(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

Similar documents
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

shuron.dvi

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1

~nabe/lecture/index.html 2

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Part () () Γ Part ,

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


OHP.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


meiji_resume_1.PDF

2017 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 exante (The Overlapping-Generations Models:OLG) OLG OLG Al

linearal1.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

ver Web

II 2 II

201711grade1ouyou.pdf


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1 (2005) (2004) (2005) (2006) 1: (2007) 2 2 2: Auerbach, Gokhale and Kotlikoff(1991) Gokhale (2005)


untitled

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

TOP URL 1

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco


note1.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

CVMに基づくNi-Al合金の

( )

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

3/4/8:9 { } { } β β β α β α β β

PFI


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

D 24 D D D


y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

JFE.dvi

all.dvi

Graduate School of Policy and Management, Doshisha University 53 動学的資本税協調と公的資本形成 あらまし Zodrow and Mieszkowski 1986 Wilson 1986 Batina はじめに Zodr

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

pdf

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

OHP.dvi


( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Grushin 2MA16039T

,398 4% 017,

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

Report98.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

tnbp59-21_Web:P2/ky132379509610002944

arxiv: v1(astro-ph.co)

( ) Loewner SLE 13 February


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising


untitled

QMII_10.dvi

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

研修コーナー

パーキンソン病治療ガイドライン2002

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Transcription:

,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp

1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) 3 1 20 94 848 49 5,443 52.7% 2 (1999) (2005) 3 (2005) (2006) (2008)

(A), (B) Auerbach and Kotlikoff(1987) (2004) (2007) Diamond(1965) 1 4 2 5 4 (1988) ( ) (2004) 5 (2001) (2001) 2

3 3 (A) (B) (C) 4 ( ) Negishi(1960) ( ) Negishi(1960) ( ) Negishi(1960) 3

2 4 5 6 2 2.1 W τw T bw B r (1 τ)w T + bw + B 1 + r (1) (1 τ)w T (bw + B)/(1 + r) t j W j t t T, B t t (τ t W j t + T ) = (bw j t 1 + B t) (2) j j 6 T, b (2) τ t, T, b, B t h a 1, a 2,, a h, (a j < a j+1 ) 6 4

d 1, d 2,, d h h d i = 1, d i 0 a j, d j t N t a j d j N t, j = 1, 2..., h t L t L t = (a 1 d 1 + a 2 d 2 + + a h d h )N t = a j d j N t (3) 2.2 K L F (K, L) F 2 F 1 ( ) F K = F K (K, L) > 0, F L = F L (K, L) > 0, F KK = 2 F K 2 (K, L) < 0, F LL = 2 F L 2 (K, L) < 0, f(k) = F (k, 1), k = K/L f (k) > 0 f (k) < 0 F (K, L) lim f (k) = k 0 lim f (k) = 0. k 1 w t, r t t t F K = F K (Kd t, L d t ) = r t, F L = F L (Kd t, L d t ) = w t (4) 5

(Kt d, L d t ) L d t = L t (4) 1 Kt d (r t ) 2 w t k = K/L Lf(k) = F (K, L) f(k) kf (k) = F L f(k(r t )) k(r t )f (k(r t )) = w t, k(r t )L t = K d t (r t ) 1 w t F K (K d t (r t ), L t ) = r t dk d t dr t < 0, dw t dr t < 0 (5) 2.3 t t N t 1, N t S t 1 K t (= S t 1 ) L t r t w t t a i Wt i = a i w t (1 τ t )a i w t T a i ba i w t 1 + B t r t s t 1 t (1 τ t )a i w t T d i N t, i = 1,..., h ba i w t 1 + B t + r t s i t 1 d in t 1, i = 1,..., h u(c t, c t+1 ) u : R 2 + R 2 6

2 ( ) (1) R 2 + (quasi-concave) R2 ++ (2) x 1 0, x 2 0, u(x 1, 0) = u(0, x 2 ) = inf{u(x 1, x 2 ) (x 1, x 2 ) R 2 +} a i t max u(c yi t, c yi coi t + s i t = (1 τ t )a i w t T, t+1) sub to (6) c oi t+1 = (1 + r t+1)s i t + ba i w t + B t+1 c y t, co t+1 t a i c y t co t+1 si t s i t t + 1 max u(c yi t, coi t+1) sub to c yi t + coi t+1 1 + r t+1 = I i t (7) I i a i I i t def 1 = (1 τ t )a i w t T + (ba i w t + B t+1 ) (8) 1 + r t+1 r t+1, w t, τ t B t+1 I i t(r t+1, w t, τ t, B t+1 ) c o t = c oi t d i N t 1 = { (1 + rt )s i } t 1 + ba i w t 1 + B t di N t 1 (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 (9) 7

