2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

Similar documents
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

- II

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

Chap11.dvi


A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


04.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

body.dvi

2011de.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

DVIOUT

1 I

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

³ÎΨÏÀ

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

v er.1/ c /(21)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

i

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (


1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

no35.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II 2 II

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2000年度『数学展望 I』講義録

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

(2000 )

数学概論I

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

sekibun.dvi

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

Morse ( ) 2014

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

.1 1,... ( )

( ) f a, b n f(b) = f(a) + f (a)(b a) + + f (n 1) (a) (n 1)! (b a)n 1 + R n, R n = b a f (n) (b t)n 1 (t) (n 1)! dt. : R n = b a f (n) (b t

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

Acrobat Distiller, Job 128

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

: , 2.0, 3.0, 2.0, (%) ( 2.

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

Microsoft Word - 信号処理3.doc

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Transcription:

2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5. F (x) = x f(x)dx F (x) x = c c f(x) 6. F (x) = x f(x) F (c) f(c) c f(x) 7.

2012 IA 8 I 1 10 10 29 2 1 p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p.28 1 2 3

8 2 4 p.3 1 5 p.8 0 6 p.10 x y f(x) f(y) 7 p.14 0 0 0 5 0 8 p.17 0 0 0 0 1 S s

8 3 9 p.20 10 p.25 1 2 4 2 1 1. R ξ 1, ξ 2,... R,ξ (f) > R : 0 = x 0 < x 1 <... < x n = 1 1 2 M < x 1 Mx 1 > R

8 4 M [x 0, x 1 ] ξ 1 1/2 M ξ m R,ξ (f) = f(ξ k )(x k x k 1 ) f(ξ 1 )(x 1 x 0 ) = Mx 1 > R 1. [, b] f M f(x) > M x [, b] f. R ξ 1, ξ 2,... R,ξ (f) > R f(x) M f(x) > M x N f(x) > N x [x i 1, x i ] x i x i 1 d d = min{x 1 x 0, x 2 x 1,..., x n x n 1 } n f f(x 0 ) > R + N(b ) d x 0 x 0 [x k0 1, x k0 ] ξ k0 = x 0 R,ξ (f) > k k 0 ( N)(x k x k 1 ) + > N(b ) + R + N(b ) d = R d R + N(b ) (x k0 x k0 1) d f(x) f(x) M f(x) > M x f(x) < M x f(x) [x h1 1, x h1 ],..., [x hl 1, x hl ] f(x) 0 x [x k1 1, x k1 ],..., [x km 1, x km ] : = x 0 < x 1 < < x n 1 < x n = b {x h1, x h2,..., x hl } {x k1, x k2,..., x km } = {x 1, x 2,..., x n } {x h1, x h2,..., x hl } {x k1, x k2,..., x km } =

8 5 f(x) < 0 x [x hi 1, x hi ] (1 i l) f(x) 0 x [x kj 1, x kj ] (1 j m) [x h1 1, x h1 ],..., [x hl 1, x hl ] ξ h1,..., ξ hl f(ξ h1 ),..., f(ξ hl ) N f(x) R + N(b ) f(x 0 ) > d x 0 d x 0 [x kj0 1, x kj0 ] [x kj0 1, x kj0 ] ξ kj0 f(ξ kj ) 0 1 x 0 [x kj 1, x kj ] ξ kj = x 0 ξ 1 x 1 ξ 2 x 2 ξ 3 x 3 ξ 4 x 4 ξ 5 x 5 = b ξ 1 ξ 2 N ξ 5 1: ξ R,ξ (f) = l m f(ξ hi )(x hi x hi 1) + f(ξ kj )(x kj x kj 1) i=1 j=1 l ( N)(x hi x hi 1) + 0 (x kj x kj 1) + f(x 0 )(x kj0 x kj0 1) j j 0 i=1 > N(b ) + R + N(b ) d = R d

