空気の屈折率変調を光学的に検出する超指向性マイクロホン

Similar documents
LD

修士論文

Microsoft Word - 学士論文(表紙).doc

0.1 I I : 0.2 I

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

重力方向に基づくコントローラの向き決定方法

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

筑波大学大学院博士課程

Mott散乱によるParity対称性の破れを検証


橡実験IIINMR.PDF

Hz

main.dvi

BH BH BH BH Typeset by FoilTEX 2

untitled

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

橡博論表紙.PDF

untitled

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

吸収分光.PDF

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Microsoft PowerPoint - 02_資料.ppt [互換モード]

c 2009 i

untitled

05Mar2001_tune.dvi

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Note.tex 2008/09/19( )


総研大恒星進化概要.dvi


28 Horizontal angle correction using straight line detection in an equirectangular image

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2007-Kanai-paper.dvi

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

untitled

4‐E ) キュリー温度を利用した消磁:熱消磁


36 th IChO : - 3 ( ) , G O O D L U C K final 1

SICE東北支部研究集会資料(2004年)

85 4

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

thesis.dvi

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

main.dvi

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

MainOfManuscript.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


genron-7

dvipsj.4852.dvi

fj111_109


cm H.11.3 P

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

( ) ,

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

all.dvi

τ τ

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

untitled

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Part () () Γ Part ,

NETES No.CG V

Untitled

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

2005 1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Fig. 1 Hammer Two video cameras Object Overview of hammering test (14) (8) T s T s 2



2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Gmech08.dvi


charpter0.PDF

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

The Physics of Atmospheres CAPTER :

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

TSP信号を用いた音響系評価の研究

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

LLG-R8.Nisus.pdf


2000年度『数学展望 I』講義録


keisoku01.dvi

158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X (5) (magnetostriction) (magnetostriction stress measurem


mt_4.dvi

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

QMI_10.dvi

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

Transcription:

23 2 1M36268

2 2 4 5 6 7 8 13 15 2 21 2 23 2 2

3 32 34 38 38 54 57 62 63

1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1

Back face hole Amplifier Diaphragm Equiphase wave surface Acoustic tube 1-2 ( 3 ) 1 1 khz 27 cm (1-1) 1-3 ( 3) 6 1 1-3 Toepler ( 4) Schardin 2

W L C F 1 S K O F O 1 P T 1-4 1-4 L C S K T O F O P T 5 1 1 Mc 1. 5 1 cm/s 1.5.15 mm 1 O F W P P 1-5 F 1 (a) (b) 1-5 (a), (b) 3

( 5) 1-6 1-7 PVDF He-Ne Laser Mirror Transducer Water Tank Iris Photodiode He-Ne Laser Mirror Transducer Water Tank Iris Photodiode 1-6 4

5 (a) (b) (d) (c) 1-7 (a), (b) (c), (d) ( 6) 1

1 6 6

Laser Doppler Vibrometer: LDV 2-1 n l 2-1 LDV p l n n l LDV n l = n l (2-1) l l LDV Rigid Wall Sound Field 2-1 LDV 7

LDV v [m/s] f n ( 6) LDV n n = ν LDV (2-2) 2πfl Eykman ( 7) V /V n (2-3) V V n = n 1 1 n 633nm 15 1 ( 8) 4 1.2764 (2-3) 1, c P γ, ρ, p P (2-3) V 2 = γ, P γ = c ρ (2-4) V ( 3) p p 2 n c ρ ν n 1 2πfl = (2-5) LDV LDV 1.2764 p[pa] = 8.19 1 4 ν LDV [mm / s] f [khz] l[mm] (2-6) LDV l LDV (6) 2-2 1 27.2 khz 2-3 LDV LDV LDV 2-4 ( J (kr)) 8

LDV 2-5 LDV Langevin Transducer 4 mm in dia. 27.2 khz Conical Horn for Amplification Vibrating Ring (Aluminum) 61.3 mm in outer dia. 53.4 mm in inner dia. 3. mm in depth 2-2 Vibrating Ring Rigid Body 25mm 25mm LDV PI Polytech CLV-1232 2-3 Output of LDV (arb.) 3 25 2 15 1 5-5 -1-15 J (kr ) 5 1 15 2 25 Position from the Center (mm) 2-4 LDV 9

