Microsoft PowerPoint - Econometrics pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - Econometrics pptx"

Transcription

1 計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: webste:

2 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます keywords: プルーシュ = ペイガン検定, ホワイト検定, 分散不均 致標準誤差, 重み付き最 乗法, 階の 回帰モデル, ダービン = ワトソン検定 教科書 : pp ( 第 7 章 )

3 復習 分散不均一性 仮定 ) が満たされず V u E u 仮定 ), ), v) は満たされているものとする E V ˆ w Eu ˆ w Eu w w Eu u w S xx ( 不偏性はある ) 6.46 ( 分散が異なる ) 例. 分散が不均 E E E u u 3 4 u n 仮定 ), ), ), v) が満たされていれば V ˆ S xx 仮説検定ではˆ ( 残差分散 ) をデータから推定するが ˆ は(6.46) 式を正しく計算できていない 正しい標準誤差が計算できないので t 検定ができない 3

4 例. 分散不均一が疑われる散布図 y 説明変数の値が きくなると, 被説明変数のばらつきも きくなる 誤差項の分散の きさが説明変数の きさと関連している可能性

5 分散不均一の検定 () グラフによる確認 分散不均 : 誤差の 乗の期待値 ( 誤差項の分散 ) が観測値ごとに異なっている V u E u 例. 残差の 乗が説明変数 の変動と関係性を持つ û 残差のばらつきが きくなる が きくなると 残差の 乗値も きくなる 仮説の設定 H H 0 : 均一分散である : H 0 でない 5

6 分散不均一の検定 (): ブルーシュ = ペイガン検定 Breusch-Pagan Test ( ブルーシュ = ペイガン検定 ) 残差の 乗値を説明変数に回帰したときの当てはまり具合 ( 決定係数 ) を利 して, 分散不均 の有無を検証する 法 例. 説明変数が, 3 の つ, サンプルサイズが n = 00 のケース 3 3 u を推定 u を計算 ˆ 補助回帰式 帰無仮説を検証する式残差の 乗を定数項と説明変数に回帰 uˆ 33 補助回帰式の決定係数 v R を計算 帰無仮説 : 均一分散である H 0 : 3 ならば ˆ 3 0 u で残差の 乗は一定になる 0 6

7 分散不均一の検定 (3) : ブルーシュ = ペイガン検定 3 Breusch-Pagan 検定統計量 (BP 検定統計量 ) を計算 検定統計量 : nr( サンプルサイズ 決定係数 ) 4 nr は自由度 補助回帰式の説明変数の数 のカイ 乗分布にしたがう 有意 準 5% でのカイ 乗分布の上側臨界値を求める, Excel 関数 = CHIINV(0.05,) 臨界値を求める関数 5 検定の基本 検定統計量が臨界値よりも きい値のとき H 0 を棄却する, 0.05, nr ならば 分散不均一である 5.99 nr ならば 分散均一である H H 0 0 を棄却する を棄却しない 7

8 カイ 乗分布 () カイ 乗分布 (ch-squared dstrbuton) とは : カイ( ch) 標準正規分布にしたがう確率変数の 乗和に関する分布 カイ 乗分布の確率密度関数 f x x m x e m m, x 0 自由度 m によって形が変わる分 布 ガンマ関数 自由度 m = 3 自由度 m = 0 f(x) f(x) x x 8

9 カイ 乗分布 () 例. 由度 のカイ 乗分布 有意 準 0.05 (5%),0.05 = 5.99 棄却域 有意 準 5% 臨界値 9

10 表 7.6 カイ 乗分布 (p.39) 下側確率 例. 由度 のカイ 乗分布 p Pr A m 下側確率 由度 m p =

11 例 7.6( 表 7.7 のデータ ):BP 検定 33 u u を計算 ˆ u 33 v 補助回帰式の決定係数 R H を計算 ˆ 0 : 3 0 均一分散 : エンゲル係数 3 : 世帯年収 : 世帯人員 3 BP統計量 : nr.6957 n 0, R 由度, 有意 準 5% のカイ 乗分布上側臨界値, Excel 関数 = CHIINV(0.05,) 検定統計量 nr.6957は臨界値 5. 99よりも小さいので 帰無仮説を棄却できない 分散不均一であるとは言えない, 0.05