8 6 f(x) = { tn x π/2 < x < π/2 0 x = ±π/2 0 n 0. 2 0 M { M x = 1/2 n f M (x) = 0 2 1 gm (x)dx = 0 1 0 [0, 1] 1 f 0 (x)dx = 0 1 f 1 0 (x)dx = lim f ε +0 ε (x)dx 14 [x k 1, x k ] f(x) f(x) f(x) f(x) [x k 1, x k ] 1. [, b] f [, b] S (f) = s (f) = sup [x k 1,x k ] f(x)(x k x k 1 ), inf f(x)(x k x k 1 ) [x k 1,x k ] f. f 2 f(x) [x k 1, x k ] s (f) R,ξ (f) S (f) (1)

8 7 2. [, b] f lim s (f) = lim S (f) 0 0 f f(x)dx f f 3. [, b] f. lim s (f) = lim S (f) = 0 0 lim S (f) = 0 f(x)dx f(x)dx ε δ < δ S (f) f(x)dx < ε ε sup f(x) f(ξ k ) < [x k 1,x k ] 2(b ) ξ k [x k 1, x k ] 0 S (f) R,ξ (f) < ε 2(b ) (x k x k 1 ) = ε 2 f(x) δ < δ ξ R,ξ(f) f(x)dx < ε 2 < δ S (f) f(x)dx S (f) R,ξ (f) + R,ξ(f) f(x)dx < ε

8 8 2, 3 2 3 4. [, b] f f lim s (f) = lim S (f) 0 0 f(x)dx 5 4 (1) 4 s (f) f(x)dx S (f) (2) (1) (2) 1, 2 s 1 (f) S 2 (f) (3) 2. [, b] 2 5. f s (f) s (f) S (f) S (f). (1) x x [x k0 1, x k0 ] 2

8 9 f(x) O xk0 1 x x k0 2: sup f(x) sup f(x), [x k0 1,x ] [x k0 1,x k0 ] sup f(x) sup f(x) [x,x k0 ] [x k0 1,x k0 ] S (f) S (f) = sup f(x)(x k0 x k0 1) [x k0 1,x k0 ] ( sup f(x)(x x k0 1) + [x k0 1,x ] sup [x,x k0 ] f(x)(x k0 x ) ) 0 (3) 1 2 3 3 1 2 s 1 (f) s 3 (f) S 3 (f) S 2 (f) (2) 0 s (f) f(x)dx s (f) f(x)dx S (f) < f(x)dx S (f) < s (f) (2) s (f) S (f)

8 10 6. [, b] f f lim (S (f) s (f)) = 0 (4) 0. (4) s (f) M (3) s (f) M S (f) S (f) s (f) M s (f) 0 (4) 0 s (f) M (4) S (f) M 8. 6 4 n = ( 1) n b n = ( 1) n + 1/n n n b n n b n 6 4 6 ε-δ ε δ < δ = S (f) s (f) < ε S (f) s (f) S (f) s (f) = sup x,y [x k 1,x k ] (f(x) f(y))(x k x k 1 ) 2 x y [x k 1, x k ] f(x) f(y) f(x) f(y) < ε b S (f) s (f) ε 3 < δ [x k 1, x k ] x k x k 1 < δ +α f 2 inf I f(x) = sup I ( f(x)) sup I f(x) inf I f(x) = sup x,y I (f(x) f(y)) 3 (5)

8 11 3. I f ε δ x y < δ x, y f(x) f(y) < ε 7.. f [, b] f ε δ [, b] 2 x, y x y < δ = f(x) f(y) < ε b < δ S (f) s (f) = = mx f(x)(x k x k 1 ) [x k 1,x k ] min f(x)(x k x k 1 ) [x k 1,x k ] mx (f(x) f(y))(x k x k 1 ) < x,y [x k 1,x k ] ε b (x k x k 1 ) = ε f 6. (5) ε δ < δ ε(b ) S (f) s (f) < ε(b ) f(x) = e x2 f 2e 1/2 (< 0.86) ε = 0.01 δ ε 0.01 4 [0, 1] 100 1 0 e x2 dx 0.01 5 ε x δ y ( x y < δ = f(x) f(y) < ε ) ε δ x y ( x y < δ = f(x) f(y) < ε ) x δ δ x δ x 1 4 (6) 5 ε > 0 x I