3 B τ t (c yi t + s i t)d i N t + = (a i w t τa i w t T t )d i N t + a i w t d i N t +(1 + r t ) c oi t d i N t 1 = F (K t, L t ) + K t (10) (τa i w t + T )d i N t + s i t 1d i N t 1 = w t ( bai w t 1 + B + (1 + r t )s i ) t 1 di N t 1 (ba i w t 1 + B)d i N t 1 a i d i N t + (1 + r t )K t = w t L t + r t K t + K t = F (K t, L t ) + K t = t t + 1 r t+1 t + 1 L t+1 = a i d i N t+1 K t+1 F K t+1 (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) h si t(r t+1 )d i N t K d t+1(r t+1 ) = s i t(r t+1 )d i N t (11) r t+1 1 8

t = 1 K 1, w 0, s i 0, N t(t = 0, 1, 2,... ), d i, a i T, b, B t (t = 0, 1, 2,... ), 1 w 0 h si 0 (r 1)d i N 0 F K (K 1, L 1 ) r 1 r 1 = F K (K 1, L 1 ) r 1 w 1 = F L (K 1, L 1 ) (τ 1 a i w 1 + T )d i N 1 = (ba i w 0 + B 1 )d i N 0 τ 1 1 t 1 t 2 K d 2 (r 2 ) = h si 1 (r 2)d i N 1 (12) r2 2 K 2 = K2 d(r 2 ) 2 t 2 r t, L t, K t (4) (9) (11) F L (Kt d, L t ) = w t (τ t a i w t + T )d i N t = (ba i w t 1 + B t )d i N t 1 Kt+1(r d t+1 ) = s i t(r t+1 )d i N t w t, τ t, r t+1 Kt+1 d (r t+1) F K (Kt+1 d, L t+1) = r t+1 T, b, B t d i, a i, N t (t = 0, 1, 2... ) 4 9 11 4 9 w t, τ t (11) (12) 9

F K (K t+1, L t+1 ) = r t+1 K d t+1 (r t+1) k(r t+1 ) = K d t+1 (r t+1)/l t+1 K d t+1 (r t+1) = L t+1 k(r t+1 ) r t+1 = f (k(r t+1 )), 1 = f dk dr t+1 r t+1 0 k(r t+1 ) r t+1 k(r t+1 ) 0 t+1 h si t(r t+1 )d i N t = S t (r t+1 ) 3 ds t (r t+1 )/dr t+1 0 ˆr S t (ˆr) > 0 r t+1 S t (r t+1 ) > Kt+1 d (r t+1) r t+1 Kt+1 d (r t+1) > S t (r t+1 ) r t+1 Kt+1 d (r t+1) < S t (r t+1 ) r Kt+1 d (r ) = S t (r ) 1 1 2 3 4 4.1 7 7 3 t = 1 t = 2 10

8 t s i t = s i, c y t = cy, c o t = c o, K t = K, N t = N, L t = L, w t = w, r t = r, τ t = τ, B t = B, I i t = I i t = 1, 2, L = h a id i N 4 9 11 r F K (K d, L) = 0, w F L (K d, L) = 0 (13a) (τa i w + T )d i N K d (ba i w + B)d i N = 0 s i (w, τ, r, B)d i N = 0 (13b) (13c) 9 (w, r, K d, τ) B c y (r, I j ), c o (r, I j ) (13a) (13c) 4 τ > b. 4 (13b) (τ b) h a iwd i = B T 4 B > T 4 4.2 13a 13c (13a) K d (r) 13a 2 w = F L (K d (r), L) = w(r) 8 Diamond(1965) 9 s i 11

(13b) (13c) 13c 1 + r (τa i w(r) + T )d i (1 + r)k d (r) (1 + r) (ba i w(r) + B)d i = 0 s i (w(r), τ, r, B)d i N = 0 r, τ 2 (7) I i def = (1 τ)a i w(r) T + ba iw(r) + B, i = 1, 2,..., h 1 + r (1 + r)s i = c oi (r, I i ) (ba i w + B), S = 14b (1 + r)k d (r) s i d i N (14a) (14b) { c oi ( r, I i) (ba i w(r) + B) } d i N = 0 (15) 14a 15 r, T h (τ b)a dw h id i J = dr a iw(r)d i ( K d + (1 + r) dkd dr S + (1 + r) S ) h c oi r I i a iwd i N K d = S J J = (τ b)a i d i dw dr c oj I j a jwd j N (1 + r) ( dk d a i w(r)d i dr S ) r J (14a) (14b) r, τ ψ 1 (r, τ), ψ 2 (r, τ) ṙ = ψ 2 (r, τ), τ = ψ 1 (r, τ) J > 0 5 J > 0 12

