Size: px
Start display at page:

Download ""

Transcription

1 第 19 回 整数論サマースクール報告集 保型形式のリフティング 2011 年 9 月 5 日 ~9 月 9 日於静岡県田方群富士箱根ランド スコーレプラザホテル

2

3 L- Langlands 70 (A) ( : ) (B) ( : : ) 19 i

4 第 19 回 (2011 年度 ) 整数論サマースクール 保型形式のリフティング プログラム 日時 2011 年 9 月 5 日 ( 月 ) から 9 月 9 日 ( 金 ) まで 場所富士箱根ランド スコーレプラザホテル 9 月 5 日 ( 月 ) 10:00-12:00 GL2 の保型形式と表現論 ( 軍司圭一 ) 14:00-15:30 志村対応その 1 ( 坂田裕 ) 15:45-17:15 志村対応その 2 ( 坂田裕 ) 17:30-18:30 accidental isogeny について ( 成田宏秋 ) 20:00-21:00 Siegel 保型形式と Hecke 作用素 ( 軍司圭一 ) 9 月 6 日 ( 火 ) 9:30-10:30 Weil 表現 ( 松本久義 ) 10:45-12:15 Howe 対応 ( 松本久義 ) 14:00-15:00 Jacobi 形式 ( 高瀬幸一 ) 15:15-16:45 Saito-Kurokawa リフト 1 ( 高瀬幸一 ) 17:00-18:30 Saito-Kurokawa リフト 2 ( 伊吹山知義 ) 20:00-21:30 院生 若手の時間 9 月 7 日 ( 水 ) 9:00-10:00 theta 関数の変換公式 ( 宮崎直 ) 10:15-12:15 Oda リフト ( 菅野孝史 ) 14:00-16:00 Borcherds リフト ( 青木宏樹 ) 16:15-17:00 Eisenstein 級数の Fourier 係数 ( 軍司圭一 ) 17:15-18:45 Ikeda リフト ( 河村尚明 ) 9 月 8 日 ( 木 ) 14:00-15:30 Langlands 関手性 ( 吉田敬之 ) 16:00-18:00 Seesaw dual pair と内積公式 ( 山名俊介 ) 9 月 9 日 ( 金 ) 9:00-10:30 theta 対応に現れる cohomological 表現 ( 早田孝博 ) 10:45-12:15 二つの楕円保型形式からの重さ半整数 Siegel 保型形式へのリフト ( 林田秀一 ) ii

5 北海道大学河村尚明室蘭工業大学桂田英典東北大学太田和惟小林真一長瀬聡宏廣瀬康隆宮城教育大学高瀬幸一山形大学早田孝博東京大学織田孝幸甲斐亘鍛治匠一鈴木航介平野雄一松本久義宮崎弘安芳木武仁東京工業大学内藤聡東京理科大学青木宏樹加塩朋和慶応義塾大学大槻玲小野雅隆萩原啓早稲田大学岡本亮彦兵藤史武広中由美子森澤貴之柳内武志早稲田大学高等学院坂田裕工学院大学斎藤正顕長谷川武博立教大学佐藤文広宮崎直成蹊大学石井卓若林功明治大学対馬龍司横浜国立大学原下秀士千葉工業大学軍司圭一杉山和成金沢大学菅野孝史名古屋大学伊東杏希子小倉一輝京都大学池田保石塚裕大大下達也岡田健佐々木健太竹森翔千田雅隆林芳樹安田正大吉田敬之京都産業大学槇山賢治山上敦士大阪大学伊吹山知義落合理北山秀隆喜友名朝也源嶋孝太杉山真吾林田秀一原隆兵庫慶則前田恵近畿大学菊田俊幸長岡昇勇大阪市立大学森本和輝山名俊介広島大学飯島優香川大学内藤浩忠徳島大学水野義紀九州大学池松泰彦小笠原健高田芽味三柴善範熊本大学成田宏秋鹿児島大学山内卓也以上 76 名敬称略 所属は参加申請時のとおり参加者リスト iii

6 1. GL 2 1 ( ) 2. Shimura 17 ( ) 3. Accidental 37 ( ) 4. Siegel Hecke 63 ( ) 5. Weil Howe duality 76 ( ) 6. Siegel Jacobi 92 ( ) 7. Saito Kurokawa lifting for level N 163 ( ) ( ) 9. Oda Lift 195 ( ) 10. Borcherds product 212 ( ) iv

7 11. Siegel Eisenstein Fourier 242 ( ) 12. Functoriality Principle 254 ( ) 13. Seesaw dual pair 270 ( ) 14. Theta Cohomological 290 ( ) 15. Siegel 302 ( ) 16. On v-adic periods of t-motives 322 ( ) v

8

9 vi

10 vii

11 1 GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2, R) H f, ( ) f k g(z) = j(g, z) k a b f(g(z)), g =, j(g, z) = cz + d, g(z) = az + b c d cz + d j(g 1 g 2, z) = j(g 1, g 2 (z))j(g 2, z) (f, g) f k g G H 1

12 2 2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f cusp M k (Γ ), cusp S k (Γ ) 2.1 f M k (Γ ) cusp M y k/2 f(z) < M Γ Fourier Hecke f S k (Γ ) a(n) = O(n k/2 ) Eisenstein theta Fourier Γ Γ 0 (N) = {( a c ) } b SL(2, Z) d c 0 mod N ψ N Dirichlet ( ) ψ Γ 0 (N) ψ (( a c )) b = ψ(d) d N M k (Γ 0 (N), ψ) = {f M k (Γ (N)) f k γ = ψ(γ)f, γ Γ 0 (N)} Fourier Dirichlet L 2

13 3 2.2 (L 1) f S k (Γ 0 (N), ψ) s C Fourier f = n=1 a(n)e2πinz L(f, s) = a(n)n s n=1 f L Re(s) L Mellin 0 f(iy)y s 1 dy = = 0 a(n)e 2πny y s 1 dy n=1 a(n)(2πn) 1 s e 2πny (2πny) s 1 dy (2.1) n=1 = (2π) s Γ (s)l(s, f) 2.2 (1) L(s, f) s (2) Λ(s, f) = N s/2 (2π) s Γ (s)l(s, f) Λ(s, f) = i k Λ(k s, f) f(z) = ( Nz) k f( (Nz) 1 ) (3) Λ(s, f) C > 0 V (C) = {s C Re(s) < C} Hecke Fourier Hecke Hecke ( ) T p 1 0 Γ 0 (N) Γ 0 (N) Γ 0 (N) Fourier 0 p 2.3 f(z) = n=1 a(n)e2πinz S k (Γ 0 (N), ψ), T p f(z) i) (p, N) = 1 T p f(z) = n=1 ( ( )) n a(np) + ψ(p)p k 1 a e 2πinz, p ( p n a ( ) n = 0) p 3

14 4 ii) p N T p f(z) = a(np)e 2πinz. n=1 T p f S k (Γ 0 (N), ψ) Atkin-Lehner [AL] ii) U p - T p - (p, N) = 1 p T p Petersson S k (Γ 0 (N), ψ) T p (p N) Atkin-Lehner new form Sk new (Γ 0 (N), ψ) p N p T p 2.4 (L 2) f T p T p λ p L(s, f) = a(1) p (1 λ p p s + ψ(p)p k 1 2s ) 1 a(1) f Fourier e 2πiz Re(s) f S k (Γ 0 (N), ψ) T p L 2.4 Euler f L 2.2 f 2.4 Euler 2.4 L SL 2 Dirichlet Fourier Siegel 2.2 Dirichlet Koecher-Maass ( 1 ) f, g S k (Γ 0 (N), ψ) T p f g 3 SL 2 (R) 3.1 Γ = Γ 0 (N) f M k (Γ ) G = SL 2 (R) K = SO(2) G f H G/K H, g g(i) f G 4

15 5 3.1 f S k (Γ ) G φ f φ f (g) = j(g, i) k f(g(i)) φ f C (G) 3.1 φ f (1) φ f Γ - γ Γ φ f (γg) = φ f (g) ( ) cos θ sin θ (2) K r θ = φ f (gr θ ) = e ikθ φ f (g) sin θ cos θ (3) φ f C M φ f (g) < C g M ( g = Tr( t gg) ) ( ) (4) sl(2, C) X = 1 1 i X φ f = 0 (X φ f 2 i 1 ) f cusp (5) δ SL(2, Z) Γ δ = δ 1 Γ δ δ SL(2, Z) g G φ f (δng) dn = 0. N Γ δ \N {( ) } 1 a N = G a R 0 1 (4) 2.1 (1) f X Cauchy-Riemann (1) f, (2) K i, (3) 2.1 (3) f cusp ) (1), (2) (3) g G z = x + yi H ( x 1/2, z > 1) ( ) y 1/2 xy 1/2 g = δg z r θ, δ SL(2, Z), g z = 0 y 1/2 φ f (g) = y k/2 e ikθ f k δ(z) y < C g M f k δ Fourier n 0 (4) (5) N Γ δ = {( 1 hm 0 1 ) m Z } 5

16 6 h z = g(i) H ( ) ) 1 1 hn φ f (δng) dn = φ f (δ g dn N Γ δ \N ( ( ) ) ( ( ) k 1 1 hn 1 hn = f δ g(i) j δ g, i) dn = f(δ(z + hn))j(δ, z + hn) k j(g, i) k dn 1 = j(g, i) k (f k δ)(z + hn) dn 0 f k δ f cusp (1) φ f C (Γ \G) G g G ψ C (Γ \G) gψ(h) = ψ(hg) gψ C (Γ \G) (2) φ f K Cφ f 1 K (4) G 3.2 G Lie G Hilbert G G- (g, K)- Lie G K K- (Peter-Weyl ) G- (π, H) K- H = ˆ m(δ)h δ, δ K m(δ) < K- (admissible) K = SO(2) 1 m Z K r θ e imθ SO(2) Z 6

17 7 G Lie g 0 G g 0 G Hilbert (π, H) g 0 = Lie(G) H v H X g 0 d dt π(exp(tx))v π(exp(tx))v v = lim (3.1) t=0 t 0 t v H H g 0 H Lie g := g 0 R C G (π, H) G- g- K- (K G ) H K- H K = {v H dim(π(k)v) < } H K H = ˆ δ m(δ)h δ H K = δ m(δ)h δ H K H H K H dense g K H K (g, K)- H G- H K (g, K)- (g, K)- [Ma] f M k (Γ 0 (N), ψ) X φ f = 0 X ( ) g (3.1) z = x + yi H y 1/2 xy 1/2 g z = 0 y 1/2 g z (i) = z g G g = g z r θ φ f K r θ X r 1 θ X = 1 2 ( ) + i 2 ( = e 2iθ X g = g z ) ( ) + i A, B, C A φ f (g) = 1 (( ) ( )) d y 1/2 xy 1/2 e t 0 2 dt φ f t=0 0 y 1/2 0 e t = 1 d ( 2 dt e kt y k/2 f(x + iye 2t ) ) t=0 = k 2 yk/2 f(z) + y k/2+1 y f(z) 7