8 12 1/x (x > 0) 0 < x < y 1 x 1 y < 1 100 y x < δ x, y x < 100 y x < x2 100 x x = 1 y x < 1/99 x = 0.1 y x < 1/9990 x = 0.01 y x < 1/999900 x 0 y x 0 δ sin(1/x) f f f < M f(x) f(y) < M x y (6) δ = ε/m O.K. f f f C 1 - f f [, b] C - 1/x sin(1/x) (0, ) [, b] C 1-8.. f [, b] ε ε ε < mx [,b] f(x) min [,b] f(x) [, b] x r [, b] I r (x) [, b] x r(x) I r (x) = [, b] [x r, x + r] y, z I r (x) = f(y) f(z) < ε r ε r(x) r(x) > 0 f r I r (x) y f(x) f(y) < ε 2

8 13 I r (x) 2 y, z f(y) f(z) f(y) f(x) + f(x) f(z) < ε (7) r(x) y x y < r(x) r(x) x y r I r (y) I r(x) (x) I r (y) 2 z, z f(z) f(z ) < ε r(y) r(x) x y r(x) + x y r I r (y) I r(x) (x) I r (y) 2 z, z f(z) f(z) ε r(y) r(x) + x y r(x) r(y) x y r(x) r(x) [, b] r 0 r 0 > 0 x y < r 0 x, y [, b] r 0 r(x) f(x) f(y) < ε. 9. [, b]. f [, b] S (f) = f(x k )(x k x k 1 ), s (f) = S (f) s (f) = f(x k 1 )(x k x k 1 ) (f(x k ) f(x k 1 )) (x k x k 1 ) = (f(b) f()) n 0 S (f) s (f) 0 (f(x k ) f(x k 1 ))

8 14. c [, b] f f x c + 0 x c 0 lim x c 0 f(x) = sup f(x) [,c) lim f(x) = inf f(x) x c+0 (c,b] n f(b) f() n + 1 lim f(x) x c+0 lim x c 0 f(x) < f(b) f() n c n + 1 f n f 1 2 7. 1 2 f g 6 7 4 4 lim s (f) = lim S (f) 0 0 0 s (f) 0 S (f) 2 0 4 3 6 2 S (f) s (f) 0 S (f) s (f) S (f) s (f) 0 S (f) s (f) S (f) s (f)

8 15 4. f(x) [, b] f(x)dx f(x)dx f(x)dx = inf S (f), f(x)dx = sup s (f) 0 inf f(x)(b ) s (f) S (f) sup f(x)(b ) [,b] [,b] 5 5 10. l f S (f) S (f) (M m)l s (f) s (f) (M m)l M m f(x). l = 1 x x [x k0 1, x k0 ] 3 S (f) S (f) = sup f(x)(x k0 x k0 1) [x k0 1,x k0 ] ( sup f(x)(x x k0 1) + [x k0 1,x ] sup [x,x k0 ] M(x k0 x k0 1) (m(x x k0 1) + m(x k0 x )) (M m) f(x)(x k0 x ) l > 1 l l 1, 2,..., l 0 = )

8 16 M f(x) (M m) m x k0 1 x x k0 3: 1 l i S i 1 (f) S i (f) (M m) i 1 i = 1 i = l S (f) S (f) (M m) l i 1 i i 1 0 11. [, b] f i=1 lim s (f) = 0 f(x)dx, lim S (f) = 0 f(x)dx. S (f) f(x)dx 0 ε δ < δ S (f) f(x)dx < ε f(x)dx S (f) S 0 (f) f(x)dx < ε 2

8 17 0 0 0 n 0 M f(x) m f(x) δ δ < ε 4n 0 (M m) < δ 0 10 δ 0 S (f) S (f) (M m)n 0 δ < ε 2 0 f(x)dx S (f) S 0 (f) S (f) f(x)dx = S (f) S (f) + S (f) f(x)dx < ε 2 + S 0 (f) f(x)dx < ε 4 8 3 n 0 4 5 7 12. [, b] f n 0 1, 2,... lim (S n (f) s n (f)) = 0 (8) n