PI Polytech PSV3 2-6 LDV 2 2 CCD 2-6 1 Output of LDV (mm/s)pp 1 1.1 Resolution of LDV.1.1 1 1 1 1 Vibration Velocity of the Ring (mm/s)pp 2-5 LDV 2-6 1

2-7 28.2 khz 2-3 LDV 28.2 khz 12 mm LDV 2-8 7mm 7mm 7 Field Measured by the Present Method End Surface of a Langevin Transducer Laser Beam 2-7 2-8 11

2-1 LDV LDV 2-9 1 LDV LDV LDV Return Mirror Laser beam Vertical Direction Steering mirror LDV Horizontal Direction 2-9 12

1 2-9 1 2-9 LDV 2-1 d n ϕ nπd sin sinϕ λ D ( ϕ) = (2-7) πd n sin sinϕ λ ( 5) n (d = 1/2 ) n 2-11 n =1 14 n =14 1 (2-7) 14 1 Sound wave Vertical Direction n d ϕ Laser beam 2-1 13

Normalized Sensitivity n =1 n = 14 1.5-2 -1 1 2 [deg.] ϕ 2-11 2-12 l θ ( 5) πl sin sinθ λ D( θ ) = (2-8) πl sinθ λ Sound wave θ Laser beam l Horizontal Direction 2-12 14

2-13 (2-8) 1 l 7 λ l/ =5 1 2 Normalized Sensitivity 1.5-1 1 [deg.] 2-13 (2-7) (2-8) (2-7) (2-8) 2-14 a x x ( 2a) 2 x λ (2-9) S (2-9) S x (2-1) λ (9) 15

a Piston x 2-14 2-9 2-9 2-15 2-16 t - L d l n Mirror Laser beam LDV Vertical Direction Horizontal Direction 2-15 16

y p z k A A ( z y) ( t 2 p) n 1 2k 2n 1 2k, = l, d (2-11) 2n 4n y p z k B B ( t 2 2 p) n 1 2k 2n + 1 + 2k ( z, y) = l, d (2-12) 2n 4n A- R B- R a ( 2p) 2 2 n 1 2k 2n t 1 2k = + + d R a L z l y (2-13) 2n 4n ( 2 2p) 2 2 2 n 1 2k 2nt + 1+ 2k = L + z l y d R b + (2-14) 2n 4n p p = n 1 t 1 1 2π cos Ra Ra λ π k= p= 1 2 1 2 + j sin Ra + sin Ra λ Rb + b 1 2π cos Rb Rb λ π R b λ 2 (2-15) (2-15) t = 12 L = 12 m d =.1 m l = 1.53 m n = 2 2 khz (2-15) 2-17 2-13 17

LDV t d (z, y) = (, ) l t ( z, y) = (, d) 2 2 y d z l Mirror LDV n sections l l ( z, y) = ( k 2 2n l n t d, d 2 4n kd ) 2n 2-16 Normalized Sensitivity 1.8.6.4.2-2 -1 1 2 [deg] 2-17 18

1 7 λ 1/2 14 LDV 19

2-15 2-1 LDV 3-1 LDV LDV LDV PI-Polytec NLV-1232( : CLV-7) LDV He-Ne 5 mm/s/v 1 mm/s.5 µm/s 2 khz 3-1 2

( 19mm 28.2kHz) 28.2 khz 12 mm (ϕ ) (θ ) d LDV LDV LDV LDV L x, y, z z x L=34mm x y ( ) ϕ 18 [deg] 1 3mm(25 λ ) d x y 3-2 (a) d =1/2 λ (b) d =1 λ 1/2 λ ϕ = 9 ϕ = 18 1 λ 3-2 (2-7) 1/2λ d = 1/ 2λ z x ( ) 16.7 θ 16. 7 [deg].6 1 m(83 λ) L = 5λ, 1λ 3-3 (2-8) L = 1λ 7 L = 5λ 14 21

zed LDV Output 1.8.6.4 Normali.2 3 6 9 12 15 18 ϕ [deg.] (a) Normalized LDV Output 1.8.6.4.2 3 6 9 12 15 18 ϕ [deg.] (b) (a)d = 1/2 3-2 λ (b) d = 1 λ 22