18 8 B φ f (g) = i (( ) ( )) d y 1/2 xy 1/2 1 t 2 dt φ f t=0 0 y 1/2 0 1 = i d 2 dt y k/2 f(x ty + iy) t=0 = iyk/2+1 2 x f(z) C φ f (g) = i (( ) ( )) d y 1/2 xy 1/ dt φ f t=0 0 y 1/2 t 1 = i ( d 2 dt ( ti + 1) k y k/2 f x ty ) t=0 t i y t = k 2 yk/2 f(z) iyk/2+1 2 x f(z) f ( X φ f (g) = iy k/2+1 x + i ) f(z) = 0 y 3.3 f S k (Γ 0 (N)) 2.1 φ f L 2 (Γ \G) G Hilbert L 2 (Γ \G) K- L 2 (Γ \G) K (g, K)- φ f (g, K)-? (g, K)- ( ) 0 1 H = i, X + = ( ) ( 1 i, X = 1 i i i 1 ) g = sl(2, C) SL 2 -triple [X +, X ] = H [H, X + ] = 2X + [H, X ] = 2X exp(iθh) = r θ K (g, K)- V v m r θ v = e imθ v Hv = mv X + v, X v m + 2, m 2 k 1 (g, K)- : 8

19 9 V = Cv k+2m v n r θ v n = e inθ v n Hv n = nv n m=0 X + v n Cv n+2 X v n Cv n 2 X v k = 0 D + k k 2 (holomorphic discrete series) k = 1 (limit of discrete series) L 2 (G) K (L 2 (G) K- ) v k lowest weight vector D + k [Kn, Chapter II, 5-6] X + X V = (anti-holomorphic discrete series) D k D + k m=1 Cv k 2m sl(2, C) lowest weight k k 0 f S k (Γ ) φ f L 2 (Γ \G) 3.1 φ f D + k vector lowest weight 3.2 S k (Γ ) Hom (g,k) (D k, L 2 (Γ \G)) f S k (Γ ) D k lowest weight vector φ f (g, K)- L 2 (Γ \G) G 3.1 X φ f = 0 U(g) g U(g) = 1 4 (H2 + 2X + X + 2X X + ) ( U(g) ) Casimir U(g) Z(g) Z(g) = C[ ] f M k (Γ ) ( k ( )) k φ f = 0 9

20 10 Z(g) = C[ ] Schur X G 3.2 G f (1) f Γ - γ Γ, g G f(γg) = f(g). (2) f K- g G dim f(gk) k K C < (3) f Z(g)- 0 p(x) p( )f = 0. (4) f C, M f(g) < C g M. A(Γ, K) f cuspidal f(ng) = 0 a. a. g, N f cusp cusp A 0 (Γ, K) (3) f U(g) (2) (3) f smooth (cf. [Bo, Theorem 2.13]). ψ L 2 (Γ \G) 3.1 (5) N ψ(ng) dn = 0 φ cuspidal cuspidal L 2 cusp(γ \G) G L 2 (Γ \G) K L 2 disc (Γ \G) K L 2 disc (Γ \G) K = V L 2 (Γ \G) K V : L 2 (Γ \G) L 2 disc (Γ \G) K L 2 (Γ \G) K V 10

21 (1) L 2 0 (Γ \G) (g, K)- L 2 0(Γ \G) K = m(π)v π, m(π) < (2) (g, K)- π: L 2 disc (Γ \G) K = L 2 0(Γ \G) K H res H res Eisenstein residue Γ = SL(2, Z) C [Bo, Theorem 16.6] SL(2, R) Hecke L- ( ) 1 0 Hecke 0 p SL(2) GL(2) G = GL(2), A = A Q Q A f = p< Q p, G Q = GL(2, Q) G = GL(2, R), G + = GL + (2, R) := {γ GL(2, R) det g > 0} G Af G A G - 1 K 0 G Af det : K f A ( ) G A = G Q G + K 0 (4.1) 4.1 Γ = K 0 SL(2, Q) Γ \H G Q R + \G A/K 0 Γ \SL(2, R) G A G Q 11

22 12 Example 4.2 N {( ) } a b K 0 (N) = GL(2, c d Ẑ) c 0 mod N = GL 2 (Z p ) K p p N p N ( K p = {( a c ) } b GL(2, Z p ) d c 0 mod p ) Γ = K 0 (N) SL(2, Q) = Γ 0 (N) ψ modn Dirichlet f M k (Γ 0 (N), ψ) ψ A ω ψ ω ψ : A A /Q R + = Z p p N Z p (Z/NZ) ψ C 1 ω ψ K 0 (N) ( ) a b ω ψ : ω ψ (d) C 1 c d 4.3 f M k (Γ 0 (N), ψ) G A Φ f (4.1) G A g = γg k 0 Φ f (g) = f(g (i))j(g, i) k ω ψ (k 0 ) 1 well-defined (i) γ G Q Φ(γg) = Φ(g) ( G Q - ) (ii) k 0 K 0 (N) Φ f (gk 0 ) = Φ(g)ω ψ (k 0 ) 1 (iii) Φ f (gr θ ) = e ikθ Φ f (g) (iv) Φ f G + smooth Φ f = k ( ) k Φ f 12

23 13 (v) z Z A A Φ f (zg) = ω ψ (z) 1 Φ(g) (vi) Φ f c > 0 G A Ω C N g Ω a > c a A (( ) ) a 0 Φ f g C a N 0 1 (vii) f S k (Γ 0 (N), ψ) (( ) ) 1 x Φ f g dx = Q/A a.a. g (ii), (iii) K = K K 0 (1)- (vi) Z(g)- ω Hecke ω : A /Q R + C1 L2 (G Q \G A, ω) G A 1. γ G Q Φ(γg) = Φ(g) 2. z Z A Φ(zg) = ω(z)φ(g) 3. Φ(g) 2 dg < Z A G Q \G A f S k (Γ 0 (N), ψ) Φ f L 2 (G Q \G A, ω 1 ψ ) 4.2 G A Hecke L 2 (G Q \G A, ω) G A G A G = GL(2, R) G p = GL(2, Q p ) G 4.3 (iii), (iv) 2 G p G p (g, K)- G p (π, V ) K p = GL(2, Z p ) V = σ K p V (σ), dim V (σ) < 13

24 14 V ( ) K- f ( f G p Hecke ) π(f)v = f(g)π(g)v dg G p (π, V ) L 2 (G Q \G A, ω) π(f)φ f(g) = f(g 1 ) Φ G p Hecke ( 4.4 ) Φ L 2 (G Q \G A ) ( ω ) T (p)φ Φ H p = p 0 K p K p 0 1 T (p)φ = Φ(gh) dh (4.2) H p f S k (Γ 0 (N)) p k/2 1 T (p)φf = Φ Tpf ) f S k (Γ 0 (N)) (4.2) g G A (4.1) g = γg k (γ G Q, g G, k K 0 (N)) Φ f G Q γ = 1 2 h k p- 1 2 p N (p N ) H p K p ( ) ( ) p 1 p b 1 0 H p = K p K p p b=0 ω = ω 1 ψ (4.2) ( )) ( ( )) p 1 p b 1 0 T (p)φ f (g) = Φ f (g + Φ f g p b=0 K p Haar vol(k p ) = 1 ( ) Φ f f p b G Q G K 0 (N) p ( ) G A g G A p- 1 2 p b γ = G Q 0 1 ( ) ( ) ( ) p b p b p 1 bp 1 g = g k p = γ g k k 0 14

25 15 ( ) 1 k 0 p- 1 p b 2 K 0 (N) 0 1 ( )) ( ) p b z + b Φ f (g = p k/2 1 f 0 1 p ( g (i) = z ) ( )) 1 0 Φ f (g = p k/2 f(pz) 0 p f S k (Γ 0 (N), ψ) L 2 (G Q \G A, ω 1 ψ ) G A R H p h (( )) a b h = ω ψ (d) c d R(h)Φ f Hecke L 2 0 (G Q\G A, ω) L 2 (G Q \G A, ω) cuspidal G A R 0 ω 4.5 ( 1 ) G A (R 0 ω, L 2 0 (G Q\G A, ω)) 1 Φ Fourier Whittaker Whittaker [Ko] Whittaker [AL] A.O.L. Atkin and J. Lehner Hecke operators on Γ 0 (m), Math. Ann. 185 (1970), p [Bo] A. Borel, Automorphic forms on SL 2 (R), Cambridge Tracts in Mathematics, 130. Cambridge University Press, Cambridge, (1997). [Bu] D. Bump, Automorphic forms and representations, Cambridge University Press, (1997). 15

26 16 [Ge] [JL] S.S.Gelbart. Automorphic forms on adele groups, Annals of Math.Studies. Princeton University Press and University of Tokyo Press, Princeton, N.J., 83, H. Jacquet, and R.P. Langlands, Automorphic forms on GL(2)., Lecture notes in Mathematics 114, (1970) Springer Verlag. [Kn] A.W. Knapp, Representation theory of semisimple groups, An overview based on examples. Princeton Mathematical Series, 36. Princeton University Press, Princeton, NJ, [Ko], GL2 L, 16 L (2009), p [Ma], Weil Howe duality [Mo], Hecke, 18 (2010), p

27 17 Shimura 1 Riemann zeta Theta Dedekind η, Hecke [14] Metaplectic Metaplectic Metaplectic [14] Koblitz[3] [4] 4, a Z, b 2Z + 1 (b 0) ( ) a b 2 (1) (a, b) 1, ( ) a b = 0. (2) b, ( ) a b. (3) b > 0 a ( ) a b b (4) a 0 b ( ) a b Q( ( a)/q ) (5) a > 0 (resp. a < 0) a = 1 (resp. 1). (6) ( 0 ±1) = N Dirichlet χ (n, N) > 1 χ(n) = 0 z, x e(z) = exp(2π 1z) z x = exp(x log(z)) log(z) π < arg(z) π µ( ) Möbius 1 H = {z C Im(z) > 0}, C 1 = {z C z = 1} 1

28 18 H GL + 2 (R) ; ( α(z) = az + b cz + d, α = a c ) b GL + 2 (R), z H. d N N {( ) a b Γ 0 (N) = SL 2 (Z) c d {( ) a b Γ 1 (N) = Γ 0 (N) c d {( ) a b Γ (N) = Γ 1 (N) c d c 0 (mod N) } } a d 1 (mod N), } b 0 (mod N) N Dirichlet χ Γ 0 (N) ( ) a b χ(γ) = χ(d), γ = Γ 0 (N) c d Γ = { ± ( } 1 n 0 1) n Z [SL2 (Z) : Γ 0 (M)] i M theta θ(z) = n Z e(n 2 z) z H, 2.2 k, Γ SL 2 (Z) χ : Γ C 1 H f (1),(2)( f ) k χ Γ a b (1) α = Γ (cz + d) c d k f(α(z)) = χ(α)f (2) f Γ cusp Γ cusp cusp k χ Γ cusp M k (Γ, χ), S k (Γ, χ). 2.3 Metaplectic k GL + 2 (R) G G = G(k + 1/2) { } = (α, φ(z)) α GL + 2 (R), φ(z) = t(det α) k/2 1/4 (cz + d) k+1/2 (t C 1 ). G (α 1, φ 1 (z)) (α 2, φ 2 (z)) = (α 1 α 2, φ 1 (α 2 (z))φ 2 (z)) G GL + 2 (R) Pr : G GL + 2 (R) Ker(Pr) = C 1 G GL+ 2 (R) C 1 2