12 分散不均一の検定 (4) : ホワイト検定 回帰モデル 33 u ホワイト検定 3 3 uˆ と説明変数の関係を検証するために 乗項や交差項も含めて考える ( 全部で5つの説明変数を利用する ) 3 検定の基本的な流れは BP 検定と同じ H 0 モデル uˆ H : 均一分散 v 補助回帰式の決定係数 R を計算 検定 nr ~ 自由度 5 のカイ 乗分布にしたがう 由度は補助回帰式で利 した変数の数

13 例 7.6( 表 7.7 のデータ ): ホワイト検定 33 u u を計算 ˆ uˆ 補助回帰式の決定係数 R を計算 H v 0 : 均一分散 3 ホワイト統計量 : nr n 0, R 由度 5, 有意 準 5% のカイ 乗分布上側臨界値 5, Excel 関数 = CHIINV(0.05,5) 検定統計量 nr は臨界値. よりも小さいので 帰無仮説を棄却できない 分散不均一であるとは言えない 5,

14 練習問題 () 表 7.6 ( 例題 4,pp ) 表 7.6のデータを利用して を最小 乗推定し, 残差を利用してBP およびWhte 検定を実行し分散不均一について検証しなさい さらに, 左辺 ln のみを対数変換した u を最小 乗推定し, BP およびWhte 検定を行いなさい u 3 4

15 重み付き最小 乗法 () (pp ) 表 7.8 階級ごとに集計されたデータの平均値を いるとき, 平均をとるときの集計数によって分散が不均 になることがある 階級に属する世帯 の総支出を, 食費を N N N N 階級 階級番号 総 出 費集計世帯数 00 万円 N 5

16 重み付き最小 乗法 () (pp ) 世帯レベル ( 集計前 ) の回帰式 u 年収階級別 ( 集計後 ) の回帰式 u 7.30 集計後の回帰式の誤差項 u N N u u 0, V u, Eu u ば 標準的仮定 : E 0 が満たされているなら lm E 0 u, V u N 集計後の回帰式の誤差項は集計数 N () によって分散が異なる [ 明確な分散不均 ] 6

17 重み付き最小 乗法 (3) (pp ) 分散均 化の作業 集計された誤差項 u V N u に N を乗じた N u の分散は u 30 N 7. の両辺に N を乗じると N N N u この推定モデルの誤差項は均 分散になるので, 以下のように新しい変数を定義して N N N u N u u を推定する を と に回帰する 定数項はなし 7

18 重み付き最小 乗法 (4) (pp ) 表 7.8 のデータの重み付き最 乗法による推定結果 定数項なし N N N ˆ ˆ 元の集計モデル (7.30) に戻す 8

19 復習 系列相関 系列 (seral): 定の順序にしたがって並べられた状態のこと 時系列データ (tme seres data): 時間の順序にしたがって並べられたデータ 系列相関 (seral correlaton) : 主に時系列データにおいて誤差項が互いに相関している状態のこと 仮定 v) が満たされず Covu, u Eu u 0 仮定 ), ), ) は満たされているものとする ( 不偏性はある ) V ˆ w Eu w w Eu u S xx w w 6.48 分散が異なる 仮定 v) が満たされて いれば V ˆ S xx 仮説検定ではˆ ( 残差分散 ) をデータから推定するが ˆ は(6.48) 式を正しく計算できていない 正しい t 検定ができない 9

20 系列相関が生じる理由 時系列データ : 過去からの持続的 傾向的な動き ( トレンド ) や循環的 ( サイクル ) な動きがデータに含まれてしまう 過去に じた誤差が将来の誤差にも影響してしまう 0

