2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Similar documents
SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

2 2 L 5 2. L L L L k.....

untitled

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

等質空間の幾何学入門

( ) (, ) ( )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

main.dvi

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Z: Q: R: C:

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

prime number theorem

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z: Q: R: C: 3. Green Cauchy


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

January 27, 2015

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,


wiles05.dvi


TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

2000年度『数学展望 I』講義録

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Z: Q: R: C: sin 6 5 ζ a, b

Part () () Γ Part ,

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Dynkin Serre Weyl

sec13.dvi

1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

takei.dvi

量子力学 問題

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

meiji_resume_1.PDF

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

数学Ⅱ演習(足助・09夏)

xia2.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


Microsoft Word - 信号処理3.doc

第5章 偏微分方程式の境界値問題


compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

Gmech08.dvi

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


, ( ) 2 (312), 3 (402) Cardano

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II 2 II

2

II 1 II 2012 II Gauss-Bonnet II

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Morse ( ) 2014

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

A

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

Transcription:

GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2, R) H f, ( ) f k g(z) = j(g, z) k a b f(g(z)), g =, j(g, z) = cz + d, g(z) = az + b c d cz + d j(g 1 g 2, z) = j(g 1, g 2 (z))j(g 2, z) (f, g) f k g G H 1

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f cusp M k (Γ ), cusp S k (Γ ) 2.1 f M k (Γ ) cusp M y k/2 f(z) < M Γ Fourier Hecke f S k (Γ ) a(n) = O(n k/2 ) Eisenstein theta Fourier Γ Γ 0 (N) = {( a c ) } b SL(2, Z) d c 0 mod N ψ N Dirichlet ( ) ψ Γ 0 (N) ψ (( a c )) b = ψ(d) d N M k (Γ 0 (N), ψ) = {f M k (Γ (N)) f k γ = ψ(γ)f, γ Γ 0 (N)} Fourier Dirichlet L 2

2.2 (L 1) f S k (Γ 0 (N), ψ) s C Fourier f = n=1 a(n)e2πinz L(f, s) = a(n)n s n=1 f L Re(s) L Mellin 0 f(iy)y s 1 dy = = 0 a(n)e 2πny y s 1 dy n=1 a(n)(2πn) 1 s e 2πny (2πny) s 1 dy (2.1) n=1 = (2π) s Γ (s)l(s, f) 2.2 (1) L(s, f) s (2) Λ(s, f) = N s/2 (2π) s Γ (s)l(s, f) Λ(s, f) = i k Λ(k s, f) f(z) = ( Nz) k f( (Nz) 1 ) (3) Λ(s, f) C > 0 V (C) = {s C Re(s) < C} 0 2.2 Hecke Fourier Hecke Hecke ( ) T p 1 0 Γ 0 (N) Γ 0 (N) Γ 0 (N) Fourier 0 p 2.3 f(z) = n=1 a(n)e2πinz S k (Γ 0 (N), ψ), T p f(z) i) (p, N) = 1 T p f(z) = n=1 ( ( )) n a(np) + ψ(p)p k 1 a e 2πinz, p ( p n a ( ) n = 0) p 3

ii) p N T p f(z) = a(np)e 2πinz. n=1 T p f S k (Γ 0 (N), ψ) Atkin-Lehner [AL] ii) U p - T p - (p, N) = 1 p T p Petersson S k (Γ 0 (N), ψ) T p (p N) Atkin-Lehner new form Sk new (Γ 0 (N), ψ) p N p T p 2.4 (L 2) f T p T p λ p L(s, f) = a(1) p (1 λ p p s + ψ(p)p k 1 2s ) 1 a(1) f Fourier e 2πiz Re(s) 0 2.3 f S k (Γ 0 (N), ψ) T p - 2.2 2.4 2.2 L 2.4 Euler f L 2.2 f 2.4 Euler 2.4 L SL 2 Dirichlet Fourier Siegel 2.2 Dirichlet Koecher-Maass 2.2 2.4 2.4 ( 1 ) f, g S k (Γ 0 (N), ψ) T p f g 3 SL 2 (R) 3.1 Γ = Γ 0 (N) f M k (Γ ) G = SL 2 (R) K = SO(2) G f H G/K H, g g(i) f G 4