29 19 G H f f ξ = φ(z) 1 f(α(z)), ξ = (α, φ(z)) G. G ξ 1, ξ 2 G f (ξ 1 ξ 2 ) = (f ξ 1 ) ξ 2 Definition 1. G Γ (1),(2),(3) Γ G Fuchs (1) Pr( Γ ) SL 2 (Z) (2) Pr : Γ Pr( Γ ) (3) 1 Pr( Γ ) Pr 1 ( 1) = {( 1, 1)}. Γ Example 1. 4 N G Fuchs j(α, z) = θ(α(z)), α Γ 0 (4), z H θ(z) j(α 1 α 2, z) = j(α 1, α 2 z)j(α 2, z) Poisson formula ( ) ( ) 1 1/2 ( c ) j(α, z) = (cz + d) 1/2 a b, α = Γ 0 (4) d d c d N even Dirichlet χ Γ 0 (N) γ (γ, χ(γ)j(γ, z) 2k+1 ) G χ( 1)j( 1, z) 2k+1 = 1 { ( ) } Γ 0 (N, χ) = (α, χ(d)j(α, z) 2k+1 a b ) α = Γ 0 (N) c d G Fuchs α Γ 0 (N) G α = (α, χ(d)j(α, z) 2k+1 ) Γ 0 (N, χ) Γ } (N) = {α α Γ (N) 2.4 Definition 2. k Γ G Fuchs H f (1),(2) f k + 1/2 Γ ( ) (1) ξ Γ f ξ = f. (2) f Pr( Γ ) cusp., Pr( Γ ) cusp cusp k + 1/2 Γ cusp M k+1/2 ( Γ ), S k+1/2 ( Γ ). 4 N M k+1/2 (N, χ) = M k+1/2 ( Γ 0 (N, χ)), S k+1/2 (N, χ) = S k+1/2 ( Γ 0 (N, χ)) S k+1/2 ( Γ ) Petersson 1 k+1/2 dxdy < f, g >= [SL 2 (Z) : Pr( Γ f(τ)g(τ)imτ )] Pr( Γ )\H y 2, f, g S k+1/2( Γ ) 3

30 20 Example 2. ψ r ν ψ( 1) = ( 1) ν 0 1 Theta h(z; ψ) = 1 ψ(m)m ν e(m 2 z) 2 m Z h(z; ψ) M ν+1/2 (4r 2, ψ ν ), ψ ν (d) = ψ(d) ( ) 1 ν 4r 2 d ψ = 1 h(z; 1) = 1 2 θ(z) M 1/2(4, 1) ψ(m) = ( 3 m) h(z; ψ) = η(24z) = e(z) n 1(1 e(24nz)) M 1/2 (4r 2, ψ) 2.5 Hecke Γ G Fuchs Pr( Γ ) = Γ Pr Γ Γ Γ Pr 1 Γ L : Γ Γ α GL + 2 (R) Γ αγ α 1 ξ G Pr(ξ) = α γ Γ α 1 Γ α Pr(L(αγα 1 )) = Pr(ξ L(γ)ξ 1 ) L(αγα 1 ) = ξl(γ)ξ 1 (1, t(γ)), γ Γ α 1 Γ α Ker(Pr) = {(1, t) t C 1 } G t(γ) ξ t : Γ α 1 Γ α C 1 Proposition 1. Γ ξ 1 Γ ξ = L(Ker(t)) [Γ : Ker(t)] < Γ ξ Γ ξ 1 Γ ξ Γ = ν: α [Γ : Ker(t)] < f M k+1/2 ( Γ ) f [ Γ ξ Γ ] = ν: ξ ν M k+1/2 ( Γ ) (1) t Γ = ν: Γ ξ ν f ξ ν (Γ α 1 Γ α)γ ν, Γ α 1 Γ α = µ: Ker(t)δ µ 4

31 21 Γ = ν L(Γ α 1 Γ α)l(γ ν ) = ν,µ L(Ker(t))L(δ µ γ ν ) = ν,µ( Γ ξ 1 Γ ξ)l(δµ γ ν ) Γ ξ Γ = ν,µ Γ ξ L(δ µ γ ν ) f [ Γ ξ Γ ] = ( ) f ξl(δ µ ) L(γ ν ) ν µ ( ) ( ) = t(δ µ ) f ξl(γ ν ) = 0. µ (2) t L(αγα 1 ) = ξl(γ)ξ 1 (γ Γ α 1 Γ α) Pr Γ ξ Γ Γ αγ Γ αγ = ν Γ α ν Γ ξ Γ = ν Γ ξ ν, Pr(ξ ν ) = α ν ξ ν Γ ξ Γ {ξ ν } {α ν } [ Γ ξ Γ ] Example 3. m, n N, t C 1, 4 N ( ) m 0 α =, ξ = 0 n m = m/(m, n), n = n/(m, n) ( a ( m ξγ ξ 1 = (αγα 1 ) (1, n d ν ( α, t (n/m) k/2+1/4) G )), γ = c ) b Γ 0 (4) α 1 Γ 0 (4)α d m n mn t(γ) = ( m n d ) f M k+1/2 (N, χ) f [ Γ 0 (N, χ)ξ Γ 0 (N, χ)] = 0, mn t 1, m = 1, n = p 2 (p ) f [ Γ 0 (N, χ)ξ Γ 0 (N, χ)] Γ 0 (N)\Γ 0 (N)αΓ 0 (N) G Γ 0 (N, χ)ξ Γ 0 (N, χ) (( ) ) 1 0 Γ 0 (N, χ) 0 p 2, p k+1/2 Γ 0 (N, χ) Γ 0 (N, χ) 1 m Γ0 (N, χ) p m Γ0 (N, χ) p2 0 m Z/p 2 Z 0 p 2 m (Z/pZ) 0 p 0 1 = (p, N) = 1 Γ 0 (N, χ) 1 m p N. 0 p 2 m Z/p 2 Z 5

32 22 ξ = (( ) ) p, p k+1/2 Γ 2 0 (N, χ) ( ) 1 m 0 p 2 ( ) p m 0 p ( ) p = = = = = (( ) ) ( ) (( ) ) p 2, p k+1/2 1 m 1 m = p 2, p k+1/2, ( ) (( ) ) ( ) Nps 1 0 p 2, p k+1/2 p m (pr + Nsm = 1) Ns r (( ) ( ) p m 1 (k+1/2) ( ) ) m, χ(p), 0 p p p ( ) (( ) ) ( ) p 2 t 1 0 N d 0 p 2, p k+1/2 p 2 d t (p 2 d + Nt = 1) N 1 (( ) ) p 2 0, p (k+1/2) χ(p 2 ). 0 1 f M k+1/2 (N, χ) [ (( ) ) ] 1 0 f Γ 0 (N, χ) 0 p 2, p k+1/2 Γ 0 (N, χ) f 1 m, p k+1/2 + f p m, χ(p) m Z/p 2 Z 0 p 2 m (Z/pZ) 0 p + f p2 0, p (k+1/2) χ(p 2 ) p N, = 0 1 m Z/p 2 Z f 1 m, p k+1/2 p N, 0 p 2 ( 1 p ) (k+1/2) ( ) m p Fourier Theorem Theorem 1. ([Shimura[14]:Theorem 1.7]) k Z, 4 N, p M k+1/2 (N, χ) p 2 -th Hecke [ (( ) ) ] T (p 2 ) := p k 3/2 1 0 Γ 0 (N, χ) 0 p 2, p k+1/2 Γ 0 (N, χ) f = n 0 a(n)e(nz) M k+1/2(n, χ) f T (p 2 ) = n 0 b(n)e(nz) Fourier b(n) ( ) n a(p 2 n) + χ 1 (p) p k 1 a(n) + χ(p 2 )p 2k 1 a(n/p 2 ) p N, b(n) = p a(p 2 n) p N, χ 1 (m) = χ(m) ( ) 1 k m N Dirichlet p2 n a(n/p 2 ) = 0 6

33 23 ( (( ) ) p Γ 0 (N) 0 p )Γ 2 0 (N) Γ 0 (N, χ) 0 p, p k+1/2 Γ0 (N, χ) 2 T (p 2 ) p T (p 2 ) M k+1/2 (N, χ) Theorem 2. ([Shimura[14]:Corollary 1.8]) p f T (p 2 ) = ω p f, ω p C f = n 0 a(n)e(nz) M k+1/2(n, χ) p N p 2 t (n, p) = 1 n ω p a(tn 2 ) = a(tn 2 p 2 ) + χ 1 (p) ( ) t p k 1 a(tn 2 ), p ω p a(tp 2m n 2 ) = a(tn 2 p 2m+2 ) + χ(p 2 )p 2k 1 a(tp 2m 2 n 2 ), (m 1) a(n) Fourier f p N χ χ(p) = 0 Theorem 2 T (p 2 ) (p ) f = n 0 a(n)e(nz) M k+1/2(n, χ) (N, t) = 1 t Dirichlet n 1 a(tn2 )n s Euler Dirichlet p a(tn 2 )n s = a(tn 2 p 2l )p sl n s = n 1 (n,p)=1 l 0 (n,p)=1 H n,p (x) = m 0 a(tp2m n 2 )x m H n,p (p s )n s ω p x H n,p (x) = ω p a(tn 2 )x + ω p a(tp 2m n 2 )x m+1 m 1 ( ( ) ) t = a(tn 2 p 2 ) + χ 1 (p) p k 1 a(tn 2 ) x p + ( ) a(tp 2m+2 n 2 ) + χ(p 2 )p 2k 1 a(tp 2m 2 n 2 ) x m+1 m 1 ( ) t = H n,p (x) a(tn 2 ) + χ 1 (p) p k 1 a(tn 2 )x + χ(p 2 )p 2k 1 x 2 H n,p (x) p ( H n,p (x) 1 ω p x + χ(p 2 )p 2k 1 x 2) ( ( ) ) t = a(tn 2 ) 1 χ 1 (p) p k 1 x p a(tn 2 )n s = n 1 (n,p)=1 a(tn 2 )n s ( 1 χ 1 (p) (1 ω p p s + χ(p 2 )p 2k 1 2s) 1 ( ) ) t p k 1 s p (n,p)=1 a(tn2 )n s 7

34 24 Theorem 3. ([Shimura[14]:Theorem 1.9]) t 1 N p f T (p 2 ) = ω p f, ω p C f = n 0 a(n)e(nz) M k+1/2(n, χ) Dirichlet n 1 a(tn2 )n s Euler a(tn 2 )n s = a(t) n 1 p: ( ( ) ) t ( 1 χ 1 (p) p k 1 s 1 ω p p s + χ(p 2 )p 2k 1 2s) 1. p Euler (1 ω p p s + χ(p 2 )p 2k 1 2s) 1 p: t M 2k (N, χ 2 ) Hecke Dirichlet Euler f S k+1/2 (N, χ) M 2k (N, χ 2 ) Hecke F ( Dirichlet ), f F ( Shimura ) 3 Shimura 3.1 Shimura f(z) S k+1/2 (N, χ) f(z) Theorem 3 Theorem 3 a(t) p: (1 ω p p s + χ(p 2 )p 2k 1 2s) 1 = = p: ( ( ) ) t 1 1 χ 1 (p) p k 1 s a(tn 2 )n s p n 1 m 1 χ 1 (m) ( ) t m m k 1 s a(tn 2 )n s n 1 = ( ) t χ 1 (d) a(tn 2 /d 2 )d k 1 n s d n 1 d n = A t (n)n s n 1 Dirichlet F t (z) = n 1 A t(n)e(nz) M 2k (N t, χ 2 ) ( N t t ) Weil 3.2 Shimura Weil ( [10] 4.5 ) 8

