎地学 生命存在可能領域の新しい見積もり : Kopparapu et al (2013) のレビュー Kopparapu et al (2013) Habitable zones around main-sequence stars : New estimates, Astrophysical J., 765, 131 石渡正樹 ( 北大 理 ) 2013 年 06 月 05 日 WTK オンラインセミナー

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

Contents 1. Ia cosmology 2. Ia / rate 3.

Contents 1. Ia cosmology 2. Ia / rate 3. WISH ( ) Contents 1. Ia cosmology 2. Ia / rate 3. supernova (CC SN) Ia (SN Ia) supernova classification supernova Ia (SN Ia) - : redshift z~1.5 - progenitor system: Single Degenerate? Double Degenerate?

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Microsoft Word - 01.docx

Microsoft Word - 01.docx 京都大学 MU レーダーで宇宙ごみの姿を捉える ~ 観測波長より小さいスペースデブリのサイズやスピンの推定に成功 ~ 概要高度数百 km の地球周回軌道上にあるスペースデブリ ( 宇宙ごみ ) のうち レーダー観測装置の波長と比較して 大きさが同程度以下のスペースデブリのサイズ スピン 概形等の状態の推定をする観測手法を提案し 大型大気レーダーである京都大学生存圏研究所 MU レーダー ( 周波数

More information

スライド 1

スライド 1 TMT/ 可視高分散分光器等による 系外地球型惑星の大気吸収探索 国立天文台 太陽系外惑星探査プロジェクト室 成田憲保 背景 目次 系外惑星の大気吸収探索の方法論 ホットジュピターに対する先行研究 トランジットサーベイの現状 TMT で可能になるサイエンス ターゲットとなる吸収線と達成可能な精度 検討結果と好ましい観測ターゲットについて 補足 (cf. CoRoT-7b の場合 ) (cf. 月食を用いた地球大気吸収の模擬観測

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

系外惑星大気

系外惑星大気 transiting planet http://hubblesite.org/newscenter/archive/2001/38/ 2004 6 17 HDS 2 3 (Mayor & Queloz 1995) 4.2 4 (Charbonneau et al. 2000, Henry et al. 2000) HST HST Brown et al. (2001) 5 6 Radial velocity

More information

PowerPoint Presentation

PowerPoint Presentation Flux 較正と位置較正 西山正吾 2/28 自己紹介 南アフリカ天文台赤外線望遠鏡 IRSF/SIRIUS (JHKs 撮像 偏光 ) 3/28 標準測光システム すべての装置には 固有の測光システムがある 大気の吸収 望遠鏡 フィルター 検出器 etc. すべて装置 サイトごとに異なる 大気の吸収 観測日ごとに異なる 観測者ごとに固有の測光システム? 自分と他人の観測結果をどう比較するか 標準測光システム

More information

木曽シンポジウム2008

木曽シンポジウム2008 木曽シュミットシンポジウム 28 輝線撮像観測による M8 M の HII 領域の研究 柏木雄太 ( 東京学芸大学大学院教育学研究科理科教育専攻 ) 西浦慎悟 ( 東京学芸大学自然科学系宇宙地球科学分野 ). はじめに系外銀河の HII 領域の物理的性質を調べるためには, スペクトルを得る必要がある. そのためには, スリット分光観測が一般的である. しかし, 通常のスリット分光観測では 一度に 個もしくは数個の

More information

1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな

1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 治 医 の 観 症 例 治 医 の 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のない要約知識 直感 知識 直感 総合的評価 考察 総合的評価 考察 単変量解析の場合 多変量解析の場合 < 表 1.1 脂質異常症患者の TC と TG と重症度 > 症例 No. TC

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

報告書

報告書 (University College Dublin) 22 2 15 22 4 10 宇都宮大学オプティクス教育研究センター はじめに アイルランドのダブリンにあるアイランド国立大学ダブリン校 (University College Dublin) において 約 2 ヶ月間の短期研究留学を行った O Sullivan 教授と Dunne 准教授の研究室に滞 在し 極端紫外光 (XUV) に関する研究に従事させて頂き

More information

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University

Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Formation of hot jupiters by slingshot model Naoya Okazawa 22070283 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group 2011 4 18 1,.,,.,.,.,..,.,.,,.,.,,,.,.,.,.,,,..

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

Vestoids.ppt

Vestoids.ppt 7 8 9!,,!,,,, 7,! 8, 9!! ?!!!! 97 (McCord et al. 97)! 97 (Taylor 97)! 97 Eucrites (Larson and Fink 97)! 98 (Williams 979)! 99V (Cruikshank et al.99)! 99 V (Binzel and Xu 99)! 997 HST (Thomas et al. 997)!