3.1 f S k (Γ ) G φ f φ f (g) = j(g, i) k f(g(i)) φ f C (G) 3.1 φ f (1) φ f Γ - γ Γ φ f (γg) = φ f (g) ( ) cos θ sin θ (2) K r θ = φ f (gr θ ) = e ikθ φ f (g) sin θ cos θ (3) φ f C M φ f (g) < C g M ( g = Tr( t gg) ) ( ) (4) sl(2, C) X = 1 1 i X φ f = 0 (X φ f 2 i 1 ) f cusp (5) δ SL(2, Z) Γ δ = δ 1 Γ δ δ SL(2, Z) g G φ f (δng) dn = 0. N Γ δ \N {( ) } 1 a N = G a R (4) 2.1 (1) f X Cauchy-Riemann (1) f, (2) K i, (3) 2.1 (3) f cusp ) (1), (2) (3) g G z = x + yi H ( x 1/2, z > 1) ( ) y 1/2 xy 1/2 g = δg z r θ, δ SL(2, Z), g z = 0 y 1/2 φ f (g) = y k/2 e ikθ f k δ(z) y < C g M f k δ Fourier n 0 (4) (5) N Γ δ = {( 1 hm ) m Z } 5

h z = g(i) H ( ) ) 1 1 hn φ f (δng) dn = φ f (δ g dn N Γ δ \N 0 ( ( ) ) ( ( ) k 1 1 hn 1 hn = f δ g(i) j δ g, i) dn = 0 1 0 f(δ(z + hn))j(δ, z + hn) k j(g, i) k dn 1 = j(g, i) k (f k δ)(z + hn) dn 0 f k δ f cusp (1) φ f C (Γ \G) G g G ψ C (Γ \G) gψ(h) = ψ(hg) gψ C (Γ \G) (2) φ f K Cφ f 1 K (4) G 3.2 G Lie G Hilbert G G- (g, K)- Lie G K K- (Peter-Weyl ) G- (π, H) K- H = ˆ m(δ)h δ, δ K m(δ) < K- (admissible) K = SO(2) 1 m Z K r θ e imθ SO(2) Z 6

G Lie g 0 G g 0 G Hilbert (π, H) g 0 = Lie(G) H v H X g 0 d dt π(exp(tx))v π(exp(tx))v v = lim (3.1) t=0 t 0 t v H H g 0 H Lie g := g 0 R C G (π, H) G- g- K- (K G ) H K- H K = {v H dim(π(k)v) < } H K H = ˆ δ m(δ)h δ H K = δ m(δ)h δ H K H H K H dense g K H K (g, K)- H G- H K (g, K)- (g, K)- [Ma] f M k (Γ 0 (N), ψ) X φ f = 0 X ( ) g (3.1) z = x + yi H y 1/2 xy 1/2 g z = 0 y 1/2 g z (i) = z g G g = g z r θ φ f K r θ X r 1 θ X = 1 2 ( 1 0 0 1 ) + i 2 ( 0 1 0 0 = e 2iθ X g = g z ) ( ) + i 0 0 2 1 0 A, B, C A φ f (g) = 1 (( ) ( )) d y 1/2 xy 1/2 e t 0 2 dt φ f t=0 0 y 1/2 0 e t = 1 d ( 2 dt e kt y k/2 f(x + iye 2t ) ) t=0 = k 2 yk/2 f(z) + y k/2+1 y f(z) 7

B φ f (g) = i (( ) ( )) d y 1/2 xy 1/2 1 t 2 dt φ f t=0 0 y 1/2 = i d 2 dt y k/2 f(x ty + iy) t=0 = iyk/2+1 2 x f(z) C φ f (g) = i (( ) ( )) d y 1/2 xy 1/2 1 0 2 dt φ f t=0 0 y 1/2 t 1 = i ( d 2 dt ( ti + 1) k y k/2 f x ty ) t=0 t 2 + 1 + i y t 2 + 1 = k 2 yk/2 f(z) iyk/2+1 2 x f(z) f ( X φ f (g) = iy k/2+1 x + i ) f(z) = 0 y 3.3 f S k (Γ 0 (N)) 2.1 φ f L 2 (Γ \G) G Hilbert L 2 (Γ \G) K- L 2 (Γ \G) K (g, K)-φ f (g, K)-? (g, K)- ( ) H = i, X + = 1 1 0 2 ( ) ( 1 i, X = 1 i 1 2 1 i i 1 ) g = sl(2, C) SL 2 -triple [X +, X ] = H [H, X + ] = 2X + [H, X ] = 2X exp(iθh) = r θ K (g, K)- V v m r θ v = e imθ v Hv = mv X + v, X v m + 2, m 2 k 1 (g, K)- : 8