5 (B) (τ) (τ) T ) 5 6 c > 0 3 1. 1 2. 2 Negishi(1960) 3. 3 r, I j, w, K, τ, c kj, k = y, o B Ĩ j (B) = I j (r(b), w(b), τ(b), B), w(b) = w(r(b)) c kj (B) = c kj (r(b), Ĩj (B)), k = y, o, K(B) = K(r(B)) 13

5.1 J = 0 r, τ B 14a 15 dr J db 1 dτ = ( ) h c oi 1 db I i 1 + r 1 d i N 5 c oi dr db = I i a iwd i N ( ) c oi 1 a i wd i I i 1 + r 1 d i N J 2 0 < c oi / I i < 1 dr db > 0 (16) (14a) (16) dτ db a i wd i = (b τ) a j dw dr dr db d j + 1 > 1 (17) d K(B) db = dk dr dr db = 1 dr F KK db < 0 (18) 2 5, 6 B 14

5.2 Blanchard and Fisher(1989) De la Croix(2002) Heijdra(2009) 1 Negishi(1960) Negishi(1960) 1 2 u i (c yi, c oi ) = {c yi } α i {c oi } β i, i = 1, 2 0 < α i < 1, 0 < β i < 1, α i + β i < 1, i = 1, 2 CK δ L 1 δ, 0 < δ < 1 W Ben = 2 u id i W R = min(u 1, u 2 ) 1 2 τ B W Ben W R 1 G(u i )di, P G(u i ) = exp βu i i β u i 1 ρ a 1 ρ 1 15

1: B W Ben W R 1 2 (α 1, β 1 ) (0.2919, 0.5081) (0.3496, 0.4504) (α 2, β 2 ) (0.6620, 0.1380) (0.08165, 0.7183) (a 1, a 2 ) (6.834,0.02374) (8.714, 0.4412) (d 1, d 2 ) (0.1370, 0.8630) (0.2475, 0.7525) (C, δ) (10, 0.2606) (10, 0.2032) (τ, b, B, T ) (0.21,0.2,0.5,0.4) (0.2037,0.2,0.5,0.4) dw Ben db 0.06058 > 0 0.01900 > 0 dw R db 0.4440 > 0 0.2868 > 0 Negishi(1960) Negishi(1960) c yj (B)d j N + K(B) = c oj (B)d j N = F ( K(B), L) s j (B)d j N, B (17) (1 + r) d c yj db d j + d c oj db d j = r s j (B) def = (1 τ)a j w(b) T (B) c yj (B) ( dτ ) db a d w j w + (1 τ)a j d j N < 0 db j B V j (B) = u j ( c yj (B), c oj (B)) j dv j db = λ d c yj j db + λ j 1 1 + r d c oj db λ j j Negishi(1960) (19) α j u j ( c yj, c oj )d j N, α j = 1/λ j, j = 1, 2,..., h (20) 16

(19) d db α j u j ( c yj (B), c oj (B))d j N = 1 1 + r ) ((1 + r) d cyj db + d coj d j N < 0 db 3 5, 6 Negishi(1960) negishi Negishi (1960) (20) Negishi 3 5.3 10 Ĩj µ, σ, CV B 11 Ĩ i def = (1 τ(b))a i w(b) T + ba i w(b) + B, i = 1, 2,..., h 1 + r(b) dĩj db = dτ db a jw + (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 db + 1 1 + r (21) 10 11 (2005) (2006) (2008) 17

τ b > 0 dr/db > 0 (17) dτ/db > 0 (21) B µ = h Ii d i (17) dµ db = = < 0 dĩj db d i (( 1 τ + b ) dw a j 1 + r dr ba ) jw + B dr (1 + r) 2 d j db + 1 1 + r dτ a j wd j db 1 dσ 2 2 db < 0 (22) 12 CV = h ) 2 (Ĩj d j 1 µ B CV 2 dcv 2 db = 2 (( ) ( )) Bµ 3 φ(b)2 2 ρ(b)σ a Bρ (B) Bφ (B) ρ(b) φ(b) (23) 13 φ(b) = (1 τ)w + bw/(1 + r), φ d((1 τ)w + bw/(1 + r)) (B) =, db ρ(b) = T + B/(1 + r), ρ d( T + B/(1 + r)) (B) = db φ(b) a i w ρ(b) 12 13 18