35 25 Theorem 4 (Weil). M Dirichlet φ Dirichlet D(s) = n 1 a(n)n s, (a n C) 3 n 1 a(n)e(nz) M 2k(M, φ) (1) D(s) Re(s) > σ (2) (a, b) = 1, b > 0 {a + bn n 0} P r {1} P (r, M) = 1 r ψ R(s, ψ) = (2π) s Γ (s) n 1 ψ(n)a(n)n s R(s, ψ) s σ 1 < Re(s) < σ 2 (3) Re(s) > σ Dirichlet n 1 b(n)n s (2) ψ ( ) ψ(m)φ(r)g(ψ) 2 R(2k s, ψ) = (r 2 M) s k ψ(n)b(n)n s r n 1 g(ψ) = r i=1 ψ(i)e(i/r) Remark 1. Theorem 4 Dirichlet D(s) Re(s) < 2k s n 1 a(n)e(nz) S 2k(M, φ) Shimura A t (n)n s = ( ) t χ 1 (d) a(tn 2 /d 2 )d k 1 n s d n 1 n 1 d n Theorem 4 3 F t (z) = n 1 A t(n)e(nz) M 2k (N t, χ 2 ) f(z) = n 1 a(n)e(nz) S k+1/2(n, χ) Theorem 3 (1) n 1 A t(n)n s. a(n) = O(n k/2+1/4 ) a(tn 2 )n s a(tn 2 ) n Re(s) const. t k/2+1/4 n (k+1/2) Re(s). n 1 n 1 n 1 n 1 a(tn2 )n s Re(s) > k+3/2 ( ) t m 1 χ 1(m) m k 1 s Re(s) > k m n 1 A t(n)n s Re(s) > k + 3/2 (2) 1 N r ψ D t (s, ψ) = n 1 ψ(n)a t (n)n s s. t t = 1 t = 1 D 1 (s, ψ) = ψ(n)a 1 (n)n s = ψ(m)χ 1 (m)m k 1 s ψ(m)a(m 2 )m s n 1 m 1 m 1 9

36 26 Dirichlet Rankin (4π) s Γ (s) m 1 ψ(m)a(m 2 )m s = = = = 0 Γ \H ( 1 0 ) f(z)h(z; ψ)dx y s 1 dy s+1 dxdy f(z)h(z; ψ)y Γ 0 (Nr 2 )\H γ Γ \Γ 0 (Nr 2 ) Γ 0 (Nr 2 )\H y 2 f(z)h(z; ψ)y s+1 s+1 dxdy f(γ(z))h(γ(z); ψ)im(γ(z)) (c,d)=1, c 0 (mod Nr 2 ) c>0 if c 0, d=1 if c=0 y 2 φ(d)(cz + d) k ν cz + d 2ν 1 2s dxdy y 2, φ(d) = χ(d)ψ(d) ( ) 1 k, d = = 2 (4π) s Γ (s) n 1 Γ 0 (Nr 2 )\H Γ 0 (Nr 2 )\H ψ(n)a 1 (n)n (2s ν) f(z)h(z; ψ)y s+1 φ(m)m k+ν 1 2s m 1 m.n Z (Nr 2 m,n)=1 f(z)h(z; ψ)y s+1 φ(n)(nr 2 mz + n) k ν Nr 2 mz + n 2ν 1 2s dxdy m.n Z (m,n) (0,0) φ(n)(nr 2 mz + n) k ν Nr 2 mz + n 2ν 1 2s dxdy y 2. y 2 C(z, s) = m.n Z (m,n) (0,0) φ(n)(nr 2 mz + n) k ν Nr 2 mz + n 2ν 1 2s Eisenstein φ Lemma 1. ([Shimura[14];Lemma 3.1]) A φ A α A = 1 α > 0 H α (s, z, φ) = π s Γ (s)y s φ(n)(amz + n) α Amz + n 2s m.n Z (m,n) (0,0) Re(s) > α s ( H α (α + 1 s, z, φ) = ( 1) α g(φ)a 3s α 2 z α H α s, 1 ) Az, φ, g(φ) = 10 A φ(k)e(k/a) k=1

37 27 α = k l 0, 4A B f S(k + 1/2, Γ (B)), g M(l + 1/2, Γ (B)) s C Γ (B)\H f(z)g(z)y l+1/2 H α (s, z, φ) dxdy y 2 s Lemma 1 φ φ 0 Eisenstein C(z, s) χ 1 (m) = χ(m) ( ) 1 k m M N = MK E = p C(z, s) = = m.n Z (m,n) (0,0) m.n Z (m,n) (0,0) = 0<l E 0<l (n,e) µ(l) φ 0 (n)(nr 2 mz + n) k ν Nr 2 mz + n 2ν 1 2s µ(l)φ 0 (l)l 0<l (n,e) n=ln,k=ll µ(l)φ 0 (l)l k+ν 1 2s, 2t = 2s 2ν + 1 p: p N,p M k+ν 1 2s φ 0 (n )(Ml r 2 mz + n ) k ν Ml r 2 mz + n 2ν 1 2s (m,n) (0,0) 2 (4π) s Γ (s)π t Γ (t)d 1 (2s ν, ψ) = (Kr) t µ(l)φ 0 (l)l k s 1/2 0<l E Γ 0 (Nr 2 )\H φ 0 (n)(ml r 2 mz + n) k ν Ml r 2 mz + n 2ν 1 2s. f(z)h(z; ψ)y ν+1/2 H k ν (t, (K/l)rz, φ 0 ) dxdy y 2 Lemma 1 R 1 (s, ψ) = (2π) s Γ (s)d 1 (s, ψ) s (3) (2) r ψ R t (s, ψ) = (2π) s Γ (s)d t (s, ψ) ( ψ(nt )χ 2 (r)g(ψ) 2 ) R t (2k s, ψ) = (r 2 N t ) s k (2π) s Γ (s) ψ(n)b n n s r n 1 N t Dirichlet D(s) = n 1 b nn s. t = 1 t = 1 s k + ν s 2 (4π) s Γ (s)π t Γ (t)d 1 (2s ν, ψ) f(z)h(z; ψ)y ν+1/2 H k ν (t, (K/l)rz, φ 0 ) dxdy y 2 (3.1) Γ 0 (Nr 2 )\H ( ) Dirichlet t = s ν +1/2 t + (k ν) + 1 Lemma 1 ( H k ν (k ν) + 1 t, Krz ), φ 0 l ( ) Krz k ν ( = ( 1) k ν g(φ 0 )(Mr) 3t (k ν) 2 H k ν t, l ) l Nr 2 z, φ 0 11

38 28 (3.1) z 1/Nr 2 z Atkin- Lehner = = ( ) ( ) ( ) ν+1/2 f Nr 2 h z Nr 2 z ; ψ Im Nr 2 z ( N k 2 + ( 1 4 1r 2 z ) k+ 1 2 ( g(r z)) 2 ) ν 1 r 1 2 g(ψ) 4 ( ( ) k+1 ) N k r 2k ν ( ) 4 g(ψ)( 1) ν+ 1 N 2 z k ν g(r 2 z)h 2 4 z; ψ g(z) = f Γ 0 (Nr 2 )\H ( 2rN 1z ) ν+ 1 ( ) ( ) 2 N 1 ν+1/2 h 4 z; ψ Im Nr 2 z y ν+ 1 2, ( ( 0 1 ) N 0, N k/2+1/4 ( 1z ) ) k+1/2 ( ( S k+1/2 N, χ N )), f(z)h(z; ψ)y ν+1/2 H k ν ( t + (k ν) + 1, (Krz/l), φ 0 ) dxdy = (elementary constant factor) Γ 0 (Nr 2 )\H y 2 ( ) N g(r 2 z)h 4 z; ψ y ν+ 1 2 Hk ν (t, (K/l)rz, φ 0 ) dxdy y 2 (3.1) (2) Dirichlet ( [14] ). (1), (2), (3) D t (s, ψ) Weil F t (z) = n 1 A t(n)e(nz) M 2k (N t, χ 2 ) Remark 2. Dirichlet D t (s, ψ) f S k+1/2 (N, χ) p cond(χ t ) N p T (p 2 ) D t (s, ψ) Theorem 5. ([Shimura[14];Main Theorem]) k, N N 4 N χ N ( even ) Dirichlet t χ t (m) = χ(m) ( ) 1 k ( t ) m m tn Dirichlet f = n 1 a(n)e(nz) S k+1/2(n, χ) p N, p cond(χ t ) p T (p 2 ) S t,χ k,n (f) = n 1 d n χ t (d)a(tn 2 /d 2 )d k 1 e(nz) N t M 2k (N t, χ 2 ) Hecke k 2 n 1 A t(n)n s 2k > Re(s) > k + 3/2 f S 2k (N t, χ 2 ) Hecke Theorem 5 N t (3) R t (2k s, ψ) M M (3) M N t 12

39 29 χ t (m) = χ(m) ( ) 1 k ( t ) m m Mt, t 2 = (t, N) χ (m) = χ(m) ( ) t 2m M ν(2) = 4, ν(3) = 2, ν(p) = 1 (p > 3) ν(n) H = p p N, p M t p ν(p), K 0 = p H (f T (p 2 ))/f 0 N = [N, H 2, M ] N t = N /2K 0 N t Best possible N t Best possible 4 Shimura 4.1 Theta Kernel Niwa, Kojima, Cipra Theta Kernel ( k = 1 ), N t N/2 ( S k+1/2 (N, χ) N t ) k = 1 cusp S k+1/2 (N, χ) ( ) N t Best possible Metaplectic Theta Kernel cusp Theta Kernel Zagier Doi-Naganuma Zagier N t Symplectic Weil unitary, Metaplectic pair theta lift (Howe duality 1 ), Lion-Vergne[8] Howe duality Zagier ([8] [1] [9] ) t = 1 S 1,χ k,n ( t Theorem Fourier Kohnen S t,χ k,n 5 ) H τ z τ = Re(τ) + iim(τ) = x + iy, z = Re(z) + iim(z) = ρ + iσ Theorem 6. (Zagier identity[19, 8]) k > 1, N N χ 4N Dirichlet Ω k,n,χ (τ, z) = ( 1) k n 1 (a,b,c) Z 3 4N 2 a,4n b b 2 4ac=16N 2 n χ(c)(az 2 + bz + c) k n k 1 2 e(nτ), (τ, z) H 2 13

40 30 f S k+1/2 (4N, χ) S 1,χ k,n (f)(z) = Γ 0 (4N)\H f(τ)ω k,n,χ (τ, z)(imτ) k+ 1 2 S 1,χ k,n (f)(z) S 2k(2N, χ 2 ) N 1 2N Proof. Riesz f(τ) = n 1 a(n)e(nτ) S k+1/2(4n, χ) a(n) (n-th Poincaré P k+ 1 2,4N,n,χ(τ) S k+1/2(4n, χ) ) ( ) Ω k,n,χ (τ, z) = i 4N (4π) k 1 2 Γ (k 1 2 ) n 1 < f, P k+ 1 2,4N,n,χ > = Γ (k 1 2 ) a(n) i 4N (4πn) k 1 2 n k 1 Ω k,n,χ (τ, z) H H < f, Ω k,n,χ (τ, z) > = i 4N (4π) k 1 2 Γ (k 1 2 ) n k 1 n 1 d n = n 1 d n = S 1,χ k,4n (f) dxdy y 2 χ 1 (d)(n/d) k P k+ 1 2,4N,(n/d)2,χ (τ) e(nz) d n χ 1 (d)a(n 2 /d 2 )d k 1 e(nz) S 1,χ k,4n (f)(z) = χ 1 (d)(n/d) k < f, P k+ 1 2,4N,(n/d)2,χ > e( nz) Ω k,n,χ (τ, z) = i 4NΩ k,n,χ (τ, z) Γ 0 (4N)\H f(τ)ω k,n,χ (τ, z)(imτ) k+ 1 2 Ω k,n,χ (τ, z) τ Fourier Zagier (Zagier Doi-Naganuma ([13] )) Ω k,n,χ (τ, z) = ( 1) k n 1 ω k (z; χ, n)n k 1 2 e(nτ) dxdy y 2 ω k (z; χ, n) = ( ) χ(q)q(z, 1) k z, Q(z, 1) = (z, 1)Q 1 Q L N,n L N,n Γ 0 (2N) Q Q g = t gqg, g Γ 0 (2N) 14