8 18. (4) lim (S (f) s (f)) = 0 0 (8) 11 lim (S (f) s (f)) 0 (8) 0 n 0 S n (f) s n (f) 0 ε-δ 13. ε-δ [, b] f ε S (f) s (f) < ε. ε-δ { n } n 0 lim (S n (f) s n (f)) = 0 n ε-δ ε N n > N = S n (f) s n (f) < ε ε-δ S (f) s (f) < 1 n n n S n (f) s n (f) < 1 n ε-δ δ

8 19 2 2. 1/2 n f(x) 0 ε-δ f(x) ε ε ε N < 2 N 1 ε N [0, 1] 2 N x k = k 2 N (k = 0, 1,..., 2 N ) f(x) 0 x = 1/2 n (n = 1, 2, ) [x k 1, x k ] 1/2 n n > N 1/2 n [x 0, x 1 ] n N x k = 1/2 n x k 1 = 1/2 n (n = 1, 2,..., N) 2N [x 0, x 1 ] S (f) = 2 N sup [x k 1,x k ] f(x)(x k x k 1 ) 2N 1 2 N < ε 3 3. f [, c] [, c] x m < f(x) < M m M ε { } ε δ = min 6(M m), b 2, c b 2 [, b δ] [b + δ, c] f [, b δ] 1 [b + δ, c] 2 S 1 (f) s 1 (f) < ε 3 S 2 (f) s 2 (f) < ε 3 1 2 [, c] S (f) = S 1 (f) + sup x [b δ,b+δ] f(x)2δ + S 2 (f) < S 1 (f) + 2Mδ + S 2 (f) s (f) = s 1 (f) + inf f(x)2δ + s 2 (f) > s 1 (f) + 2mδ + s 2 (f) x [b δ,b+δ] S (f) s (f) < S 1 (f) s 1 (f)+2(m m)δ+s 2 (f) s 2 (f) < ε 3 +2(M m) ε 6(M m) + ε 3 = ε ε f [, c]

8 20 9 14. f [, b] [ + c, b + c] g g(x) = f(x c) g [ + c, b + c] f(x)dx = +c +c g(x)dx.. [ + c, b + c] [, b] c f(ξ k )(x k x k 1 ) = g(ξ k + c) ((x k + c) (x k 1 + c)) 15. [, b] f, g C (f + g)(x)dx = (Cf)(x)dx = C f(x)dx + f(x)dx g(x)dx.. R,ξ (f + g) = R,ξ (f) + R,ξ (g), R,ξ (Cf) = CR,ξ (f)

8 21 16. [, b] f, g fg. 13 ε S (fg) s (fg) < ε f g M { f M = mx 1 2 sup [,b] S 1 (f) s 1 (f) < S 2 (g) s 2 (g) < f(x), sup g(x) [,b] 1 2 [x k 1, x k ] fg x, y [x k 1, x k ] f(x)g(x) f(y)g(y) ε 2M ε 2M f(x)g(x) f(y)g(y) f(x)g(x) f(y)g(x) + f(y)g(x) f(y)g(y) sup (f(x)g(x) f(y)g(y)) M [x k 1,x k ] S (fg) s (fg) = sup [x k 1,x k ] ( M g(x) f(x) f(y) + f(y) g(x) g(y) } M f(x) f(y) + M g(x) g(y) sup (f(x) f(y)) + M [x k 1,x k ] (f(x)g(x) f(y)g(y))(x k x k 1 ) sup (f(x) f(y)) + M [x k 1,x k ] = M (S (f) s (f)) + M (S (g) s (g)) 1 2 sup (g(x) g(y)) [x k 1,x k ] S (f) s (f) S 1 (f) s 1 (f) < ε 2M S (g) s (g) S 2 (g) s 2 (g) < ε 2M sup (g(x) g(y)) [x k 1,x k ] ) (x k x k 1 )

