A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Similar documents
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Part () () Γ Part ,

統計学のポイント整理

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P.101

tokei01.dvi

renshumondai-kaito.dvi

untitled

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

Microsoft Word - 表紙.docx

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

Acrobat Distiller, Job 128

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

分散分析・2次元正規分布

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

II 2 II

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Untitled

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

st.dvi

201711grade1ouyou.pdf

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

数理統計学Iノート

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

応用数学III-4.ppt

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

DVIOUT

i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

i

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

30

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2011de.dvi


x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

TOP URL 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

mugensho.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K


i

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)



l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

I 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

³ÎΨÏÀ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Chap11.dvi


2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Part. 4. () 4.. () Part ,

2 1 Introduction

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ohpmain.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Transcription:

1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1

1 2 2 3 1.3 A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P (A B) = P (B A)P (A) = P (A B)P (B) (6) P (B A) = P (A B) P (A) = P (A)P (B) P (A) = P (B) (7) A B Ω Ω = A 1 + A 2 + + A n (8) 2

P (B) = P (B A i )P (A i ) (9) i=1 A i 1.4 Ω Ω = A 1 + A 2 + + A n (10) P (B A i )P (A i ) = P (A i B)P (B) (11) P (A i B) = P (B A i)p (A i ) P (B) = P (B A i )P (A i ) n i=1 P (B A i)p (A i ) (12) P (A i ) B P (A i B) B ( ( ) ) 10 1 5 3 2 2 2 3 5 1 2 2 1 2 2 1 2 P ( ) = P ( )P ( ) P ( )P ( ) + P ( )P ( ) + P ( )P ( ) (13) 3

P ( ) = 2 10, P ( ) = 5 10, P ( ) = 3 10 (14) P ( ) = 6 11, P ( ) = 5 11, P ( ) = 5 11 (15) P ( ) = 3 13 (16) 2 2/10 = 2.6/13 0.4/13 99% (+) 1% 10 (0.001%) P ( +) = P (+ )P ( ) P (+ )P ( ) + P (+ )P ( ) (17) P ( ) = 0.00001, P ( ) = 1 P ( ) = 0.99999 (18) P ( +) = P (+ ) = 0.99, P ( ) = 0.01 (19) 0.99 0.00001 0.001 (20) 0.99 0.00001 + 0.01 0.99999 0.1% 4

2 2.1 1 0 10 X F (x) F (x) = P (X x) (21) X x X a b P (a X b) = F (b) F (a) (22) F X x i f i = P (X = x i ) F (x) = f i (23) x i x x i x x i X X 0 1 l l 0.1 0 ( 0) 0.1 0.1 0 1mm 100g 5

f(x) F (x) f(x) = df (x) dx F (x) f(x) x x X x + x (24) P (x X x + x) = F (x + x) F (x) (25) x x x + x F (x) f(x) F (x + x) = F (x) + f(x) x (26) P (x X x + x) = f(x) x (27) f(x) f(x) a X b F (b) F (a) = b a f(x)dx (28) f(x) F (x) = x f(x)dx (29) 0 f(x) 1 (30) f(x)dx = 1 (31) F (x) 2.2 ( ) X ( )E(X) E(X) = xf(x)dx ( ) (32) E(X) = i x i f i dx ( ) (33) 6

X h(x) E{h(X)} = h(x)f(x)dx ( ) (34) E{h(X)} = i h(x i )f i dx ( ) (35) h(x) = X k (k ) X k E{X k } = x k f(x)dx (36) X 1 X X V (X) 2 1 2 V (X) = E(X 2 ) {E(X)} 2 (37) 2 E{(X E(X)) 2 } = E{X 2 2XE(X)+(E(X)) 2 } = E(X 2 ) 2E{XE(X)}+E{E(X) 2 } (38) E(X) E(X) E(X) E{(X E(X)) 2 } = E(X 2 ) 2E(X)E(X) + {E(X)} 2 = E(X 2 ) {E(X)} 2 (39) 2 S S = V (X) (40) 2.3 (Moment generating function) M(t) = E{e tx } = d k M(t) dt k t=0 = d k dt k etx t=0 f(x)dx = e tx f(x)dx (41) x k f(x)dx = E(X k ) (42) M(t) k k t=0 t t = 0 e x = 1 + x + 1 2 x+ 1 3! x3 + = 7 k=0 x k k! (43)