41 31 2 { ( ) } a b/2 L N,n = Q = b/2 c 4N 2 a, 4N b, b 2 4ac = 16N 2 n Q = ( ) ( a b/2 b/2 c χ(q) = χ(c) g = a b c d) Γ0 (2N) ω k (g(z); χ, n) = ( ( χ(q)(cz + d) 2k (z, 1) t z gqg 1 Q L N,n = χ(d) 2 (cz + d) 2k ω k (z; χ, n), S 1,χ k,n (f) S 2k(2N, χ 2 ) )) k Remark 3. [8],Theta Kernel Ω k,n,χ (τ, z) Poincaré i 1 4N Ω k,n,χ (τ, z) Remark 4. Shimura Fourier Shimura Hecke k 2, N N, p S t,χ k,n S k+1/2 (4N, χ) S 2k (2N, χ 2 ) T (p 2 ) T (p) S k+1/2 (4N, χ) S t,χ k,n S 2k (2N, χ 2 ) Remark 5. f Theorem 5 S 1,χ k,n (f) (Theorem 6) Mellin (2π) s Γ (s) n 1 A 1 n s = = 0 S 1,χ dσ k,n (f)(iσ)σs σ ( f(τ) Ω k,n,χ (τ, iσ)σ s dσ ) k+1/2 dxdy y 0 σ y 2 (4.1) Γ 0 (4N)\H t = s + 1/ s (2π) s Γ (s) ( ) A 1 n s = f(τ) h(z; 1)C (z, t) y k+ 1 dxdy 2 y 2, (4.2) n 1 C (z, t) C (z, t) = (Kr) t 0<l E Γ 0 (4N)\H µ(l)φ 0 (l)l k t y k H k (t, (K/l)rz, φ 0 ) Eisenstein (4.1), (4.2) f Shimura L 2 s 2 h(z; 1)C (z, t) 2 0 Ω k,n,χ (τ, iσ)σ s dσ σ 15

42 Shintani Shimura S 1,χ k,n Shimura ( Shintani ) ( Shintani [16] [11] ) k > 1, N N g(z) = n 1 b(n)e(nz) S 2k(2N, χ 2 ) S 1,χ k,4n (g)(τ) = Γ 0 (2N)\H 2k dρdσ g(z)ω k,n,χ (τ, z)im(z) σ 2 Poincaré S 1,χ k,4n (g) S k+1/2(4n, χ) S 1,χ k,n S1,χ k,n Petersson S 1,χ k,4n (g) Fourier 2 Γ 1 (2N) Q = {γ Γ 1 (2N) Q γ = Q} ω k (z; χ, n) ω k (z; χ, n) = [Q] L N,n /Γ 1 (2N) γ Γ 1 (2N) Q \Γ 1 (2N) S 1,χ k,4n S 1,χ k,4n (g)(τ) = i N,k n 1 n k 1/2 [Q] L N,n /Γ 1 (2N) i N,k = ( 1) k [Γ 0 (2N)/{±1} : {±1}Γ 1 (2N)/{±1}] χ(q γ)(q γ)(z, 1) k ( ) g(z)χ(q)q(z, 1) k 2k dρdσ σ Γ 1 (2N) Q \H σ 2 e(nτ), ( ) g(z)χ(q)q(z, 1) k 2k dρdσ σ Γ 1 (2N) Q \H σ 2 = 2 2k+3 χ(q)π(16n 2 n) 1 2 k 2k 3 g(z)q(z, 1) k 1 dz. k 1 C Q C Q Q(z, 1) = 0 (1) a > 0 ( b 4N n)/2a ( b + 4N n)/2a a z 2 + brez + c = 0 Γ 1 (2N)\H (a < 0 ) (2) a = 0, b > 0 c/b i brez + c = 0 Γ 1 (2N)\H (b < 0.) g L ([6] ) Theorem 7. ([Kojima[6] ; Theorem 2]) g(z) = n 1 b(n)e(nz) S 2k(N, χ 2 ) Hecke S 1,χ k,4n (g)(τ) = d N,k n 1 ψ 0 j 2k 2 d N,k = ( 1) k 2 2k+3 (16N 2 ) 1 2 k π ( 2k 3 k 1 c j (ψ, g)l(g, j + 1, ψ) e(nτ), ), L(g, s, ψ) = n 1 ψ(n)b(n)n s Remark 6. Oda[12] (Niwa, Shintani, Zagier ) Shintani ( Zagier identity) (2, n 2) cusp [17] 16

43 Kohnen Shimura S k+1/2 (4N, χ) N t N/2 Shimura S t,χ k,4n (Kohnen ) N t k 2 N χ N Dirichlet N 1 χ χ pri χ χ( 1) = ϵ, χ = ( 4ϵ ) χ, N 2 = N/N 1 ξ k+1/2,ϵ = (( ), ϵ k+1/2 e ((2k + 1)/8) ) G Q k+1/2,4n,χ = [ Γ 0 (4N, χ )ξ k+1/2,ϵ Γ0 (4N, χ )] Q k+1/2,n,χ S k+1/2 (4N, χ ) hermitian Q k+1/2,n,χ S k+1/2 (4N, χ ) α = ( 1) [(k+1)/2] 2 2ϵ S + k+1/2 (N, χ) Kohnen Kohnen S + k+1/2 (N, χ) = f(z) = a(n)e(nz) S k+1/2 (4N, χ ) n 1 a(n) = 0 if ϵ( 1)k n 2, 3 (4) ϵ( 1) k D > 0, (N, D) = 1 D S + k+1/2 (N, χ) Shimura S D,χ k,4n H H Ω+ k,n,χ (τ, z) S D,χ k,4n (f)(z) = ( ) D χ(d)a( D n 2 /d 2 )d k 1 e(nz) d n 1 d n ( ) Ω + k,n,χ (τ, z) = i 4N (4π D ) k 1 2 Γ (k 1 2 ) 2 = ( i N (4π D ) k 1 2 Γ (k 1 2 ) = < f(τ), Ω + k,n,χ (τ, z) >, ) n 1 3 n 1 n k 1 n k 1 ( ( Pr S k+1/2 4N, 4ϵ ) ) χ S + k+1/2 (N, χ) ( ) D χ(d)(n/d) k Pr(P d k+ 1 2,4N,(n/d)2,χ (τ)) e(nz) d n ( ) D χ(d)(n/d) k Pr(P d k+ 1 2,4N,(n/d)2,χ (τ)) e(nz). d n Pr = 1 ( Qk+1/2,N,χ β ), β = α α β 2 τ Fourier Zagier Poincaré Fourier Proposition 2. ([Kohnen[5] ; Theorem 1], [Kojima-Tokuno[7] ; Theorem 2.2]) k 2 Ω + k,n,χ (τ, z) = i NC 1 k,d,χ pri n k 1 2 ( ) D µ(t) χ pri (t)t k 1 ω t k,n 2 1,N 2 /t (tz; D, ϵ( 1)k n, χ pri ) e(nτ). t N2 n 1 ϵ( 1) k n 0,1 (4) 17

44 34 C k,d,χpri χ pri Gauss W (χ pri ) ω k,n 2 1,N 2 /t 4.1 Zagier identity ω k (z; χ, n) ( ) ( ) C k,d,χpri = ( 1) [k/2] D k+1/2 2k 2 π 2 3k+2 χ pri ( D)W (χ pri )ϵ k 1 DN1 1/2 N1 k, ω k,n 2 1,N 2 /t (z; D, ϵ( 1)k n, χ pri ) = ω D (a, b, c)χ pri (c)(az 2 + bz + c) k. (a,b,c) Z 3 b 2 4ac=ϵ( 1) k N 2 1 Dn (N 2 1 N 2 /t) a ω D (a, b, c) Ω + k,n,χ (τ, z) τ Fourier ( D ) 2 D [a, b, c](x, Y ) D (b 2 4ac) 2 ( ) D (a, b, c, D) = 1 r [a, b, c](x, Y ), ω D (a, b, c) = r 0 (a, b, c, D) > 1 ω D (a, b, c) Γ 0 (1) r Proposition 2 Poincaré (τ ) Fourier ω k,n 2 1,N 2 /t (z; D, ϵ( 1)k n, χ pri ) ω D (a, b, c)χ pri (c)(az 2 + bz + c) k D N ( χ ) primitive 2 [a, b, c], 2 [at 2, bt, c] (t N 2 ) ω k,n 2 1,N 2 /t (z; D, ϵ( 1)k n, χ pri ) 2 ϵ( 1) k n 0, 1 (4) ω k,n 2 1,N 2 /t (z; D, ϵ( 1)k n, χ pri ) ω k,n 2 1,N 2 /t (z; D, ϵ( 1)k n, χ pri ) ( ) 2 ) S 2k (N 1 t, χ 2 pri S D,χ k,n (f)(z) S 2k(N, χ 2 ) S D,χ k,4n S + k+1/2 (N,χ) N D 4N/2 4N/4 D Zagier identity Kohnen 2 Remark 7. Kohnen S + k+1/2 (N, χ) Hecke T (p 2 ) (p 2 ) T (4) T (4) T (4) = 3 T 2 (4) Pr S + k+1/2 (N, χ) T (4) T (4) T (p 2 ) Kohnen 4 Hecke, T (4) T (p 2 ) (p 2), T (4) Shimura 4.4 Eisenstein Shimura Fourier Eisenstein Shimura Γ 0 (4) cusp i, 0 k + 1/2( 5/2) Eisenstein Ek+1/2 i (z) = j(α, z) 2k 1 M k+1/2 (4, 1), α Γ \Γ 0 (4) E 0 k+1/2 = ( 1) k i(z) k 1/2 E i k+1/2 H k+1/2 (z) = ζ(1 2k) = n 0 H(k; n)e(nz) ( 1 ) M 4z k+1/2 (4, 1) ( ( ) ) Ek+1/2 i (z) + 2 2k 1 1 ( 1) k i Ek+1/2 0 (z) 18

45 35 Eisenstein Fourier ζ(1 2k) if n = 0 ( ( )) 1 H(k; n) = 2 L dn ( ) ( ) dn 1 k, µ(d) d k 1 fn σ 2k 1 if n 1, n 0, 1 (mod 4) d d d f n 0 if n 1, n 2, 3 (mod 4) d n Q(( 1) k n)/q f n = n d n 1 Fourier H k+1/2 (z) M + k+1/2 (1, 1) Fourier µ n 1, D ( ) ) D d k 1 H (k ; n2 d d 2 D = 1 ( )) D (1 2 L ( ) D ( n ) k, µ(l) (ld) k 1 σ 2k 1 ld ld d n d n l (nf D /d) = 1 ( )) D (1 2 L k, σ 2k 1 (n) Eisenstein E 2k (z) = ζ(1 2k) σ 2k 1 (n)e(nz) M 2k (1, 1) n 1 Fourier σ 2k 1 (n) M + k+1/2 (1, 1) = CH k+1/2 S + k+1/2 (1, 1) M 2k(1, 1) = CE 2k S 2k (1, 1) S D,1 k,4 : M + k+1/2 (1, 1) M 2k(1, 1) a(n)e(nz) n 0 ( ( )) a(0) D 2 L 1 k, + ( ) ( D n d k 1 2 ) D a d d 2 e(nz), n 1 d n D ( 1) k D > 0 D,1 S k,4 S+ k+1/2 (1, 1) SD,1 k,4 S D,1 k,4 S + (1,1) = SD,1 k,4 : S+ k+1/2 k+1/2 (1, 1) S 2k(1, 1). Eisenstein S D,1 k,4 (H k+1/2) = 1 ( )) D (1 2 L k, ζ(1 2k)E 2k. D,1 Remark 8. k = 1 S 1,4 M + D,1 3/2 (1, 1) S 1,4 (M + 3/2 (1, 1)) = M 2 (1) S + D,1 3/2 (1, 1) S 1,4 Eisenstein ([2] ) k = 0 M + D,1 1/2 (1, 1) S 0,4 S D,1 0,4 (M + 1/2 (1, 1)) = M 0(1) M + 1/2 (1, 1) theta θ(z) = n Z e(n2 z) D,1 D 1 a(n) = δ(n = ) S k,4 (θ) = 1 2 L(1 k, ( D )) M 0 (1) = C 19

