,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

Similar documents
2012 September 21, 2012, Rev.2.2

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

85 4

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

29

c 2009 i

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

chap9.dvi

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ


TOP URL 1

35

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Z: Q: R: C: sin 6 5 ζ a, b

II 2 II

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Chap10.dvi

Part () () Γ Part ,

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

「産業上利用することができる発明」の審査の運用指針(案)

sikepuri.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

note1.dvi

LLG-R8.Nisus.pdf

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

( ) ( )

chap10.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

2011de.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

i

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

高校生の就職への数学II

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

D:/BOOK/MAIN/MAIN.DVI

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Note.tex 2008/09/19( )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

R R 16 ( 3 )

TOP URL 1

DE-resume

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C


36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

量子力学 問題


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

Transcription:

(2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2.................................................. 3 2.3................................................. 4 3 5 3.1................................................. 5 3.2............................................ 7 3.3................................. 9 3.4.................................. 9 4 11 4.1.......................................... 11 4.2 ( )............................................. 11 4.3.................................................. 12 5 19 5.1................................................. 21 5.2.................................................. 21 5.3............................................ 22 6 25 6.1 Nyquist............................................ 25 6.2......................................... 26 6.3.............................................. 30 6.4...................................... 31 7 33

8 2 35 9 38 10 38,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,,.,.. 1 10 5 ( ) 2 10 11 3 10 12 ( ) 4 10 18 ( ) PI 5 10 19 ( ) 6 10 25 ( ) 7 10 26 ( ) 8 11 1 ( ) 9 11 2 ( ),.,.,, ( :, ).., 0,.,,. 3

1,,,,,.,.,,,. ( ) MATLAB Simulink Quanser QuaRC 2018 1. 1. Matlab 2. Matlab Simulink 3. 1

2 (SRV02) Quanser 2.1 2 3 3 D[m] D α[rad] α = D L L[m] 2 3 α 4 4 3 D 1[inch] *1 1[V] AD *1 Quanser inch 2

4 2.2 5, 6 SRV02 14:1 *2 1024 θ[rad] 5 hub motor 6 *2 14:1 3

2.3 (Quanser UPM1503) (I/O) ( 8) ±5[V] *3 I/O DA AD 7 8 I/O 2014 7 9 2018 10 1 2 u[v] *3 ±10[V] ±5[V] 4

9 θ[rad] α[rad] 10 ( ) (α) 3 ( ) 3.1 11 u, θ, τ u V 5

u K a V R L e θ m θ i τ m gear τ amp motor hub 11 K a V = K a u (1) u V = Ri + L di dt + e i e R L L V = Ri + e (2) e θ m K m e = K m dθ m dt (3) τ m i K τ τ m τ m = K τ i (4) (2), (3), (4) V, τ m, dθm dt ( ) R dθ m V τ m K m = 0 (5) K τ dt τ m τ θ m θ K g1, K g2 τ m = K g1 τ, θ m = K g2 θ (6) (1), (5), (6) (1), (6) (5) K a u ( RKg1 K τ ) τ (K m K g2 ) dθ dt = 0 6

D s := Kτ KmKg2 Kτ Ka RK g1, K s := RK g1 τ = D s dθ dt + K su (7) 3.2 [1] 12 α[rad] *4 12 13 1 2 1 2 *4 7