21 階の自己回帰モデル AR() Model 系列相関が明 的な誤差項 u u,,, n, ( ロー ): 自己回帰係数 ( イプシロン ): 確率誤差項 E 0の場合 : 0の場合 : 0, E, E 0 負 の値になる可能性 誤差が増幅 前期が正負の値のとき, 今期も正 前期が正 負 の値のとき, 今期は負 正 の値になる可能性 誤差が反転 自己回帰係数 はu とu の相関係数を示している

22 AR () の乱数誤差の動き u (=0.9) 標準偏差.643 u (= 0.9) 標準偏差 u (=0.05) 標準偏差.05 n 00, ~ N 0,

23 階の自己回帰モデルの期待値, 分散, 共分散 E N u E 0 0 期待値はゼロ V u Eu 分散均 Cov u, u 系列相関がある 仮定 v) は崩れる 相関係数 u, u u V u Cov V 3

24 ダービン = ワトソン統計量 () 系列相関の仮説検定 H H 0 0 : 0 系列相関がない : 0 系列相関がないとは言えない 検定統計量 ( ダービン = ワトソン統計量 ; DW) DW 表 7.9 n uˆ n uˆ uˆ ~ サンプルサイズ n, 説明変数の数 mのdw 統計量分布 系列相関とDW 統計量 (p.337) DWとの関係 :DW ˆ 負の系列相関系列相関なし正の系列相関 ˆ DW ˆ 0 DW 4 ˆ 0 DW 0 ˆ 0 DW DW = のとき, 系列相関なし < DW < 4 のとき負の系列相関の疑い 0 < DW < のとき正の系列相関の疑い DW が に近いかどうかが重要 4

25 ダービン = ワトソン統計量 () 臨界値 有意 準 5 % の下限 D L と上限 D U ( 表 7.0, p.338) n m = m = m = 3 D L D U D L D U D L D U N. E. Savn and Kenneth J. Whte (977) The Durbn-Watson Test for Seral Correlaton wth Extreme Sample Szes or Many Regressors DW 統計量の分布は説明変数の数 m だけでなく, その内容にも依存している そのためはっきりとした形はわからないが, 分布の下限 (D L ) と上限 (D U ) はわかっている DW 統計量の分布は を中 とする分布で, 0 から 4 までの値をとる m =, n = 5 DW 統計量の分布 0 < DW < のとき正の系列相関の疑い D L D U < DW < 4 のとき負の系列相関の疑い 4 D U.64 4 D.9 L 真の臨界値? 真の臨界値? 5

26 ダービン = ワトソン統計量 (3) 棄却域と判定 正の系列相関 H0 : 0を棄却 H0 : 系列相関なし 0を棄却しない 負の系列相関 H : 0を棄却 0 0 D L.08 D U.36 4 D U.64 4 D 4 L.9 DW 統計量 判定不能 判定不能 6

27 表 7. 消費と所得 (n=39, m=) u を最小 乗推定 回帰分析 で 残差 にチェックを入れて残差を出力 推定結果 ˆ û uˆ uˆ ˆ u DW n uˆ n uˆ uˆ を計算 期ずらす DW 乗和を求めるには sumsq 関数を利 する 7

28 例 7.8 表 7. 消費と所得 ( 続き ) H 0 : 0を検定, 表 7.0よりDW分布の下限と上限は D L.43, D U.54 n 39, m m = n D L D U D L.43 D U D 4 U.46 D L 正の系列相関 負の系列相関 DW.38 DW DW 統計量 DW.38は0 DW DL の領域に入るので H0 有意水準 5% で正の系列相関があるといえる : 0 を棄却する 8

29 コクラン = オーカット法 AR() モデルの推定 期の回帰式 : u 両辺にを乗じると u AR モデルに代入すると u u 推定モデルは u u u u (7.37) (7.38) の推定 順 [ ]: u 残差 uˆ を推定 : を求める []: uˆ を利用してAR uˆ uˆ を推定して の推定値 ˆ を得る [3]: ˆ ˆ として7. 38を推定 モデル