46 36 (1) ; 4, (1996). (2) B. A. Cipra; On the Niwa-Shintani theta-kernel lifting of modular forms, Nagoya Math.J. 91, (1983). (3) N.Koblitz; Introduction to Elliptic Curves and Modular Forms Graduate text in Math. 97, Springer- Verlag (1993). (4) N. ; ( 2 ) Springer-Japan (2008). (5) W. Kohnen; Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271, (1985). (6) H. Kojima; Fourier coefficients of modular forms of half integral weight, periods of modular forms and the special values of zeta functions, Hiroshima Math. J. 27, (1997). (7) H. Kojima-Y. Tokuno; On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen s spaces and the critical values of zeta functions, Tohoku Math. J. 56, (2004). (8) G.Lion-M.Vergne; The Weil representation, Maslov index and Theta series. Progress in Math. 6, Birkhäuser (1980). (9) ; 19 Weil Howe duality (2011). (10) T.Miyake; Modular Forms, Springer-Verlag (1989) (11) ; 8, (2000). (12) T. Oda; On Modular Forms Associated with Indefinite Quadratic Forms of Signature (2, n 2) Math.Ann. 231, (1977). (13) ; 8, (2000). (14) G.Shimura; On modular forms of half-integral weight, Ann. of Math. 97, (1973). (15) G.Shimura; On the Fourier coefficients of Hilbert modular forms of half-integral weight, Duke Math.J. 71, (1993). (16) T. Shintani; On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58, (1975). (17) ; 19 Oda lift (2011). (18) ; 8, (2000). (19) D. Zagier; Modular forms associated to real quadratic fields, Inventiones Math. 30, 1-46 (1975). 20

47 37 Accidental 1. ([Sak], ) ( ) ([Mat] ). dual pair.. Lie, SL(2, R) (SL(2, R) ) SL(2, R), dual pair SL(2, R) SL(2, R)., SL(2, R) dual pair O(p, q). Lie Accidental., SL(2, R). SL(2, R)/{±1} O 0 (2, 1). O 0 (2, 1) (2+, 1 ). SL(2, R) O(2, 1). Lie Accidental,.,, -, -,, Accidental. Sp(2; R)/{±1} O 0 (2, 3), (SL(2, R) SL(2, R))/{±( )} O 0 (2, 2), Lie Lie Dynkin Vogan. Helgason [He] Lie Accidental, Lie Accidental. Accidental, Lie. 1

48 38 Dynkin Vogan. 2 Lie, Lie, Lie Lie, Lie Lie Dynkin Humphrey[Hu]. Dynkin Lie Lie, Lie Lie, Vogan. 2.1, Lie Lie,. (1),, R, C Hamilton H. H {1, i, j, k}, {i, j, k}. (2) i 2 = j 2 = k 2 = 1, ij = ji = k. R i 2 = 1 i R + Ri C.. H {1, i, j, k }, {i, j, k }. i 2 = k 2 = 1, j 2 = 1, i j = j i = k.. C R R, H M(2, R). M(2, R). 2

49 39 (3) K (1) (2). K K x x K. K = R, C. C x + yi x yi C (K = C ), H x = x 0 + x 1 i + x 2 j + x 3 k x := x 0 x 1 i x 2 j x 3 k (K = H), H x = x 0 + x 1i + x 2j + x 3k x = x 0 x 1i x 2j x 3k (K = H ). H M(2, R) ( a M(2, R) X = c ) ( b ι d X := d c ) b M(2, R) a. M(n, K). K = R, C, C K Tr det. K = H, H M(n, K) M(n, K) C M(2n, C) R M(n, K). M(n, K),, τk n, N K n. n = 1 τ K, N K.. τ K (x) = x + x, N K (x) = x x (x K) X M(n, K), X X. 2.2 ([Hu, Chap.III. Section 9, 10] ) E, (α, β) (α, β E) E Φ,. (1) Φ, E. 3

50 40 (2) α Φ Φ ±α. (3) α Φ σ α GL(E)(reflection) Φ. 2(β, α) (4) α, β Φ α, β := (α, α) Z. σ α. σ α (β) := β α, β α (β E). β = α α, α. Φ. (1) E. (2) β Φ, {k α α } β = α k αα., = dim E. Φ, Φ Φ 1, Φ 2. Φ 1 Φ 2. α Φ i (α, β) = 0 β Φ j (i j, i, j {1, 2}).. Φ, Φ 1, Φ 2,, Φ m. Φ = Φ 1 Φ 2 Φ m. 2.3 Dynkin ([Hu, Chap.III. Section 11] ) Φ, Dynkin... α 1, α 2 α 1, α 2 α 2, α 1., (, ),. 4

51 41 Dynkin Dynkin. A n, B n, C n, D n, E 6, E 7, E 8, F 4, G 2 A n, B n, C n, D n, E 6, E 7, E 8, F 4, G 2. Lie Dynkin. g Lie. Lie g Cartan, g h Φ h (h h ) g h h. Φ h R g Killing. E = h R, Φ Lie g, Lie, Φ. Lie g Lie g = g 1 g 2 g m Φ Φ = Φ 1 Φ 2 Φ m. 1 i m Φ i Lie g i. Lie Lie Dynkin. Accidental Lie. Lie Lie Dynkin. 2.4 Dynkin Lie Lie, Dynkin.. Lie. 1. A n - SL(n, C) (sl(n, C)) Dynkin A-I SL(l, R) (sl(l, R)), A-II SL(m, H) (sl(m, H)), A III SU(p, q) (su(p, q)). 5

52 42 2. B n - D n - SO(2n + 1, C), SO(2n, C) (so(m, C)) Dynkin, B Dynkin, D BD-I BD-II SO(p, q) (so(p, q)), D-III SO (2n) (so (2n)). 3. C n - (c n - ) Sp(n, C) (sp(n, C)) Dynkin C-I Sp(n, R) (sp(n, R)), C-II Sp(p, q) (sp(p, q)). 2.5 Lie SL(l, R) := {g M(l, R) det(g) = 1}, SL(m, H) := {g M(m, H) NH m (g) = 1}, ( ) ( ) SU(p, q) := {g SL(p + q, C) t 1 p 0 p,q 1 p 0 p,q ḡ g = 0 q,p 1 q 0 q,p 1 q ( ) }, SU (2n) := { z 1 z 2 SL(2n, C) z 1, z 2 M(n, C)}( SL(n, H)), z 2 z 1 ( ) ( ) SO(p, q) := {g SL(p + q, R) t 1 p 0 p,q 1 p 0 p,q g g = 0 q,p 1 q 0 q,p 1 q ( ) ( ) }, SO (2n) := {g SU(n, n) t g 0 n 1 n 0 n 1 n g = }, 1 n 0 n 1 n 0 n ( ) ( ) Sp(n, R) := {g SL(2n, R) t g 0 n 1 n 0 n 1 n g = }, 1 n 0 n 1 n 0 n ( ) ( ) Sp(p, q) := {g M(p + q, H) t ḡ 1 p 0 p,q 1 p 0 p,q g = 0 q,p 1 q 0 q,p 1 q }. 6

53 43 Sp(p, 0) = Sp(0, p) Sp(p). Lie sl(l, R) := {X M(l, R) Tr(X) = 0}, sl(m, H) := {X M(m, H) τh m (X) = 0}, ( ) ( ) su(p, q) := {X sl(p + q, C) t 1 p 0 p,q 1 p 0 p,q X + 0 q,p 1 q 0 q,p 1 q ( ) X = 0 p+q }, su (2n) := { z 1 z 2 sl(2n, C) z 1, z 2 M(n, C)}( sl(n, H)), z 2 z 1 ( ) ( ) so(p, q) := {X sl(p + q, R) t 1 p 0 p,q 1 p 0 p,q X + 0 q,p 1 q 0 q,p 1 q ( ) ( ) X = 0 p+q }, so (2n) := {X su(n, n) t X 0 n 1 n 0 n 1 n + X = 0 2n }, 1 n 0 n 1 n 0 n ( ) ( ) sp(n, R) := {X sl(2n, R) t X 0 n 1 n 0 n 1 n + X = 0 2n }, 1 n 0 n 1 n 0 n ( ) ( ) sp(p, q) := {X M(p + q, H) t 1 p 0 p,q 1 p 0 p,q X + 0 q,p 1 q 0 q,p 1 q X = 0 p+q }. sp(p, 0) = sp(0, p) sp(p). 2.6 Vogan (1) Vogan ([Kn, Chap.VI, Section 8] ) g 0 Lie. θ g 0 Cartan. θ g 0 k 0 := {X g 0 θ(x) = X} g 0 Lie Lie. θ g 0 g 0 = k 0 p 0 (p 0 := {X g 0 θ(x) = X}) Cartan. Vogan θ Cartan h 0, h 0 k 0 h 0 k 0 θ Cartan h 0. g 0 Vogan, g := g 0 C Dynkin. ( h 0,C p 0,C ), ( h 0,C k 0,C ). 7

54 44 θ, ([Sat, 3, 3.4] ). Vogan, Cartan. (2) Vogan ([Kn, Appendix C, Section 3] ) Dynkin Lie Vogan A 2n sl(2n + 1, R) A 2n 1 sl(2n, R) A 2n 1 sl(n, H) (n 2) A p+q 1 su(p, q) (1 p q) p B p+q so(2p, 2q + 1) (1 p q) p B p+q so(2p, 2q + 1) (p > q 0) p C p+q sp(p, q) (1 p q) p C n sp(n, R) n D p+q+1 so(2p + 1, 2q + 1) (0 p q) p D p+q so(2p, 2q) (1 p q) p D n so (2n) (n 3) n Lie su(q) (A q 1 ), so(2q + 1) (B q ), sp(q) (C q ) so(2q) (D q ). B p+q. Vogan, Cayley. so(2p + 1, 2q + 1) (0 p q), so(1, 1), so(1, 3), p = 0. so(2p, 2q) (1 p q) so(2, 2). 8

55 45 3 Lie (Accidental ), Helgason[He] Lie. Lie, Dynkin. Accidental. Vogan B 2 = C 2 Lie Accidental ( [He, Chap.X, Section 6, 4]) A 1 = B 1 = C 1 1. su(2) so(3) sp(1). 2. sl(2, R) su(1, 1) so(2, 1) sp(1, R). B 2 = C 2 1. so(5) sp(2). 2. so(3, 2) sp(2, R). 3. so(4, 1) sp(1, 1). A 3 = D 3 1. su(4) so(6). 2. sl(4, R) so(3, 3). 3. su (4) sl(2, H) so(5, 1). 4. su(2, 2) so(4, 2). 5. su(3, 1) so (6). D 2 = A 1 A 1 1. so(4) so(3) so(3) su(2) su(2) sp(1) sp(1). 2. so(3, 1) sl(2, C). 9