Normalized LDV Output 1.8.6 L = 5.4.2 L = 1-2 -1 1 2 [deg.] 3-3 3-4 LDV LDV LDV LDV 3-4 23

LDV Mirror Depth Direction Focus Point Pararell Direction 3-4 θ 3-5 2 mm(16 λ) 3-5 x-z θ =2 541.67 mm(43 λ) x z LDV NLV-1232 ( 61 mm 53 mm 3 mm) ( 27.2 khz) LDV 3-5 3-5 θ θ x-z LDV θ = 2 4 1 x 1 [mm] 22 z 5 [mm] 2mm 24

3-6 θ = 4 ( x, z) = (,265) [mm] θ = 3-6 z 5 z [mm] 1 θ = 2 4 3-7 3-7 θ = 2 θ = 2 4 θ = 2 θ = 4 θ = 2 θ = θ = 2 Mirror 2 mm LDV 541.67mm z Focus point x Langevin Transducer 3-5 25

z [mm] z [mm] z [mm] x [mm] x [mm] x [mm] (a) (b) (c) 3-6 (a) θ = (b) θ = 2 (c) θ = 4 26

Normalized LDV Output 1.8.6.4.2 = =2 =4-4 -2 2 4 z[mm] 3-7 z LDV 3-8 3 mm(24 λ) θ = 2 439 mm(35 λ) θ = 2 4 1 x 1 [mm] 1 z 3 [mm] 2mm 3-9 θ = 4 (x.z)=(,25) [mm] 3 27

Mirror θ = 2 3mm LDV 439mm z Focus point x Langevin Transducer 3-8 z[mm] z[mm] z[mm] x[mm] x[mm] x[mm] (a) (b) (c) 3-9 (a) θ = (b) θ = 2 (c) θ = 4 28

29

3-1 1 (2-7) (2-8) 4-1 LDV 28.2 khz 12 mm 15mm 122mm (12.5 λ 1 λ ) 12 1 d 1.5 4-2 d/2 4-1 24 122 mm(1 λ ) 1/2 λ (2-1) 1.5 m 1 m(83 λ) LDV NLV-1232 θ ϕ θ ϕ 3

LDV 1 λ Mirror 12.5 λ (15 mm) 1 λ (122 mm) ϕ θ Langevin Transducer (28.2kHz 19mm) 4-1 d Approximation d/2 4-2 31

6.8 ϕ 6.8 λ 16.7 θ 16. 7 8 [deg] [deg] 1.1 4-3 4-3 ϕ = θ = 4-4 4-5 (2-15) 4-1 7 6 4-4 7 4-5 8 4-1 l =288mm LDV PI Polytech NLV-1232.5 µm / s (2-6) 28dB LDV Output[arb.] -5-1 5 ϕ [deg.] 1 θ [deg.] 4-3 32

Normalized LDV Output 1.8.6.4.2-2 -1 1 2 [deg.] 4-4 Normalized LDV Output 1.8.6.4.2-2 -1 1 2 ϕ [deg.] -5 33

28.2 khz 2 khz( 17 mm) 4-1 1 (2-7) (2-8) 4-1 Mirror Laser beam LDV 1 mm (.6λ) 123mm (7.2λ) 153mm (9λ) Reflector 4-6 34

θ = θ 33mm (19.4λ) LDV Head Microphone Speaker L 1456mm (85.6λ) 32mm (18.8λ) 4-7 1 4-6 1.53m(9 λ) 1.23m(7.2 λ) 1 mm(.6 λ) 4-2 4-6 153 mm(9 λ) 24.3 λ (2 7) (2 8) 1 LDV PI-Polytec CLV-1 : CLV-M2 : CLV-M6 : CLV-7 NLV-1232 2 mm/s/v 2 mm/s.2 µm/s 25 khz 4-6 l =3672 mm LDV.2 µ m / s (2-6) 21dB 35