30 表 7. 消費と所得 (n=39, m=) []:,,39 を利用する u û uˆ の推定結果を利用 ˆ 係数 標準誤差 t P- 値 切 0 #N/A #N/A #N/A 値 ˆ 96~998年 ˆ 960~997年 配列コピーを利 して計算 []: uˆ ˆ u を推定 ラベル のチェックをはずす 定数に 0 を使 にチェック ˆ

31 コクラン = オーカット法適用後の DW ˆ DW n uˆ n uˆ uˆ DW.74は DU DW 4 DU の領域に入るのでH0 有意水準 5% で系列相関があるとはいえない コクラン = オーカット法によって系列相関は消滅 : 0を棄却しない 3

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 回回帰分析 Part 4 7 年 月 7 日 ( 火 ) 限 担当教員 : 唐渡広志 研究室 : 経済学研究棟 4 階 4 号室 emal: kkarato@eco.-toyama.ac.jp webste: http://www.-toyama.ac.jp/kkarato/ 講義の目的 最小 乗法について理論的な説明をします 多重回帰分析についての特殊なケースについて 多重回帰分析のいくつかの応用例を検討します

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email kkarato@eco.u-toyama.ac.j webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 0 回回帰分析 Part 07 年 月 日 ( 水 ) 限 ( 金曜授業実施日 ) 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 4 号室 mal: kkarato@co.-toama.ac.jp wbst: http://www.-toama.ac.jp/kkarato/ 講義の目的 ロジスティック関数の推定方法について学びます 多重回帰分析について学びます kwords:

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

Microsoft PowerPoint - ch04j

Microsoft PowerPoint - ch04j Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975

More information

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード] S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法

More information

回帰分析 重回帰(3)

回帰分析 重回帰(3) 回帰分析 重回帰 (3) 内容 分散不均一性 分散不均一性とは何か 分散不均一性の検出 Heteroskedstcty robust estmator 加重最小二乗法 (Weghted Least Square) 誤差項の系列相関 多重共線性 説明変数の誤差 誤差項と説明変数の相関 回帰分析の前提 モデルの線型性 u ~N(0,s )..d. 誤差項の期待値は0 誤差項は互いに独立 ( 系列相関は無い

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

Microsoft Word - reg2.doc

Microsoft Word - reg2.doc 回帰分析 重回帰 麻生良文. 前提 個の説明変数からなるモデルを考える 重回帰モデル : multple regresso model α β β β u : 被説明変数 epled vrle, 従属変数 depedet vrle, regressd :,,.., 説明変数 epltor vrle, 独立変数 depedet vrle, regressor u: 誤差項 error term, 撹乱項

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 10 回帰分析 今日のおはなし. 回帰分析 regression analysis 2 変数の関係を調べる手段のひとつ単回帰重回帰使用上の注意 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. Stock, James H. and Mark W. Watson. 2006. Introduction to Econometrics.

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

Microsoft Word - reg.doc

Microsoft Word - reg.doc 回帰分析 単回帰 麻生良文. 回帰分析の前提 次のようなモデルを考える 単回帰モデル : mple regreo moel : 被説明変数 eple vrble 従属変数 epeet vrble regre : 説明変数 epltor vrble 独立変数 epeet vrble regreor : 誤差項 error term 撹乱項 trbe term emple Kee 型消費関数 C YD

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05

More information

数値計算法

数値計算法 数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして

More information

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx 07 年 8 月 日計量経済学期末試験問. 次元ベクトル x ( x..., x)', w ( w.., w )', v ( v.., v )' は非確率変数であり 一次独立である 最小二乗推定法の残差と説明変数が直交することは証明無く用いてよい 確率ベクトル e ( e... ) ' は E( e ) 0, V ( e ),cov( e j ) 0 ( j) とし 確率ベクトル y=( y...,