56 46 3. so(2, 2) sl(2, R) sl(2, R). 4. so (4) su(2) sl(2, R). 1. so (8) so(6, 2). 3.2 Vogan Accidental (B 2 = C 2 ) Accidental B 2 = C 2.. so(5) sp(2), so(3, 2) sp(2, R), so(4, 1) sp(1, 1). C 2 Lie Vogan. sp(2) sp(2, R) sp(1, 1) B 2 Lie Vogan. so(5) so(2, 3) so(4, 1) C 2 B 2. B 2 = C 2 Accidental Vogan.. 4 Lie Accidental, Lie Accidental, Lie Accidental ( ).. [Yk, ]. Lie G, G 0 G. 10

57 Lie (Accidental ) A 1 = B 1 = C 1 1. SU(2) Sp(1) Spin(3), Sp(1)/{±1} SO(3). 2. SU(1, 1) SL(2, R). 3. SL(2, R)/{±1 2 } SO 0 (2, 1). B 2 = C 2 1. Sp(2) Spin(5), Sp(2)/{±1} SO(5). 2. Sp(2, R)/{±1 4 } SO 0 (2, 3). 3. Sp(1, 1)/{±1 2 } SO 0 (4, 1). A 3 = D 3 1. SU(4)/{±1 4 } SO(6). 2. SL(4, R)/{±1 4 } SO 0 (3, 3). 3. SU (4) SL(2, H), SL(2, H)/{±1 2 } SO 0 (5, 1). 4. SU(2, 2)/{±1 4 } SO 0 (4, 2). 5. SU(3, 1)/{±1 4 } SO (6). D 2 = A 1 A 1 1. SO(4) (Sp(1) Sp(1))/{±(1, 1)}. 2. SO 0 (3, 1) SL(2, C)/{±1 2 }. 3. SO 0 (2, 2) (SL(2, R) SL(2, R))/{±(1 2, 1 2 )}. 4. SO (4) (Sp(1) SL(2, R))/{±(1, 1 2 )}. I ( ) 1. SO (8)/{±1} SO 0 (6, 2)/{±1 8 }. 11

58 48 II ( Lie ) 1. SL(2, C)/{±1 2 } SO(3, C). 2. (SL(2, C) SL(2, C))/{±(1 2, 1 2 )} SO(4, C). 3. Sp(2, C)/{±1 4 } SO(5, C). 4. SL(4, C)/{±1 4 } SO(6, C). III (similitude ) 1. P GL(2, R)(:= GL(2, R)/R ) SO(2, 1). 2. P GSp(2, R)(:= GSp(2, R)/R ) SO(2, 3). 3. P GSp(1, 1)(:= GSp(1, 1)/R ) SO(4, 1). 4. P GL(2, H)(:= GL(2, H)/R ) SO(5, 1). 5. (GL(4, R) R )/{(z, z 2 ) z R } GSO(3, 3). 6. (GL(2, H) R )/{(z, z 2 ) z R } GSO(5, 1). 7. (GSp(1) GSp(1))/{(z, z 1 ) z R } GSO(4). 8. (GSp(1) GL(2, R))/{(z, z 1 ) z R } GSO (4). m Q similitude GO(Q), GSO(Q). GO(Q) := {g GL(m, R) t gqg = ν(g)q, ν(g) R }, GSO(Q) := {g GO(Q) det(g) = ν(g) m 2 }. 4.2, Accidental SL(2, R)/{±1 2 } SO 0 (2, 1), Sp(2, R)/{±1 4 } SO 0 (2, 3) 12

59 49, G G Lie, f : G G.. (i) G. (ii) Ker f. (iii) g, g G, G Lie dim g = dim g., C -Lie. G/ Ker f G. f df Lie df : g g. (ii) dim Ker df = 0 df, (iii) dim g = dim g, df. G G g. f. G/ Ker f G.. (V, Q) Q V. O(V, Q) := {g GL(V ) Q(gv) = Q(v), v V } (V, Q).. (1) (V, Q) (V 1, Q 1 ) := ({X M(2, R) t X = X}, det), ( ) (V 2, Q 2 ) := ({T M(4, R) T, Tr T = 0}, Tr) Tr V 2. V 2 X Tr(X 2 ) O(V 1, Q 1 ) O(2, 1), O(V 2, Q 2 ) O(2, 3). 13

60 50 (2) f : G O(V, Q) (G = SL(2, R), Sp(2, R)) G = SL(2, R), Sp(2, R) f : G O(V i, Q i ) (i = 1, 2). { gv t g (i = 1, g SL(2, R), v V 1 ) f(g)v := gvg 1 (i = 2, g Sp(2, R), v V 2 ). SL(2, R), Sp(2, R)., Lie ([Kn, p117], [Yk, p61] ) SL(2, R) Sp(2, R) SO(2) Sp(2, R) O(4) U(2). f. (3) 4.2 Ker f = {±1}. Lie sl(2, R) so(2, 1), sp(2, R) so(2, 3) 4.2, Lie. 4.3, (V, Q), f Sp(1)/{±1} SO(3): (1) (V, Q) : (2) f : V := {x H x + x = 0}, Q := N H. f(g)v := gvḡ (g Sp(1), v V ). Sp(2)/{±1} SO(5): (1) (V, Q) : (2) f : ( ξ V := { x ) x ξ R, x H}, Q := N 2 ξ H. f(g)v := gv t ḡ (g Sp(2), v V ). 14

61 51 Sp(1, 1)/{±1} SO 0 (4, 1): (1) (V, Q) : V := {X M 2 (H) t X = IXI, τ 2 H (X) = 0}, Q := NH. 2 ( ) 1 0 I :=. 0 1 (2) f : f(g)v := g 1 vg (g Sp(1, 1), v V ). SU(4)/{±1 4 } SO(6): (1) (V, Q) : ( ) ( ) ( X Y 0 ξ b V := { t Y X X =, Y = ξ 0 ā ) a, a, b, ξ C}, Q := N. b v V, N(v) := 1 4 Tr(vt v). (2) f : f(g)v := gv t g (g SU(4), v V ). SU(2, 2)/{±1 4 } SO 0 (4, 2): (1) (V, Q) : ( ) ( ) ( X Y 0 ξ b V := { X =, Y = t Y t X ξ 0 ā v V, N(v) := 1 4 Tr(I 2vI 2t v) (I 2 := (2) f : f(g)v = gv t g (g SU(2, 2), v V ). ) a, a, b, ξ C}, Q := N. b ( ) ) SL(4, R)/{±1 4 } SO 0 (3, 3): C, SL(4, R) SU(4, C )(C ), SL(4, R) SU(4, C ) 15

62 52. (1) (V, Q) : ( X V := { t Y ) ( ) ( Y 0 ξ b X =, Y = t X ξ 0 ā ) a, a, b, ξ C }, Q := N. b v V N(v) := 1 4 Tr(vt v). (2) f : f(g)v = gv t g (g SU(4,, C ) SL(4, R), v V ). (Sp(1) Sp(1))/{±(1, 1)} SO(4): (1) (V, Q) : V := H, Q := N H. (2) f : f((g 1, g 2 ))v := g 1 vḡ 2 ((g 1, g 2 ) Sp(1) Sp(1), v V ). SL(2, C)/{±1 2 } SO 0 (3, 1): (1) (V, Q) : V := {X M(2, C) t X = X}, Q := det. (2) f : f(g)v = gx t ḡ (g SL(2, C), v V ). (SL(2, R) SL(2, R))/{±(1 2, 1 2 )} SO 0 (2, 2): (1) (V, Q) : V := M(2, R), Q = det. (2) f : f((g 1, g 2 ))v := g 1 v t g ((g 1, g 2 ) SL(2, R) SL(2, R), v V ). (Sp(1) SL(2, R))/{±(1, 1 2 )} SO (4): H R H C. Sp(1) 16

63 53 {x H N H (x) = 1}, SL(2, R) Sp(1, N H ) := {x H N H (x) = 1}. SO (4). ( ) ( ) ( ) J 0 2 {X SL(4, C) X = 0 2 J X J 0 2, t 0 1 XX = 1 4 }. (J = ) 0 2 J 1 0 (1) (V, Q) : V = H C, Q = N H,C. N H,C N H H, C H C. (2) f : f((g 1, g 2 ))v := g 1 vḡ 2 ((g 1, g 2 ) Sp(1) Sp(1, H ), v V ). H H C ( M(2, C)), g 1 {x H N(x) = 1} = Sp(1) v H C. 4.4 SO (8)/{±1 8 } SO 0 (6, 2)/{±1 8 } : [F-H, Section 3]. SO (4n). ( ) ( ) {g M 2n (H) t 0 n 1 n 0 n 1 n ḡ g = }. 1 n 0 n 1 n 0 n n 3 n. [F-H] SO (8)/{±1 8 }, 2 ([Kr, Theorem 1.8] ). Lie Accidental, 4.2 ([Yk, 10 ] ). 3.1 Dynkin Lie Accidental. similitude, f. Lie. similitude, Hecke, similitude. 17

64 54 Clifford [E-G-M]. Vahlen Clifford Lie, Spin. Clifford Vahlen ([E-G-M, Section 6] ), Accidental. 4.2, 4.3 SL(2, H)/{±1} SO 0 (5, 1), SU(3, 1)/{±1 4 } SO (6)., Accidental.,. (i) E GSO(E, N E/F ) (E/F, N E/F ). (ii) (B B /{(z, z 1 ) z GL(1)} GSO(B, N B ) (B, N B ). (iii) P GL(2) SO(2, 1). (iv) P GSp(2) SO(2, 3). (v) P GSp(1, 1) SO(4, 1). (vi) P GL(2, B) SO(5, 1) (B ). (vii) (GL(4) GL(1))/{(z, z 2 ) z GL(1)} GSO(3, 3). (viii) (GL(2, B) GL(1))/{(z, z 2 ) z GL(1)} GSO(5, 1). (iv) (GL(2) GL(2))/{(z, z 1 ) z GL(1)} GSO(2, 2). (x) (B GL(2))/{(z, z 1 ) z GL(1)} GSO (4). 5 Lie Lie ( )dual pair. GL(m, D) GL(m, D), Sp(m, R) O(p, q), U(m, n) U(m, n ), Sp(p, q) O (2n). D. R, C Hamilton H. ( ) ([Mat] ), dual pair. Lie, Accidental dual pair., 18

65 55 Lie, dual pair., SL(2, R) = Sp(1, R).,. 5.1 Lie (1) SL(2, R) O(2, 1) Accidental SL(2, R)/{±1 2 } SO 0 (2, 1)(= O 0 (2, 1)). ( [Shim], [Ni]), ( [Shin-1]). Hecke,, Hecke [Shim]. [Shin-1] Weil, [Ni] Weil. Maass ([K- S], [Ko] ). Waldspurger[W]. [Sak]. (2) SL(2, R) O(2, 3) Accidental Sp(2, R)/{±1 4 } SO 0 (2, 3)(= O 0 (2, 3)). ( [Kur], Andrianov[An], Maass[Ma], Zagier[Za-1]). -. Ramanujan- Petersson, [Kur]. Maass[Maa], Zagier[Za-1] [Ib]. Piatetski-Shapiro[Ps]. 19