{ } (tx) k M(t) = E = k! k=0 k=0 1 k! E(Xk ) = 1 + E(X) + 1 2 E(X2 ) + 1 3! E(X3 ) + (44) (characteristic function) Ψ(t) = E{e itx } = e itx f(x)dx (45) i (i 2 = 1) X d k Ψ(t) dt k t=0 = i k E(X k ) (46) ( ) Ψ(t) = M(it) (47) Ψ(it) = M( t) (48) ( ) X k (cumulant)c k G(t) log M(t) = k=1 1 k! C k (49) k = 1 G(t) M(t) t log(1 + x) = x 1 2 x2 + 1 3 x3 (50) C 1 = E(X) (51) C 2 = E(X 2 ) {E(X)} 2 = V (X) (52) k k 1 2 8

3 3.1 DU(n) X n x 1, x 2,..., x n f i = P (X = x i ) = 1 n DU(2) DU(6) X = 1, 2, 3,..., n E(X) = 1 n E{X 2 } = 1 n k=1 k 2 = k=1 k = n + 1 2 (n + 1)(2n + 1) 6 V (X) = E{X 2 } {E(X)} 2 = n2 1 12 (53) (54) (55) (56) 3.2 B N (n, p) p 1 p ( ) n X X = x( n x) f(x) = n C x p x (1 p) n x (57) n C x n x nc x = x! n!(n x)! (58) f(x) (a + b) n = nc m a m b n m (59) 1 = {p + (1 p)} n ( n ) m=0 1 = {p + (1 p)} n = nc x p x (1 p) n x = f(x) (60) x=0 x=0 9

E(X) = x n C x p x (1 p) n x = n x=0 n 1C x 1 p x (1 p) n x (61) x=1 n 1 = np n 1C x p x (1 p) n x 1 = np{p + (1 p)} n 1 = np (62) x=0 E(X 2 ) E{X(X 1)} E{X(X 1)} = x(x 1) n C x p x (1 p) n x = n(n 1) x=0 n 2C x 2 p x (1 p) n x (63) n 2 = n(n 1)p 2 n 2C x p x (1 p) n x 2 = n(n 1)p 2 {p + (1 p)} n 1 = n(n 1)p 2 (64) x=0 V (X) = E(X 2 ) {E(X)} 2 = E{X(X 1)} + E(X) {E(X)} 2 = np(1 p) (65) n x f(x) = n C x ( 1 2 x=2 ) x ( ) n x 1 (66) 2 E(X) = np = n 2 (67) V (X) = np(1 p) = n 2 (68) 10 1.6 3.3 P 0 (λ) (1 10 23 ) ( ) 10

X λ f(x) = λx x! e λ (69) Ψ(t) = x=0 λ x x! e λ e itx = e λ E(X) = 1 i V (X) 2 x=0 1 ( λe it ) x { ( = exp λ e it 1 )} (70) x! dψ(t) dt = λ (71) t=0 V (X) = d2 log Ψ(t) dt 2 t=0 = λ (72) 3.4 U(α, β) X α X β f(x) = { 1 β α (α x β) 0 ( ) (73) E(X) = β α E(X 2 ) = xf(x)dx = 1 β xdx = α + β β α α 2 β α x 2 f(x)dx == 1 β 3 α 3 β α 3 V (X) = (β α)2 12 (74) (75) (76) 4 4.1 N(µ, σ 2 ) µ σ 2 f(x) = 1 2πσ e (x µ)2 2σ 2 (77) 11