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074>

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074> 市街化区域外の地価推定に関する研究 不動産 空間計量研究室 筑波大学第三学群社会工学類都市計画主専攻宮下将尚筑波大学大学院システム情報工学研究科社会システム工学専攻高野哲司 背景 日本の国土の区域区分 都市計画区域 市街化区域 市街化を促進する区域 市街化調整区域 市街化を抑制する区域 非線引都市計画区域 上記に属さない区域 非線引き市街化調整区域市街化区域 都市計画区域 本研究での対象区域 都市計画区域外

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

Microsoft Word - econome4.docx

Microsoft Word - econome4.docx : 履修登録したクラスの担当教員名を書く : 学籍番号及びが未記入のもの, また授業終了後に提出されたものは採点しないので, 注意すること. 3 単回帰分析 Tips 前回講義では, データの散らばり具合を表す偏差平方和, 分散や標準偏差, また 2 変数の関係を表す相関係数を,Excel で数回のステップに分けて求めました. 考え方を学ぶといううえでは計算手順を確認することは必要なことですが, 毎回,

More information

解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札

解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札 解答のポイント 第 1 章問 1 ポイント仮に1 年生全員の数が 100 人であったとする.100 人全員に数学の試験を課して, それらの 100 人の個人個人の点数が母集団となる. 問 2 ポイント仮に10 人を抽出するとする. 学生に1から 100 までの番号を割り当てたとする. 箱の中に番号札を入れまず1 枚取り出す ( 仮に1 番とする ). 最初に1 番の学生を選ぶ. その1 番の札を箱の中に戻し,

More information

回帰分析 重回帰(1)

回帰分析 重回帰(1) 回帰分析 重回帰 (1) 項目 重回帰モデルの前提 最小二乗推定量の性質 仮説検定 ( 単一の制約 ) 決定係数 Eviews での回帰分析の実際 非線形効果 ダミー変数 定数項ダミー 傾きのダミー 3 つ以上のカテゴリー 重回帰モデル multiple regression model 説明変数が 個以上 y 1 x 1 x k x k u i y x i 他の説明変数を一定に保っておいて,x i

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順

目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順 SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,

More information

13章 回帰分析

13章 回帰分析 単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5 第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 学位論文作成のための疫学 統計解析の実際 徳島大学大学院 医歯薬学研究部 社会医学系 予防医学分野 有澤孝吉 (e-mail: karisawa@tokushima-u.ac.jp) 本日の講義の内容 (SPSS を用いて ) 記述統計 ( データのまとめ方 ) 代表値 ばらつき正規確率プロット 正規性の検定標準偏差 不偏標準偏差 標準誤差の区別中心極限定理母平均の区間推定 ( 母集団の標準偏差が既知の場合

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10

3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10 第 10 章 くさりのない犬 はじめにこの章では 単位根検定や 共和分検定を説明する データが単位根を持つ系列の場合 見せかけの相関をする場合があり 推計結果が信用できなくなる 経済分析の手順として 系列が定常系列か単位根を持つ非定常系列かを見極め 定常系列であればそのまま推計し 非定常系列であれば階差をとって推計するのが一般的である 1. ランダムウオーク 最も簡単な単位根を持つ系列としてランダムウオークがある

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

不均一分散最小二乗法の仮定では 想定しているモデルの誤差が時間やサンプルを通じて一定であるとしている 次のような式を想定する 誤差項である ut の散らばり具合がサンプルを通じて一定であるという仮定である この仮定は均一分散と呼ばれる 不均一分散とは その仮定が満たされない場合で 推計した係数の分散

不均一分散最小二乗法の仮定では 想定しているモデルの誤差が時間やサンプルを通じて一定であるとしている 次のような式を想定する 誤差項である ut の散らばり具合がサンプルを通じて一定であるという仮定である この仮定は均一分散と呼ばれる 不均一分散とは その仮定が満たされない場合で 推計した係数の分散 第 5 章 さらに進んだテクニック この章では最小二乗法をそのまま適用するのが問題の場合を扱う 最小二乗法はある仮 定のもとで統計上望ましい性質を持っている のぞましい性質とは以下のものである 不偏性 不偏性とは推計された係数の期待値が 母集団の真の値と等しくなることを示している 有効性 ( 効率性 ) 有効性とは さまざまな推定値の中で 分散が最小になるように推計されたものであることを表している