8 22 S (fg) s (fg) < ε 17. [, b] f 1/f 1/f [, b] 4 4. 6 [, b] 2 x, y 1 f(x) 1 f(y) 1 1 f(x) f(y) f(x) f(y) L 1/f [, b] I ( ) 1 sup I f inf 1 I f L2 sup f inf f I I ( ) ( ) 1 1 S s L 2 (S (f) s (f)) f f f 0 0 0 1/f 18. [, b] f, g x [, b] f(x) g(x) f(x)dx g(x)dx.. ξ R,ξ (f) R,ξ (g)

8 23 19. f [, b] f f(x)dx f(x) dx. f 6 S ( f ) s ( f ) = sup x,y [x k 1,x k ] ( f(x) f(y) ) (x k x k 1 ) t, s t s t s 6 S ( f ) s ( f ) sup x,y [x k 1,x k ] f f x [, b] (f(x) f(y)) (x k x k 1 ) = S (f) s (f) f(x) f(x), f(x) f(x) f(x)dx f(x) dx f(x)dx f(x) dx 20. f M m f(x)dx = µ(b ) µ [m, M] f µ = f(x) x [, b]. µ. R,ξ (f) m(b ) R,ξ (f) M(b ) m(b ) 6 t = t s + s t s + s t s t s f(x)dx M(b )

8 24 m µ = f(x)dx M b f f(x) = µ x 21. < c < b f [, b] f [, b] [, c] [c, b] f [, c] [c, b] [, b] f(x)dx = c f(x)dx + c f(x)dx. f [, b] S (f) s (f) < ε c c c [, c] c b [c, b] 1 2 i = 1, 2 S i (f) s i (f) S 1 (f) s 1 (f) + S 2 (f) s 2 (f) = S (f) s (f) < ε f [, c] [b, c] f [, c] [b, c] [, c] 1 [b, c] 2 S 1 (f) s 1 (f) < ε 2 S 2 (f) s 2 (f) < ε 2 [, b] 1 2 S (f) s (f) = S 1 (f) + S 2 (f) s 1 (f) s 2 (f) < ε f [, b] { n} { n} [, c] [c, b] 0 [, b] { n } n n n S n (f) c f(x)dx S (f) f(x)dx n c S n (f) f(x)dx S n (f) = S n (f) + S n (f)

8 25 f(x)dx = c f(x)dx + c f(x)dx < b > b f(x)dx f(x)dx = b f(x)dx 21, b, c 10 F (x) f(x) F (x) = f(x) F (x) f(x) F (x) f(x) F (x) f(x) F (x) f(x) F (x) f(x) 0 F (x) G(x) f(x) F (x) G(x) (F (x) G(x)) = F (x) G (x) = f(x) f(x) = 0 2 x, y (F (x) G(x)) (F (y) G(y)) = 0 (x y) = 0 f f [, b] c x c f(t)dt (x [, b]) 7 f 21 x f(t)dt x f(t)dt = d c d c f(t)dt 7 x c f(t)dt + C (C R)

8 26 22.. f M x+h x f(t)dt f(t)dt = c c x+h x f(t)dt x+h x f(t) dt M h f f 23. [, b] f F (x) = x c f(t)dt F = f. 20 ( 1 x+h ) x f(t)dt f(t)dt = 1 h h c c x+h x f(t)dt = f(x + θh) 0 1 θ h 0 x + θh x f ( 1 x+h ) x lim f(t)dt f(t)dt = f(x) h 0 h c c 8 cos x R cos x x cos tdt ( R) sin x + c ( 1 c 1) cos x sin x + C (C R) C > 1 sin x + C cos x 8

8 27 24. F f f(x)dx = F (b) F () 25. f x f(t)dt f F f f(x)dx = F (b) F () 5 x < 0 f(x) = 0 x 0 f(x) = 1 1 x x = 0 0 { x (x 0) f(x)dx = 0 (x < 0) 6 1 1 x = p x f(x) = q q 0 x 0 1 0 0 f(x)

8 28 g(x) = { 0 x 0 1 x = 0 0 7 F F (x) = 3 x4 sin 1 (x 0) x 0 (x = 0) F F (x) = 4 3 1 x sin 3 x 3 1 cos 1 (x 0) x 2 x 0 (x = 0) 0 0 2 ( )