4.2 N(0, 1) ϕ(x) ϕ(x) = 1 2π e x2 /2 (78) N(µ, σ 2 ) z Z = X µ σ ϕ(z) σ (79) ϕ(x)dx = 1 (80) e x2 /2 dx = 2π (81) I = e x2 /2 dx = e y2 /2 dy (82) ( ) ( ) I 2 = e x2 /2 dx e y2 /2 dy = dx dy e (x2 +y 2 )/2 (83) xy x 2 + y 2 (x, y) 2 r 2 = x 2 + y 2 (84) dx dy (85) r r + r r 2πr r r dx 12 dy = 0 2πrdr (86)

I 2 = 0 2πre r2 /2 dr (87) d 2 dr e r /2 = re r2 /2 I 2 = 2π 0 (88) ( ) d 2 dr e r /2 dr (89) I 2 = 2π [e ] r2 /2 = 2π (90) 0 4.3 E(X) = 1 2π xe x2 /2 dx = 0 (91) xe x2 /2 0 ( ) dj(λ) dλ = λ=0 J(λ) = e λx2 /2 dx (92) ( ) d ( ) 2 dλ e λx /2 x 2 dx = 2 λ=0 2 e λx /2 dx = frac12 x 2 e x2 /2 dx λ=0 (93) λ 2 2π e λx /2 dx (94) N(0, 1/ λ) 1 J(λ) = 2π λ (95) ( E(X 2 ) = 2 1 dj(λ) = 2 1 ) d 2π 2π dλ λ=0 2π dλ λ = 1 (96) λ=0 13

V (X) = E(X 2 ) {E(X)} 2 = 1 (97) 0 1 N(µ, σ 2 ) Z X = µ + σz (98) Z E(X) = E(µ + σz) = µ + σe(z) = µ (99) V (X) = V (µ + σz) = E{(µ + σz) 2 } {E(µ + σz)} 2 = σ 2 (100) µ σ 2 ( σ ) 4.4 M(t) = E{e tx } = 1 e tx (x µ)2 /2σ 2 dx = exp (µt + σ2 t 2 ) 2πσ 2 (101) G(t) = log M(t) = µt + σ2 t 2 (102) 2 t 2 3 0 3 0 4.5 Z 0 Z z Z P ( σ X µ σ) 0.682 P ( 2σ X µ 2σ) 0.954 14

P ( 3σ X µ 3σ) 0.997 2 3 5 2 5.1 X Y X Y F (x, y) = P (X x, Y y) (103) X Y 1 F 1 (x) = P (X x) = F (x, ) (104) F 2 (y) = P (Y y) = F (, y) (105) f(x, y) = 2 F (x, y) (106) x y XY x y dx f(x, y) x y (107) f(x, y) 0 (108) X Y f 1 (x) = df 1(x) dx f 2 (x) = df 2(y) dy X Y dyf(x, y) = 1 (109) = = f(x, y)dy (110) f(x, y)dx (111) f(x, y) = f 1 (x)f 2 (y) (112) 15

5.2 2 h(x, Y ) E{h(X, Y )} = E(X) = µ 1, E(Y ) = µ 2 (113) V (X) = σ 2 1, V (Y ) = σ 2 2 (114) dx dyh(x, y)f(x, y) (115) h(x, Y ) X Y X Y h(x, Y ) = h 1 (X)h 2 (Y ) (116) E{h(X, Y )} = E{h 1 (X)}E{h 2 (Y )} (117) X Y 2 2 Cov(X, Y ) = E{(X µ 1 )(Y µ 2 )} = E(XY ) E(X)E(Y ) = E(XY ) µ 1 µ 2 (118) X Y Z Z 1 = X µ 1 σ 1, Z 2 = Y µ 2 σ 2 (119) ρ ρ Corr(X, Y ) Cov(Z 1, Z 2 ) = Cov(X, Y ) V (X)V (Y ) (120) ρ = ±1 1 ρ 1 (121) Z 2 = ±Z 1 (122) Y = µ 2 ± σ 2 σ 1 (X µ 1 ) (123) Y X 16