66 56 (3) Sp(2, R) O(4) Accidental (Sp(1) Sp(1))/{±(1, 1)} SO(4) ( [Ys]).. Abel Hasse-Weil L- L-. [Ok]. [B-S]. (4) SL(2, R) O(2, 2) Accidental (SL(2, R) SL(2, R))/{±(1 2, 1 2 )} SO 0 (2, 2) Hilbert ( - [D-N]). Dedekind L L, (Base change lift) ([La], [Sat], [Shin- 2] ). [D-N], Accidental ([Kud-1])., Zagier identity - [Za-1]. (5) SL(2, R) O(3, 1) Accidental SL(2, C)/{±1 2 } SO 0 (3, 1)(= O 0 (3, 1)) ( SL(2, C)) ( [As]) -,.,. [Fr]. 20

67 57 (6) U(1, 1) U(1, q) Accidental SU(1, 1) SL(2, R) ( SU(1, q)) (Kudla [Kud-2]). Kudla. q = 2, [Kud- 3], [M-S]. (7) O (4) Sp(1, q) Accidental SO (4) (Sp(1) SL(2, R))/{±(1, 1 2 )} Sp(1, q).,, Kudla Sp(1, q),. ([Na]),. (8) ([Od], [Su]), (1), (2), (4). 3,, - Zagier identity ([Za-1] ) IV. Gan-Takeda[G-Tk] Gan-Tantono[G-Tn] similitude ([G-Tk], [G-Tn] GSp(4) ) Langlands, Accidental (4.4 ). Accidental. 21

68 Lie 5.1. Lie G 1 G 2, G 1 G 2 G 1 G 2, G 1 G 2 G 1 G 2.. ( ) S (1) k+ 1 2 S (1) 2k - S (1) k S (1) k S (1) 2k S(1) k+ 1 2 S (2) k+1 S Hilb (k,k) SL(2, R) O(2, 1)( SL(2, R)) O(2, 1)( SL(2, R)) SL(2, R) SL(2, R) O(3, 2)( Sp(2, R)) SL(2, R) O(2, 2)( SL(2, R) SL(2, R)) S (1) k A 1 2 (k2 1) 2k+1 (SL(2, C)) SL(2, R) O(3, 1)( SL(2, C)) A k1 (B ) A k2 (B ) M (2) (l 1,l 2 ) O(4)( H /R H /R ) Sp(2, R) (even) S (1) k n+1 SIV,2n k SL(2, R) O(2n, 2) (odd) S (1) k n S IV,2n 1 k Kudla S (1) µ ν+1 q M I,q S (1) k SL(2, R) O(2n 1, 2) (µ,ν) SL(2, R) SU(1, 1) SU(1, q) A k (B ) S QDS (0,k) (Sp(1, q)) SO (4)( SL(2, R) H /R ) Sp(1, q) k, k 1, k 2, µ, ν. SL(2, R) SL(2, R). S κ (1) κ. S (1) κ + 1. κ M (2) Siegel ( (l 1, l 2 ) = (k 1 + k 2 + 2, k 1 k 2 + 2), k 1 k 2 ). S (2) Siegel. S(κ,κ) Hilb (κ, κ) ( )Hilbert. A λ k (SL(2, C)) k SU(2), Casimir λ SL(2, C). 22

69 59 A k (B ) k SU(2) {x H N H (x) = 1} B ( B, ). M I,q (µ,ν) (µ, ν) q (I ) ( (µ, ν) [Kud-2, Section 4]. Kudla µ ν > 2q + 1). S IV,m k k m IV ( k > 2n + 2(even ) k > 2n + 1(odd )). S QDS (0,k)(Sp(1, q)) (0, k) Sp(1, q) ( k > 4q + 2, q = 1 k > 4q = 4 ). [An] A. N. Andrianov, Modular descent and the Saito-Kurokawa conjecture, Invent. Math. 53 (1979) [As] T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields, Nagoya Math. J. 71 (1978) [B-S] S. Böcherer and R. Schulze-Pillot, Siegel modular forms and theta series attached to quaternion algebras. Nagoya Math. J. 121 (1991) [D-N] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969/1970) [E-G-M] J. Elstrodt, F. Grunewald and J. Mennicke, Vahlen s Group of Clifford Matrices and Spin Groups, Math. Z. 196 (1987) [F-H] E. Freitag and C. F. Hermann, Some Modular Varieties of Low Dimension, Adv. Math. 152 (2000) [Fr] S. Friedberg, On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level, Nagoya Math. J. 92 (1983) [G-Tk] W.T. Gan and S. Takeda, The local Langlands conjecture for GSp(4), to appear in Annals of Math. 23

70 60 [G-Tn] W.T. Gan and W. Tantono, The local Langlands conjecture for GSp(4) II, the case of inner forms, preprint. [He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, Volume 34, American Mathematical Society (2001). [Hu] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate text in Math. 9, Springer Verlag, (1972). [Ib], Saito-Kurokawa lifting for level N,. [K-S] S. Katok and P. Sarnak, Heeger points, cycles and Maass forms, Israel J. Math. 84 (1993) [Kn] A. Knapp, Lie groups beyond an introduction, Second edition, Birkhäuser, [Ko] H. Kojima, Shimura correspondence for Maass wave forms of half integral weight, Acta Arith. 69 (1995) [Kr] A. Krieg, Modular forms of half-spaces of quaternions, Lecture Notes in Math. vol.1143, Springer-Verlag, (1985). [Kud-1] S. Kudla, Theta functions and Hilbert modular forms, Nagoya Math. J. 69 (1978) [Kud-2] S. Kudla, On certain arithmetic automorphic forms for SU(1, q), Invent. Math. 52 (1979) [Kud-3] S. Kudla, On certain Euler products for SU(2, 1), Compositio Math. 42 (1980/81) [Kur] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math. 49 (1978) [La] R. Langlands, Base change for GL(2), Annals of Mathematics Studies 96, Princeton university press, Princeton, N.J., [Maa] H. Maass, Über eine Spezialschar von Mudulformen zweiten Grades, I, II, III, Invent. Math. 52 (1979) , 53 (1979) , 53 (1979) [Mat], Weil Howe duality,. 24

71 61 [M-S] A. Murase and T. Sugano, On the Fourier-Jacobi expansion of the unitary Kudla lift, Compositio Math. 143 (2007) [Na] H. Narita, Theta lifting from elliptic cusp forms to automorphic forms on Sp(1, q), Math. Z. 259 (2008) [Ni] S. Niwa, Modular forms of half integral weight and the integral of certain theta functions, Nagoya Math. J. 56 (1975) [Od] T. Oda, On modular forms associated with indefinite quadratic forms of signature (2, n 2), Math. Ann. 231 (1977/1978) [Ok] T. Okazaki, Proof of R. Salvati Manni and J. Top s conjectures on Siegel modular forms and abelian surfaces, Amer. J. Math. 128 (2006) [Ps] I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983) [Sa] H. Saito, Automorphic forms and algebraic extensions of number fields, Lectures in mathematics, vol.8, Kyoto Univ., Kyoto, Japan, (1975). [Sak], Shimura,. [Sat] I. Satake, Classification theory of semi-simple algebraic groups, Lecture Notes in Pure and Applied Mathematics, 3. Marcel Dekker, Inc., New York, [Shim] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973) [Shin-1] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975) [Shin-2] T. Shintani, On liftings of holomorphic cusp forms, Proc. Sympos. Pure Math. Vol.33, Amer. Math. Soc., Providence, R.I., (1979) part2, [Su], Oda Lift,. [Yk],, (1993). [Ys] H. Yoshida, Siegel s modular forms and the arithmetic of quadratic forms, Invent. Math. 60 (1980)

72 62 [W] J. L. Waldspurger, Correspondence de Shimura, J. Math. Pures et appl., 59 (1980) [Za-1] D. Zagier, Modular forms associated to real quadratic fields, Invent. Math., 30 (1975) [Za-2] D. Zagier, Sur la conjecture de Saito-Kurokawa (d aprés H. Maass), Seminar on Number Theory, Paris , , Progr. Math., 12, Birkhäuser, Boston, Mass.,

73 63 Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n, Z) t γj 1 n 0 n γ = J n } G = GSp(n, Q) + = {g M 2n (R) t gj n g = ν(g)j n, ν(g) R >0 } (2.1) g G g 1 Γ g Γ commensurable [Γ : Γ g 1 Γ g] <, [g 1 Γ g : Γ g 1 Γ g] < Γ G Hecke H(Γ, G) = H(Γ, G) C 1

74 64 C H(Γ, G) = a i (Γ g i Γ ) g i G, a i C i: : L(Γ, G) = { i: a i(γ g i ) g i G, a i C} C- Γ (γ, i a i(γ g i )) i a i(γ g i γ) L(Γ, G) Γ L(Γ, G) Γ ( )( ) a i (Γ γ i ) b j (Γ δ j ) = a i b j (Γ γ i δ j ) j i,j C- i H(Γ, G) L(Γ, G) Γ, Γ gγ = r Γ g i Γ gγ i=1 r Γ g i ( Γ \Γ gγ Γ g 1 Γ g\γ [Γ gγ : Γ ] < ) H(Γ, G) i=1 2.1 H(Γ, G) 2.2 g G Γ gγ diag(a 1,..., a g, d 1,..., d g ) a i d i = ν(g), a i a i+1, a g d g (ν(g) (2.1)) [An1, Theorem 3.28] ( ) ( ) A B t 2.1 G involution g = G g D t B = = C D t C t A ν(g)g 1 α α = J n αjg 1 g G Γ gγ = Γ g Γ Hecke Hecke G (p) = G GL(2n, Z[1/p]) H(Γ, G) = H p, H p = H(Γ, G (p) ) p: g G (p) ν(g) p H p 2

75 ( 1n 0 T (p) = Γ 0 p1 n ), T i (p 2 ) = Γ 1 i p1 n i p 2 1 i p1 n i Γ (0 i n) H p = C[T (p), T i (p 2 ) (1 i n)] (cf. [An1, Theorem 3.40]) Hecke Satake 3 Hecke Satake H p = G p = GSp(n, Q p ), K p = G p GL(2n, Z p ) { ϕ: G p C ϕ K p - i.e. ϕ(k 1 gk 2 ) = ϕ(g), k 1, k 2 K p ϕ } H p convolution ϕ 1 ϕ 2 (h) = ϕ 1 (g)ϕ 2 (g 1 h)dg G p C- 3.1 H p = H(Γ, G (p) ) H p, Γ gγ ch(k p gk p ) C- H p GSp T = {diag(u 1,..., u g, v 1,..., v g ) u 1 v 1 = u 2 v 2 = = u g v g } GSp ( ) 1 A B N = 0 ν t A 1 GSp A =... 1 P = T N GSp minimal parabolic subgroup GSp T Hecke : H p (T ) = {ψ : T (Q p ) C T (Z p )- } 3

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー shimpei@cc.hirosaki-u.ac.jp (K ) Nick Schmitt (Tübingen ) [6] R 3 K CGC [], R 3 CGC, R 3 CGC CGC CGC CGC 2, [2]. CGC CGC [6] C 3 CGC [4] CGC. 図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R 1 1.1 SL (R 1.1.1 SL (R H SL (R SL (R H H H = {z = x + iy C; x, y R, y > 0}, SL (R = {g M (R; dt(g = 1}, gτ = aτ + b a b g = SL (R cτ + d c d 1.1. Γ H H SL (R f(τ f(gτ G SL (R G H J(g, τ τ g G Hol f(τ

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information