φ(b) > 0, φ (B) < 0, ρ (B) < 0 ρ(b) Bφ /φ B Bρ /ρ B 4 5,6 Bφ /φ > Bρ /ρ, 4 2 τ) B 5.4 B Negishi(1960) B Negishi(1960) B Negishi(1960) B B Negishi(1960) B Negishi(1960) Negishi(1960) 19

7 u i (x i ), x i = (c yi, c oi ) m (0 < m < 1) 0 < m < 1 Negishi(1960) u i (x i ) u(x i ) (1, 1/(1 + r), I j ) I j j j i x j c ji (1, 1/(1 + r), I i ) = I i c ji (1, 1/(1 + r)), j = y, o c ji (1, 1/(1 + r)) = c ji (1, 1/(1 + r), 1), j, i v j v j = V (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1) a j λ j λ j = m{i j } m 1 V (1, 1/(1 + r), 1) Negishi(1960) α j 1 α j = {I j } 1 m {I 1 } 1 m d 1 + + {I h } 1 m d h I 1 ( B Ik Ik φ ) (B) B I1 = φ(b)ρ(b)(a 1 a k ) φ(b) ρ (B) ρ(b) α 1 B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d 1 + + {I h } 1 m d h ) 2 B {I 1 } m {I k } m d k (a 1 a k ) α h B = k=2 (1 m)φ(b)ρ(b) ({I 1 } 1 m d 1 + + {I h } 1 m d h ) 2 B {I h } m {I k } m d k (a h a k ) h 1 k=1 { } ρ (B) ρ(b) B + φ (B) φ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 20

j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d 1 + + {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) x j < x j+1 a 1 < a 2 < < a h x 1 < 0, x h > 0 n, 1 < n < h x n 1 < 0 < x n 14 5 7 (i) (ii) B n (1 < n < h) (1)α 1,..., α n 1 (2)α n,..., α h Negishi(1960) (i) 4 2) 4, 5 5.2 1 2 1 B negishi 2: 1 2 ( φ B φ, B ρ ) ρ (0.09851, 2.045) (0.02954, 3.470) 6 (A) (B) (C) 14 j x j 0 B 21

(A) (B) 1 1 (i) (ii) (i) (ii) Negishi(1960) (ii) (C) 3 1 (2002) (2004) 15 2 (2002b) r w 15 (2002) (2004) 22

3 (A) (B) (C) A 5 (22) (23) B Ĩi Ĩj ( Ĩ j = (1 τ) w + b w ) a j T + B 1 + r 1 + r = φ(b)a j + ρ(b) φ(b) > 0 dĩi /db, dµ/db (( db + φ (B) = dφ dτ (B) = w db ρ (B) = dρ db (B) = B dr (1 + r) 2 db + 1 1 + r 1 τ + b 1 + r ) dw dr bw ) dr (1 + r) 2 db dĩj db = φ (B)a j + ρ (B), dµ db = φ (B)ā + ρ (B) ā = h a id i φ (B) < 0, ρ (B) < 0 σ 1 dσ 2 2 db = I i dii db d i I i dµ db d i ( = φ I i a i d i + ρ µ φ āµ ρ µ = φ ā I i a id i ā µ ( Ĩ j = Ĩ1 + (1 τ) w + b w ) (a j a 1 ) = 1 + r Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ) 23

Ĩ i a id i ā = Ĩ 1 a id i ā µ = + φ ( Ĩ i d i = Ĩ1 + φ(b) a i d i ā a i = 1 ā ( ) ( ) ai d i ā a a i d i i a 1 = Ĩ1 + φ(b) ā a i a 1 ) a i d i a 1 a 2 i d i = 1 ā (ā2 + σ 2 a ) > ā = a i d i σ a a j, j = 1, 2,..., h Ĩ i a id i ā > µ (24) φ (B) < 0 1 dσ 2 2 db < 0 B 16 dcv 2 db = 2 µ 3 d i d j Ĩ j Ĩ i Ĩi B d i d j (Ĩj ) 2 Ĩi (25) B (25) d i d j Ĩ j Ĩ i Ĩi B = µ d i Ĩ i Ĩi B = µ d i Ĩ i (φ a i + ρ ) (25) d i d j (Ĩj ) 2 Ĩi B = = µφ d i a i Ĩ i + µ 2 ρ = µφ ( āĩ1 + φ(b) ( ā 2 + σ a 2 a 1 ā )) + µ 2 ρ d j (Ĩj ) 2 d i Ĩi B = d j (Ĩj ) 2 d i (φ a i + ρ ) = (µ 2 + σ 2 )(φ ā + ρ ) = φ µ 2 ā + ρ µ 2 + φ σ 2 ā + ρ σ 2 16 24