X Y E(XY ) = E(X)E(Y ) 0 0 0 2 ρ > 0 X Y ρ < 0 X Y 5.3 2 X Y U = ax + by (124) E(U) = E(aX + by ) = ae(x) + be(y ) = aµ 1 + bµ 2 (125) V (U) = E{(aX + by ) 2 } {E(aX + by )} 2 = a 2 V (X) + b 2 V (Y ) + 2ab Cov(X, Y ) (126) U X Y 5.4 2 2 N 2 (µ, Σ) µ = ( µ1 µ 2 ) (127) Σ = ( V (X) Cov(X, Y ) Cov(X, Y ) V (Y ) ) ( σ 2 = 1 ρσ 1 σ 2 ρσ 1 σ 2 σ2 2 ) (128) [ { 1 f(x, y) = 2πσ 1 σ 2 (1 ρ2 ) exp 1 (x µ1 ) 2 2(1 ρ 2 ) σ 2 1 2 ρ(x µ 1)(y µ 2 ) σ 1 σ 2 + (y µ 2) 2 X Y z [ ] 1 f(z 1, z 2 ) = 2π (1 ρ 2 ) exp 1 2(1 ρ 2 ) (z2 1 2ρz 1 z 2 + z2) 2 σ 1 σ 2 2 }] (129) (130) ρ = 0 [ 1 f(x, y) = exp 1 ( ) ] [ 2 x µ1 1 exp 1 ( ) ] 2 y µ2 = f 1 (x)f 2 (y) (131) 2πσ1 2 2πσ2 2 17 σ 2

2 0 2 x + y f(x, y) = [ 1 exp 1 2πσ 1 σ 2 2 ( ) ] 2 x µ1 σ 1 [ 1 exp 1 2πσ2 2 f(z 1, z 2 ) ( ) ] 2 y µ2 = f 1 (x)f 2 (y) (132) u = z 1 + z 2, v = z 1 z 2 (133) σ 2 1 2(1 ρ 2 ) (z2 1 2ρz 1 z 2 + z2) 2 = 1 ( ) u 2 2 1 + ρ + v2 1 ρ (134) U = Z 1 + Z 2 V = Z 1 Z 2 2 Z 1 Z 2 (ρ = 0) U f(u) = 1 2π e u2 /2 (135) 6 6.1 X 1, X 2,..., X n µ σ 2 ( ) X n = 1 n (X 1 + X 2 + + X n ) (136) n E( X n ) = µ (137) V ( X n ) = 1 n 2 [ E{(X1 + + X n ) 2 } {E(X 1 + + X n )} 2] = σ2 n (138) 1/ n 18

6.2 (law of large numbers) n X n µ X n µ E( X n ) = µ X n n X n µ 1 ( )µ 6.3 (central limit theorem) n n X n N(µ, σ 2 ) ( ) ( n ) n N(µ, σ2 n ) : n i 1 0 X i (i = 1, 2,..., n) M M = X 1 + X 2 + + X n (139) M B N (n, 1/2) n n M N(n/2, n/4) 7 7.1 n µ σ 2 X 1, X 2,..., X n ( 19

) X = 1 n (X 1 + X 2 + + X n ) (140) n N(µ, σ2 n ) SX 2 = 1 (X i n X) 2 = 1 Xi 2 n X 2 (141) i 1 V ( X) 2 2 i 1 E( X) = µ, V ( X) = E{ X 2 } {E( X)} 2 = σ2 n (142) E( X 2 ) = σ2 n + µ2 (143) X i µ σ 2 E(X 2 i ) = σ 2 + µ 2 (144) E(SX) 2 = σ 2 + µ 2 σ2 n µ2 = σ 2 σ2 n (145) σ2 n (bias) (unbiased) ˆσ 2 x = 1 n 1 (X i X) 2 (146) i 1 x 1, x 2,..., x n ( ) x = 1 n (x 1 + x 2 + + x n ) (147) n N(µ, σ2 n ) s 2 x = 1 n (x i x) 2 = 1 n i 1 20 x 2 i x 2 (148) i 1