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

Microsoft PowerPoint - Lecture 10.ppt [互換モード]

Microsoft PowerPoint - Lecture 10.ppt [互換モード] 講義予定 環境プラニング演習 II 第 0 回 009. 6. 7 千葉大学工学部都市環境システム学科 山崎文雄 http://ares.tu.cha-u.jp/ tu ujp/ ( 009 年 4 月 8 日 ( 土 :50 ー 4:0 演習の説明, 微分 積分と数値計算 ( 009 年 4 月 5 日 ( 土 :50 ー 4:0 微分 積分と数値計算 (3 009 年 5 月 9 日 ( 土 :50

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

計量経済学の第一歩 田中隆一 ( 著 ) gretl で例題と実証分析問題を 再現する方法 発行所株式会社有斐閣 2015 年 12 月 20 日初版第 1 刷発行 ISBN , Ryuichi Tanaka, Printed in Japan

計量経済学の第一歩 田中隆一 ( 著 ) gretl で例題と実証分析問題を 再現する方法 発行所株式会社有斐閣 2015 年 12 月 20 日初版第 1 刷発行 ISBN , Ryuichi Tanaka, Printed in Japan 計量経済学の第一歩 田中隆一 ( 著 ) gretl で例題と実証分析問題を 再現する方法 発行所株式会社有斐閣 2015 年 12 月 20 日初版第 1 刷発行 ISBN 978-4-641-15028-7, Printed in Japan 第 5 章単回帰分析 本文例例 5. 1: 学歴と年収の関係 まず 5_income.csv を読み込み, メニューの モデル (M) 最小 2 乗法 (O)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

スライド タイトルなし

スライド タイトルなし 回帰分析 怪奇な現象を回帰分析で数学的に説明しよう! 回帰分析編 24 相関図 データ X に対応してデータ Y が決まるような (Xi,Yi) のデータの組を考えます これを X-Y 座標にプロットすると 次のような相関図ができます 正の相関相関がない負の相関 相関係数 :X と Y の関係の強さを示す (-1 相関係数 1) プロットの傾きではなく 線上への密集の度合いで強さが決まる 回帰分析

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

基礎統計

基礎統計 基礎統計 第 4 回講義資料 本日の講義内容 第 3 章 : 次元データの整理 散布図 [ グラフ ] 共分散と相関係数 [ 数値 ] 回帰分析 [ 数値とグラフ ] 偏相関係数 [ 数値 ] 第 3 章 次元のデータ 第 3 章 : 次元のデータ ( 目的 ) 変数間の関係を探る 相関と回帰 ( 相関 ) 変数を区別せず対等にみる ( 相関関係 ) 身長と体重, 教科目の成績 ( 回帰 ) 一方が他方に影響を与える

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

Medical3

Medical3 1.4.1 クロス集計表の作成 -l m 分割表 - 3つ以上のカテゴリを含む変数を用いて l mのクロス集計表による分析を行います この例では race( 人種 ) によってlow( 低体重出生 ) に差が認められるかどうかを分析します 人種には3つのカテゴリ 低体重出生には2つのカテゴリが含まれています 2つの変数はともにカテゴリ変数であるため クロス集計表によって分析します 1. 分析メニュー

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

回帰分析 単回帰

回帰分析 単回帰 回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)

More information

博士学位請求論文審査報告書 申請者 : 植松良公 論文題目 :Statistical Analysis of Nonlinear Time Series 1. 論文の主題と構成経済時系列分析においては, 基礎となる理論は定常性や線形性を仮定して構築されるが, 実際の経済データにおいては, 非定常性や