4-7 5 Hz 5 khz FFT ( CF-522) θ θ = (a) (b) 4-8 (a) (b) 36

(2-1) 11 m (2-15) L 4-8 [m] L 4 θ = 1 2kHz 1 5 ms L [mm] 34 mm/ms 1 1 t 1 = L + 5 [ms] (4-1) 34 1 1 t 2 ( 1456 L) 1456 + = [ms] (4-2) 34 t1 t 2 (4-1) (4-3) t 1 t 2 (4-3) L 1371 [mm]=13.71[m] (4-4) (4-4) L 11[m] L = 12[m] 4-9 L = 12[m] L = 4[m] 1 T 1 t + 5 2 [ms] T + t 5 1 t + T + t 5 [ms] (4-5) 2 5 1 (4-1) (4-2) (4-5) L = 12[m] 37

T 2.6 [ms] (4-6) L = 4[m] T 67.11 [ms] (4-7) (4-6) (4-7) L = 12[m] T 5ms L = 4 [m] T 2ms 4-7 4-9 DS8812 L = m (a) (a) (b) (a) (a) T = 5 ms (b) 5 ms 1 35ms LDV 4-9 t 5 1 =35.29[ms] 4-9 L = 12 m 5 ms 1 4-1 11 θ 9 [deg] 1 5.5 ϕ 5. 2 [deg].5 (2-15) 4-6 8 1 L = 4 m 2 ms 4-11 1 θ 1 [deg] 1 16.2 ϕ 15. 4 [deg] 1.4 38

11 LDV Output 35ms Trigger signal (a) 1ms 5ms Trigger 1ms/div 1ms/div (b) 4-9 4-7 LDV (a) 1 ms/div (b) (a) 1 ms/div 39

Normalized LDV Output 1.8.6.4.2-1 1 [deg] 1 (a) Normalized LDV Output.8.6.4.2-4 -2 2 4 ϕ [deg] (b) -1 (a) (b) 4

Normalized LDV Output Normalized LDV Output 1.8.6.4.2-1 1 [deg.] 1.8.6.4.2 (a) -2-1 1 2 [deg.] ϕ (b) -11 (a) (b) 41

28,2 khz 7 8 (2 khz) 8 1 42

4-6 2 khz 1 1 4-9 4-6 4-9 5-1 5-1 4-7 L 12 m θ FFT CF-522 5 khz 248 5-1 43

CF-522 6.25 Hz 2 khz 1 5 ms 5-2 5-3 (2-6) l = 153 24 = 3672 [mm] SPL[dB] 6 4 2-2 1 2 3 4 5 Frequency[kHz] 6 5-2 SPL[dB] 4 2-2 1 2 3 4 5 Frequency[kHz] 5-3 2 khz 44

LDV 5 Hz 5 khz 5-2 5-2 1. 9 f 2. 1[kHz] 17.7 db 5-3 2 khz 2kHz 5-2 5-3 LDV 5-4 LDV LDV LDV 4-6 CLV-1 LDV head 2 cm Mirror 5-4 LDV LDV FFT 5-5 5-4 2 cm (2-6) l = 3672 [mm] LDV 5-4 LDV 5-2 5-2 5-6 5-6 LDV 1. 9 f 2. 1[kHz] -15.7 db 33.4 db 45

2 SPL[dB] -2-4 -6 1 2 3 4 5 Frequency[kHz] 5-5 LDV SPL[dB] 6 4 Optical Microphone 2-2 -4 LDV -6 1 2 3 4 5 Frequency[kHz] 5-6 LDV 46

1. 2. 3. 4. 5. 5-7 5-4 5-4 5-4 5-7 FFT 5-8 LDV Mirror 2 mm 2 mm LDV Head Mirror 5-7 47

[ 1-5 ] LDV Output[arb.] 1.8.6.4.2 Once Reflection Twice Reflection 1 2 3 4 5 Frequency[kHz] 5-8 FFT 5-9 LDV 5 Hz 5 khz O- O- 5-1 O- O- 48