V = Cv k+2m v n r θ v n = e inθ v n Hv n = nv n m=0 X + v n Cv n+2 X v n Cv n 2 X v k = 0 D + k k 2 (holomorphic discrete series) k = 1 (limit of discrete series) L 2 (G) K (L 2 (G) K- ) v k lowest weight vector D + k [Kn, Chapter II, 5-6] X + X V = (anti-holomorphic discrete series) D k D + k m=1 Cv k 2m sl(2, C) lowest weight k k 0 f S k (Γ ) φ f L 2 (Γ \G) 3.1 φ f D + k vector lowest weight 3.2 S k (Γ ) Hom (g,k) (D k, L 2 (Γ \G)) f S k (Γ ) D k lowest weight vector φ f (g, K)- L 2 (Γ \G) G 3.1 X φ f = 0 U(g) g U(g) = 1 4 (H2 + 2X + X + 2X X + ) ( U(g) ) Casimir U(g) Z(g) Z(g) = C[ ] f M k (Γ ) ( k ( )) k 2 2 1 φ f = 0 9

Z(g) = C[ ] Schur X G 3.2 G f (1) f Γ - γ Γ, g G f(γg) = f(g). (2) f K- g G dim f(gk) k K C < (3) f Z(g)- 0 p(x) p( )f = 0. (4) f C, M f(g) < C g M. A(Γ, K) f cuspidal f(ng) = 0 a. a. g, N f cusp cusp A 0 (Γ, K) (3) f U(g) (2) (3) f smooth (cf. [Bo, Theorem 2.13]). ψ L 2 (Γ \G) 3.1 (5) N ψ(ng) dn = 0 φ cuspidal cuspidal L 2 cusp(γ \G) G L 2 (Γ \G) K L 2 disc (Γ \G) K L 2 disc (Γ \G) K = V L 2 (Γ \G) K V : L 2 (Γ \G) L 2 disc (Γ \G) K L 2 (Γ \G) K V 10

3.3 (1) L 2 0 (Γ \G) (g, K)- L 2 0(Γ \G) K = m(π)v π, m(π) < (2) (g, K)- π: L 2 disc (Γ \G) K = L 2 0(Γ \G) K H res H res Eisenstein residue Γ = SL(2, Z) C [Bo, Theorem 16.6] 4 4.1 SL(2, R) Hecke L- ( ) 1 0 Hecke 0 p SL(2) GL(2) G = GL(2), A = A Q Q A f = p< Q p, G Q = GL(2, Q) G = GL(2, R), G + = GL + (2, R) := {γ GL(2, R) det g > 0} G Af G A G - 1 K 0 G Af det : K f A ( ) G A = G Q G + K 0 (4.1) 4.1 Γ = K 0 SL(2, Q) Γ \H G Q R + \G A/K 0 Γ \SL(2, R) G A G Q 11

Example 4.2 N {( ) } a b K 0 (N) = GL(2, c d Ẑ) c 0 mod N = GL 2 (Z p ) K p p N p N ( K p = {( a c ) } b GL(2, Z p ) d c 0 mod p ) Γ = K 0 (N) SL(2, Q) = Γ 0 (N) ψ modn Dirichlet f M k (Γ 0 (N), ψ) ψ A ω ψ ω ψ : A A /Q R + = Z p p N Z p (Z/NZ) ψ C 1 ω ψ K 0 (N) ( ) a b ω ψ : ω ψ (d) C 1 c d 4.3 f M k (Γ 0 (N), ψ) G A Φ f (4.1) G A g = γg k 0 Φ f (g) = f(g (i))j(g, i) k ω ψ (k 0 ) 1 well-defined (i) γ G Q Φ(γg) = Φ(g) ( G Q - ) (ii) k 0 K 0 (N) Φ f (gk 0 ) = Φ(g)ω ψ (k 0 ) 1 (iii) Φ f (gr θ ) = e ikθ Φ f (g) (iv) Φ f G + smooth Φ f = k ( ) k 2 2 1 Φ f 12