博士学位請求論文審査報告書 申請者 : 植松良公 論文題目 :Statistical Analysis of Nonlinear Time Series 1. 論文の主題と構成経済時系列分析においては, 基礎となる理論は定常性や線形性を仮定して構築されるが, 実際の経済データにおいては, 非定常性や Title 非線形時系列の統計解析 Author(s) 植松, 良公 Citation Issue 2013-09-30 Date Type Thesis or Dissertation Text Version ETD URL http://doi.org/10.15057/25906 Right Hitotsubashi University Repository 博士学位請求論文審査報告書 申請者

More information

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ]

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ] JMP を用いた ARIMA モデルのあてはめ SAS Institute Japan 株式会社 JMP ジャパン事業部 2013 年 2 月作成 1. はじめに JMP の時系列分析では 一変量の時系列データに対する分析や予測を行うことができ 時系列データに対するグラフ表示 時系列モデルのあてはめ モデルの評価 予測まで 対話的に分析を実行することができます 時系列データにあてはめるモデルとしては

More information

事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度-

事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度- 事例研究 ( ミクロ経済政策 問題分析 III) - 規制産業と料金 価格制度 - ( 第 7 回 手法 (3) 応用データ解析 / 基礎的手法 ) 2010 年 6 月 2 日 戒能一成 0. 本講の目的 ( 手法面 ) - 応用データ解析の手順や基本的な作業の流れ (Strategy) を理解する - 特にグラフ化や統計検定などの手法を用いた データ解析手法の選択と検定 確認について理解する (

More information

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード] R で統計解析入門 (12) 生存時間解析 中篇 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv /fkh /d 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. 2 の場所に移動し, データを読み込む 4. データ

More information

Microsoft Word - Stattext11.doc

Microsoft Word - Stattext11.doc 章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

消費 統計学基礎実習資料 2017/11/27 < 回帰分析 > 1. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 19 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 手順 1 検索エンジンで 河田研究室 と入力し検索すると 河田

消費 統計学基礎実習資料 2017/11/27 < 回帰分析 > 1. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 19 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 手順 1 検索エンジンで 河田研究室 と入力し検索すると 河田 消費 統計学基礎実習資料 07//7 < 回帰分析 >. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 9 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 検索エンジンで 河田研究室 と入力し検索すると 河田研究室 のページにジャンプする ( ここまでの手順は http://www.tokuyama-u.ac.jp/kawada とアドレスを直接入力してもよい

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

Microsoft Word - Stattext13.doc

Microsoft Word - Stattext13.doc 3 章対応のある 群間の量的データの検定 3. 検定手順 この章では対応がある場合の量的データの検定方法について学びます この場合も図 3. のように最初に正規に従うかどうかを調べます 正規性が認められた場合は対応がある場合の t 検定 正規性が認められない場合はウィルコクソン (Wlcoxo) の符号付き順位和検定を行ないます 章で述べた検定方法と似ていますが ここでは対応のあるデータ同士を引き算した値を用いて判断します

More information

目次 はじめに P.02 マクロの種類 ---

目次 はじめに P.02 マクロの種類 --- ステップワイズ法による重回帰分析の 予測マクロについて 2016/12/20 目次 はじめに ------------------------------------------------------------------------------------------------------------------------------ P.02 マクロの種類 -----------------------------------------------------------------------------------------------------------------------

More information

. 分析内容及びデータ () 分析内容中長期の代表的金利である円金利スワップを題材に 年 -5 年物のイールドスプレッドの変動を自己回帰誤差モデル * により時系列分析を行った * ) 自己回帰誤差モデル一般に自己回帰モデルは線形回帰モデルと同様な考え方で 外生変数の無いT 期間だけ遅れのある従属変