SPL[dB] 6 Without Insulator 4 2-2 With Insulator -4 1 2 3 4 5 Frequency[kHz] 5-9 SPL[dB] 6 4 2-2 -4 1 2 3 4 5 Frequency[kHz] Without Insulator With Air-in Caster With Air-in Caster and O-ring 5-1 O- 49

15 mm FFT 5-11 1 Without Vibration With Vibration SPL[dB] 5 1 2 3 4 5 Frequency[kHz] 5-11 5-12 2 khz 2kHz 5-13 2 khz 5

LDV Head Optical Microphone Speaker 77 mm 5-12 SPL[dB] 1 5 Without Sound With Small Sound With Loud Sound 1 2 3 4 5 Frequency[kHz] 5-13 5-14 5-15 51

LDV Head Optical Microphone Fan Heater 5 mm 5-14 SPL[dB] 9 6 3 Without Fan Heater With Fan Heater -3 1 2 3 4 5 Frequency[kHz] 5-15 52

5-4 LDV 5-16 5 Hz 5 khz UC-27-27.3 db UN-4 8 db 5-16 1. 9 f 2.1[kHz] 17.7 db 2.2 db -11.6 db LDV -15.7dB 15.5 db SPL[dB] Optical Microphone(without insulator) Condenser Microphone Optical Microphone(with air-in caster) LDV 6 4 2-2 -4 LDV -6 1 2 3 4 5 Frequency[kHz] Optical Microphone(without insulator) Optical Microphone(with air-in caster) Condenser Microphone 5-16 LDV 53

UC-27 5-17 7 m (Earth Wind & Fire, Boogie Wonderland) 3 m θ 23.2 θ 23. 2 [deg] 2 Hz 5 khz 2dB MD (SONY MZ-R5) MD ( DS8812) Speaker L LDV Head θ Move Direction Condenser Microphone Optical Microphone 6.56 m 7 m 1 m 5-17 54

5-18 9 s 9 s MD Output[arb.] Output[arb.].12.6 -.6 -.12 3 6 9 12 Time[s] 15 18 Condenser Microphone.4.2 -.2 -.4 3 6 9 12 15 18 Time[s] Optical Microphone 5-18 55

5-19 6 m 2.15 m 19.7 8 19.7 MD Speaker A LDV Head 19.7 2.15 m Condenser Microphone Optical Microphone 2.15 m Speaker B 6.56 m 6 m 2 m 5-19 56

5-2 Monkey 6 m 35 4 km/h MD Running Direction Monkey (Honda) Condenser Microphone Optical Microphone 5-2 MD 5-21 5 s 5-21 57

Output[arb.] Output[arb.].2.1 -.1 -.2 2 4 6 8 1 Time[s] Condenser Microphone.3.15 -.15 -.3 2 4 6 Time[s] 8 1 Optical Microphone 5-21 15 db 58

1 1 28.2 khz 15mm 122mm (12.5 λ 1 λ ) 7 8 2 khz 1 153 mm 1.23m ; 9 λ 7. 2λ 8 1 2 khz 17.7 db 33.4 db 59

15 db 1 1. S/N 5 15 db 18 db 2. 1 3. CT 2 X 3 6

2 61

(1) (1995) (2) (1971) (3) (1979) (4) pp.496 56 (196) (5) US22-13 (23.1) (6) 27 pp.137-142 (21.5) (7) O. Nomoto K. Negishi DIFFRACTION OF LIGHT BY ULTRASONIC WAVES OF FINITE AMPLITUDE ACUSTICA Vol. 15 pp.223-235(1965) (8) 14 (21) (9) (1978) 62

(1) 21 1-2-8 (21.3) (2) 27 pp.137-142 (21.5) (3) I21 1-7-9(21.1) (4) II21 1-7-1 (21.1) (5) 27 LST28-11 (21.12) (6) Kentaro Nakamura, Manabu Hirayama, and Sadayuki Ueha, Measurements of Air-Borne Ultrasound by Detecting the Modulation in Optical Refractive Index of Air, IEEE 3G-6 (22.1). (7) US22-11 (23.1) (8) 1 III23 1-8-3 (23.3) 63