(v) z Z A A Φ f (zg) = ω ψ (z) 1 Φ(g) (vi) Φ f c > 0 G A Ω C N g Ω a > c a A (( ) ) a 0 Φ f g C a N (vii) f S k (Γ 0 (N), ψ) (( ) ) 1 x Φ f g dx = 0 Q/A a.a. g (ii), (iii) K = K K 0 (1)- (vi) Z(g)- ω Hecke ω : A /Q R + C1 L2 (G Q \G A, ω) G A 1. γ G Q Φ(γg) = Φ(g) 2. z Z A Φ(zg) = ω(z)φ(g) 3. Φ(g) 2 dg < Z A G Q \G A f S k (Γ 0 (N), ψ) Φ f L 2 (G Q \G A, ω 1 ψ ) 4.2 G A Hecke L 2 (G Q \G A, ω) G A G A G = GL(2, R) G p = GL(2, Q p ) G 4.3 (iii), (iv) 2 G p G p (g, K)- G p (π, V ) K p = GL(2, Z p ) V = σ K p V (σ), dim V (σ) < 13

V ( ) K- f ( f G p Hecke ) π(f)v = f(g)π(g)v dg G p (π, V ) L 2 (G Q \G A, ω) π(f)φ f(g) = f(g 1 ) Φ G p Hecke ( 4.4 ) Φ L 2 (G Q \G A ) ( ω ) T (p)φ Φ H p = p 0 K p K p T (p)φ = Φ(gh) dh (4.2) H p f S k (Γ 0 (N)) p k/2 1 T (p)φf = Φ Tpf ) f S k (Γ 0 (N)) (4.2) g G A (4.1) g = γg k (γ G Q, g G, k K 0 (N)) Φ f G Q γ = 1 2 h k p- 1 2 p N (p N ) H p K p ( ) ( ) p 1 p b 1 0 H p = K p K p 0 p b=0 ω = ω 1 ψ (4.2) ( )) ( ( )) p 1 p b 1 0 T (p)φ f (g) = Φ f (g + Φ f g 0 p b=0 K p Haar vol(k p ) = 1 ( ) Φ f f p b G Q G K 0 (N) p- 1 2 ( ) G A g G A p- 1 2 p b γ = G Q ( ) ( ) ( ) p b p b p 1 bp 1 g = g k p = γ g k 0k 0 14

( ) 1 k 0 p- 1 p b 2 K 0 (N) ( )) ( ) p b z + b Φ f (g = p k/2 1 f p ( g (i) = z ) ( )) 1 0 Φ f (g = p k/2 f(pz) 0 p f S k (Γ 0 (N), ψ) L 2 (G Q \G A, ω 1 ψ ) G A R H p h (( )) a b h = ω ψ (d) c d R(h)Φ f Hecke 1 2.4 L 2 0 (G Q\G A, ω) L 2 (G Q \G A, ω) cuspidal G A R 0 ω 4.5 ( 1 ) G A (R 0 ω, L 2 0 (G Q\G A, ω)) 1 Φ Fourier Whittaker Whittaker [Ko] Whittaker [AL] A.O.L. Atkin and J. Lehner Hecke operators on Γ 0 (m), Math. Ann. 185 (1970), p134-160. [Bo] A. Borel, Automorphic forms on SL 2 (R), Cambridge Tracts in Mathematics, 130. Cambridge University Press, Cambridge, (1997). [Bu] D. Bump, Automorphic forms and representations, Cambridge University Press, (1997). 15

[Ge] [JL] S.S.Gelbart. Automorphic forms on adele groups, Annals of Math.Studies. Princeton University Press and University of Tokyo Press, Princeton, N.J., 83, 1975. H. Jacquet, and R.P. Langlands, Automorphic forms on GL(2)., Lecture notes in Mathematics 114, (1970) Springer Verlag. [Kn] A.W. Knapp, Representation theory of semisimple groups, An overview based on examples. Princeton Mathematical Series, 36. Princeton University Press, Princeton, NJ, 1986. [Ko], GL2 L, 16 L (2009), p37-136. [Ma], Weil Howe duality [Mo], Hecke, 18 (2010), p1-20. 16