2 ˆσ 2 x = 1 n 1 (x i x) 2 (149) i 1 x ˆσ 2 x 7.2 x x 100 X B N (100, 1/2) N(50, 25) z Z = X 50 25 = X 5 10 (150) Z N(0, 1) 3 Z 3 99% (99.7%) Z z 3 X 5 10 3 (151) 35 X 65 (152) 35 65 99.7% 2 Z 2 95.4% 40 60 100 p X B N (100, p) 21

N(100p, 100p(1 p)) Z Z = X 100p 100p(1 p) (153) Z N(0, 1) Z 99.7% 3 Z 3 Z 100p 3 10 p(1 p) X 100p + 3 10 p(1 p) (154) X 100p X 100 0.3 p(1 p) p X 100 + 0.3 p(1 p) (155) p p p p X 100 p X 100 0.3 X 100 ( 1 X ) p X 100 100 + 0.3 X 100 ( 1 X ) 100 (156) p X p 99.7% 99.7% 99% 95.4% 2 3 95% 99% 2.575 Z 2.575 95% 1.96 Z 1.96 100 40 99.7% p 0.25 p 0.55 95.4% 0.3 p 0.5 p = 0.5 ( ) 99% 99% 99% ( ) 99% p p N(100p, 100p(1 p)) 99% ( 40 ) 7.3 ( ) σ 2 n ( n ) X Z n( X µ) Z = (157) σ 22

N(0, 1) 95.4% µ 2 Z 2 (158) X 2 σ n µ X + 2 σ n (159) N(0, 1) X zα Z zα 1 α zα α z 0.05 = 1.96 µ 1 α X zα σ µ X + z σ n α (160) n 7.4 ( ) σ 2 ˆσ n 2 σ 2 ˆσ n 2 Z T T = n( X µ) ˆσ n (161) N(0, 1) T n 1 t n t t n 1 t α t n 1,α µ 1 α X t ˆσ n n 1,α µ X + t ˆσ n n n 1,α (162) n 7.5 χ 2 Z 1, Z 2,, Z n N(0, 1) n 2 S 2 = Z1 2 + Z2 2 + + Zn 2 (163) n χ 2 χ 2 n n = 1 N(0, 1) Z 2 S = Z 2 P (0 S s) = P ( Z s) = 2 s e x2 /2 dx (164) 2π 23 0

2 s 2π 0 y = x 2 (165) dy dx = 2x = 2 y (166) e x2 /2 dx = 1 2π s 0 1 y e y/2 dy (167) S f(s) = dp (0 S s) ds = 1 2π 1 y e y/2 (168) 8 100 60 40 (null hypothesis) 100 60:40 24

1/2 B(100, 1/2) 100 n P (n) = 1 2 100 100 C n (169) 60 1% 1 60 60 p(n 60) = 1 2 100 100 100C n (170) n=60 B N (100, 1/2) N(50, 25) Z Z = X 50 25 = X 5 10 (171) N(0, 1) X = 60 Z = 2 P (Z 2) P (Z 2) = 0.023 (172) 2 Z 2 0.954 Z 2 P (Z 2) = 1 P (Z 0) P (0 Z 2) = 1 0.5 P ( 2 Z 2)/2 (173) 100 60 2.3% 100 1000 23 60 p p 2.3% 1 100 2 100 2 100 20 25

20 1 0.05 60 0.05 ( ) 1. 2. 3. 4. 1 4 2 3 2 3 ( ) () p p 26

p 0.05 27