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

3 6 6.1: ALMA 6.1 galaxy, galaxies the Galaxy, our Galaxy, Milky Way Galaxy G. Galilei W. Herschel cm J.C. Kapteyn H. Sharpley 30 E.P. Hubble 6.2 6.2.1 b l 6.2 b = 0 6.2: l = 0 6.2.2 6.1 6.3 ( 60-100µm)

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

スライド 1

スライド 1 (8) 2017.6.7 電気通信大学大学院情報理工学研究科末廣尚士 9. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

太陽系外惑星とバイオマーカー 物理学教室金曜ランチトーク 2010 年 6 月 11 日 須藤靖

太陽系外惑星とバイオマーカー 物理学教室金曜ランチトーク 2010 年 6 月 11 日 須藤靖 太陽系外惑星とバイオマーカー 物理学教室金曜ランチトーク 2010 年 6 月 11 日 須藤靖 http://www-utap.phys.s.u-tokyo.ac.jp/~suto/mypresentation_2010j.html アイザック アシモフ著 夜来る 恐ろしい暗闇が訪れた 我々は宇宙の中心 我々は何も知らなかった イラスト : 羽馬有紗 2000 年に一度しか夜が来ない 地球 の人たち

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

ダイポールアンテナ標準:校正の実際と不確かさ

ダイポールアンテナ標準:校正の実際と不確かさ ダイポールアンテナ標準 校正の実際と不確かさ ( 独 ) 産業技術総合研究所 森岡健浩 概要 アンテナ係数 3アンテナ法 ( 半自由空間と自由空間 ) 置換法 不確かさ積算 異なるアンテナ校正によるアンテナ係数の一意性 まとめ アンテナ係数の定義 z 波源 V 付属回路 受信アンテナ図 アンテナ係数の定義 V 測定量 : アンテナ係数 ( 水平偏波.0 m 高 または自由空間 ) 校正方法 : 3アンテナ法

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

NASAの惑星データベース(PDS)

NASAの惑星データベース(PDS) NASA 惑星探査データベース (PDS) と その利用の実際 天間崇文 (NASA / JPL) 目次 1. PDSの概要 2. 組織 3. データの取得とフォーマット 読み込み 4. データ処理 5. 日本 欧州での活用 6. まとめ 7. 簡単なデータ読み込み実演 惑星探査データとは 観測データ カメラ 分光器 高度計などによる測定結果 探査機の位置 / 姿勢情報 対象天体の暦 これらが各探査で同一フォーマットだと便利

More information

太陽系外惑星探査

太陽系外惑星探査 http://hubblesite.org/newscenter/archive/2001/38/ Terra MODIS http://modarch.gsfc.nasa.gov/ http://www.nasa.gov/home/index.html / 2 Are we alone? Origins Where are they? (Fermi 1950) 3 4 0.5 arcsec 10pc

More information

<4D F736F F D2082D382BD82B28DC0834B D5F C E646F63>

<4D F736F F D2082D382BD82B28DC0834B D5F C E646F63> 大阪市立科学館アフタヌーンレクチャー第 9 シリーズ 宇宙の元素元素を測る 2007.10.3 10.17 17 10.31 11.14 14 担当 : 加藤賢一 第 1 回さまざまな天体とその構成元素 1. いろいろな天体 太陽系 銀河系 銀河 宇宙 2. 原子の世界 原子とその構造 元素 原子スペクトル 3. 恒星のスペクトル 恒星の構造 恒星大気とスペクトル 恒星のスペクトル分類 大阪市立科学館アフタヌーンレクチャー第

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C

214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C AY Lyr ASASSN-14jv CCD I11G22 214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C 1 4 1.1............................. 4 1.2................................ 5 2 7 3 9 4

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

bron.dvi

bron.dvi 1p 76p 12 2 4 80238 1 1 7 1.1... 8 1.1.1... 8 1.1.2... 8 1.1.3... 9 1.2... 10 1.3... 10 2 11 2.1... 12 2.2... 13 2.2.1 (SEM)... 13 2.2.2... 14 2.2.3... 17 2.2.4 SEM 3... 17 2.3... 19 2.3.1... 19 2.3.2...

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

秋田県立大学における建築環境工学関連の 大型研究設備

秋田県立大学における建築環境工学関連の 大型研究設備 太陽視赤緯, 均時差計算に関する一考察 Notes on Calclaton Methods of the olar Declnaton and Eqaton of Te 秋田県立大学 松本真一 概要 (/2 既往の太陽位置計算式に対する疑問点を整理 松尾の式 ( 簡易に過ぎないか?? 山崎の式 ( 背景にある天文学の理論が古くなってしまった 時刻系の考え方?? 赤坂の式 ( 山崎の式の簡易化 時刻系??

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

Microsoft PowerPoint _nakagawa_kagoshima.ppt [互換モード]

Microsoft PowerPoint _nakagawa_kagoshima.ppt [互換モード] Mira 型変光星プロジェクト現状とKVN の利用 A.Nakagawa, T.Kurayama (Kagoshima University) Mira Project Observation Current Status KVN + VERA 大マゼラン雲 (LMC) のミラ型変光星周期光度関係 実視等級を元に得られた関係 距離に対してLMCの厚みは小さくすべて同じ距離にあるとみなせるため実視等級を利用できる

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information