. 分析内容及びデータ () 分析内容中長期の代表的金利である円金利スワップを題材に 年 -5 年物のイールドスプレッドの変動を自己回帰誤差モデル * により時系列分析を行った * ) 自己回帰誤差モデル一般に自己回帰モデルは線形回帰モデルと同様な考え方で 外生変数の無いT 期間だけ遅れのある従属変 () 現在データは最大 5 営業日前までの自己データが受けたショック ( 変動要因 ) の影響を受け 易い ( 情報の有効性 ) 現在の金利変動は 過去のどのタイミングでのショック ( 変動要因 ) を引きずり変動しているのかの推測 ( 偏自己相関 ) また 将来の変動を予測する上で 政策金利変更等の ショックの持続性 はどの程度 将来の変動に影響を与えるか等の判別に役に立つ可能性がある (2) その中でも

More information

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - lec_student-chp3_1-representative 1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 25 回 R による計量経済分析 Part-1 2018 年 1 月 5 日 ( 金 )1 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 432 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 より高度な計量経済分析を行うために総合

More information

Microsoft Word - Karato-講演概要 docx

Microsoft Word - Karato-講演概要 docx ロードプライシング導入による都市環境改善効果 008/11/5 運輸政策研究機構研究報告会 ( 海運クラブ ) 唐渡広志 ( 財 ) 運輸政策研究所客員研究員 / 富山大学経済学部准教授八田達夫 ( 財 ) 運輸政策研究所客員研究員 / 政策研究大学院大学学長久米良昭 ( 財 ) 運輸政策研究所客員研究員 / 政策研究大学院大学教授 1. はじめに. 速度関数の推定のためのデータ 近年, 都市計画上の高度利用地区や再開発等促進区の適用区域が見直され,

More information

> usdata01 と打ち込んでエンター キーを押すと V1 V2 V : : : : のように表示され 読み込まれていることがわかる ここで V1, V2, V3 は R が列のデータに自 動的につけた変数名である ( variable

> usdata01 と打ち込んでエンター キーを押すと V1 V2 V : : : : のように表示され 読み込まれていることがわかる ここで V1, V2, V3 は R が列のデータに自 動的につけた変数名である ( variable R による回帰分析 ( 最小二乗法 ) この資料では 1. データを読み込む 2. 最小二乗法によってパラメーターを推定する 3. データをプロットし 回帰直線を書き込む 4. いろいろなデータの読み込み方について簡単に説明する 1. データを読み込む 以下では read.table( ) 関数を使ってテキストファイル ( 拡張子が.txt のファイル ) のデー タの読み込み方を説明する 1.1

More information

Excelによるデータ分析

Excelによるデータ分析 Excel による データ分析 多変量解析編 矢野佑樹 2013/07/27 Excel で学ぶデータ分析 ( 多変量解析編 ) 多変量解析では, 気温とアイスの売上個数の関係や, 最寄り駅からの距離と来店者数の 関係など,2 つ以上の変数を一度に分析します. では, 早速 2 つのデータ間の関係を Excel によって分析しましょう. < 散布図と相関 > 例 1. あるアイスクリーム販売店では,1

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

<4D F736F F D208EC08CB18C7689E68A E F1918A8AD695AA90CD2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1918A8AD695AA90CD2E646F63> 第 回相関分析 9 年 月 日 A.つの変数間の関係を調べる. 散布図を書く例 水稲の収量に関連のある生育指標を知りたい. 例えば草丈と収量には関連があるだろうか? 例 トマトの糖度は施肥量によってどのように変化するかを知りたい. 例えば, 窒素施肥量を増加させると糖度はどうなるか? 散布図の書き方 )x 軸 ( 横軸 ) には原因となる変量を, y 軸 ( 縦軸 ) には結果となる変量をとる. サツマイモの収量

More information

第1回

第1回 やすだ社会学研究法 a( 2016 年度春学期担当 : 保田 ) 基礎分析 ( 1): 一変量 / 二変量の分析 SPSSの基礎 テキスト pp.1-29 pp.255-257 データの入力 [ データビュー ] で Excelのように直接入力できる [ 変数ビュー ] で変数の情報を入力できる 名前 変数の形式的なアルファベット名例 )q12 ラベル 変数の内容を表現例 ) 婚姻状態値 各値の定義例

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information