dcv 2 db = 2 ( ( µ 3 µφ āĩ1 + φ(b) ( ā 2 + σ 2 a a 1 ā )) ) (φ µ 2 ā + φ σ 2 ā + ρ σ 2 ) µ = φā + ρ = Ĩ1 + φ(b)(ā a 1 ), σ 2 = φ 2 σ a 2. dcv 2 db = 2 µ 3 B φ2 ρσ a 2 (( Bρ ρ ) ( Bφ )) φ B u(x i ), x i = (c yi, c oi ) m 0 < m < 1 V j λ j V j (1, 1/(1 + r), I j ) = {I j } m V (1, 1/(1 + r), 1), λ j = m{i j } m 1 V (1, 1/(1 + r), 1) α j 1 α j = {I j } 1 m {I 1 } 1 m d 1 + + {I h } 1 m d h α j B = 1 m ({I 1 } 1 m d 1 + + {I h } 1 m d h ) 2 ( Ĩ j = (1 τ) w + b w 1 + r ) a j T + Ĩ j = Ĩ1 + φ(b)(a j a 1 ), j = 1, 2,..., h ( ) {I j } m {I k } m I j d k B Ik Ik B Ij k j B 1 + r = φ(b)a j + ρ(b), φ(b) > 0 I j B Ik Ik B Ij = (a j a k ) φ(b)ρ(b) B { } ρ (B) ρ(b) B + φ (B) φ(b) B 25

j = 1, 2,..., h α j B = (1 m)φ(b)ρ(b) ({I 1 } 1 m d 1 + + {I h } 1 m d h ) 2 B k j{i j } m {I k } m d k (a j a k ) { } ρ (B) ρ(b) B + φ (B) φ(b) B x j = k j {Ij } m {I k } m d k (a j a k ) a 1 < a k < a h, k = 2,..., h 1 j 1 x j x j+1 = {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) k=1 {I j+1 } m {I j } m d j+1 (a j+1 a j ) + {I j } m {I j+1 } m d j (a j a j+1 ) + k=j+2 k j, j + 1 {I k } m d k ((a j a k ){I j } m (a j+1 a k ){I j+1 } m ) (a j a k ){I j } m (a j+1 a k ){I j+1 } m = {Ij } 1 m {I j+1 } 1 m + I k ( {I j+1 } m {I j } m) φ(b) < 0 x j < x j+1 x 1 = {I 1 } m I k m (a 1 a k ) < 0 k=2 h 1 x h = {I h } m I k m (a h a k ) > 0 k=1 n, 1 < n < h x n 1 < 0 < x n 17 α j B > 0 (B) ρ ρ(b) B < (B) φ φ(b) B, j = 1,..., n 1 α k B < 0, k = n,..., h 17 j x j 0 26

[1] (2002),No.37,pp.316-349 [2] (2001),42,pp.205-227 [3] (2002b) - -,28,pp.15-36 [4] (2004),167,pp.1-17 [5] (2004) Discussion Paper,No.408,pp.1-19 [6] (2005) [7] (2006) -,, 3 [8] (2008),, 6 [9] (2005),pp.150-159 [10] (2007) 7,pp.203-222 [11] (2010) Discussion Paper,No.1011 27

[12] (1987) 6,pp.149-175 [13] (1988),pp.1-15 [14] (2001),37,pp.174-182 [15] (1999) [16] Auerbach, A. and Kotlikoff, L.J.(1987), Dynamic Fiscal Policy, Cambridge University Press. [17] Blanchard,O. and Fischer,S.(1989), Lectures on Macroeconomics, MIT Press. [18] Diamond, P.A.(1965), National Debt in a Neoclassical Growth Model, American Economic Review, Vol.55, No.5, pp.1126-1150. [19] Heijdra,B.(2009), Foundations of Modern Macroeconomis Second Edition, Oxford University Press. [20] Negishi, T.(1960), Welfare Economics and Existence of an Equilibrium for a Competitive Economy, Metroeconomica, Vol.12, No.2-3, pp.92-97. [21] Shimono, K. and Tachibanaki, T.(1985), Lifetime Income and Public Pension An Analysis of the Effect on Redistribution Using a Two-period Analysis, Journal of Public Economics, Vol.26, pp.75-87. 28