13 13 2 γ := θ + α (8) 1 (θ) 2 (γ) α 14 14 J 1, J 2 1,2 K l 1 2 θ, γ 1 2 8

d 2 θ J 1 dt 2 = K l(θ γ) + τ (9) d 2 γ J 2 dt 2 = K l(γ θ) (10) 3.3 (9) τ (7) d 2 θ J 1 dt 2 = K dθ l(θ γ) D s dt + K su (11) d 2 γ J 2 dt 2 = K l(γ θ) (12) 3.4 u θ, α, γ P θ (s), P α (s), P γ (s) u, θ, α, γ û, ˆθ, ˆα, ˆγ ˆθ ˆα ˆγ = P θ (s) P α (s) P γ (s) P θ (s), P α (s), P γ (s) (11), (12) û J 1 s 2 ˆθ = Kl (ˆθ ˆγ) D s sˆθ + K s û (13) J 2 s 2ˆγ = K l (ˆγ ˆθ) (14) P γ (s) (13),(14) ˆθ ˆγ ( J1 s 2 + D s s + K l ) ˆθ = Klˆγ + K s û (15) (15), (16) ˆθ ˆγ K l ˆθ = ( J2 s 2 + K l ) ˆγ (16) ( ) J 1 J 2 s 4 + J 2 D s s 3 + (J 1 + J 2 )K l s 2 + K l D s s ˆγ = K l K s û P γ (s) P γ (s) = ˆγ û = K l K s s (J 1 J 2 s 3 + J 2 D s s 2 + (J 1 + J 2 )K l s + K l D s ) 9

(16) P θ (s) P θ (s) = ˆθ û = (J 2 s 2 + K l )K s s (J 1 J 2 s 3 + J 2 D s s 2 + (J 1 + J 2 )K l s + K l D s ) (8) ˆα = ˆθ + ˆγ P α (s) P α (s) = P γ (s) P θ (s) = J 2 K s s 2 s (J 1 J 2 s 3 + J 2 D s s 2 + (J 1 + J 2 )K l s + K l D s ) u θ,α,γ P θ (s) P α (s) 1 = s (J P γ (s) 1 J 2 s 3 + J 2 D s s 2 + (J 1 + J 2 )K l s + K l D s ) (J 2 s 2 + K l )K s J 2 K s s 2 K l K s (17) (17) P θ (s) 1/s P α (s) s = 0 P θ (s) s = ±j K l J 2 θ α 10

4 4.1 P θ (s), P α (s), P γ (s) P θ (s) P α (s) P γ (s) = 1 s (J 1 J 2 s 3 + J 2 D s s 2 + (J 1 + J 2 )K l s + K l D s ) (J 2 s 2 + K l )K s J 2 K s s 2 K l K s 3 P (s) (a 1, a 2, a 3 ) (b 1, b 2 ) P θ (s) P α (s) 1 = s(s P γ (s) 3 + a 3 s 2 + a 2 s + a 1 ) b 2 s 2 + b 1 b 2 s 2 b 1 (18) J 1,J 2,K s,k l (18) a 1,a 2,a 3,b 1,b 2 4.2 ( ) u, y u y P (s) u(t) = a sin ωt, t 0 y(t) y(t) = P (jω) a sin(ωt + P (jω)), t 1 P (jω) P (jω), 11

. 15 P (jω) = b a P (jω) = ωt o 15 P (s) s = jω P (jω) P θ (jω) P θ (jω) Bode Nyquist [2] Bode Nyquist 4.3 P (s) ( u, y) *5,, 16. PI, K p K I C(s) = K I s. G cl (s) = P θ(s)c(s) 1 + P θ C(s) + K p., θ (19) (K p s + K I )(b 2 s 2 + b 1 ) = s 5 + a 3 s 4 + (a 2 + K p b 2 )s 3 + (a 1 + K I b 2 )s 2 (20) + K p b 1 s + K I b 1,,,. Step 1: p ω 1, ω 2, ω p *5 12

16 PI Simulink Plant P (s) Step 2: ω i, i = 1,..., p G cl (jω i ), i = 1,..., p. Step 3: G cl (jω), ω 0 G cl (jω i ), i = 1,..., p G cl (s) 4.3.1 Step 2 u(t) = sin ω i t 15 p u(t) = P (s) y p f i sin(ω i t + ϕ i ) (21) i=1 p y(t) = G cl (jω i ) f i sin ( ω i t + ϕ i + G cl (jω i ) ) (22) i=1 y(t) sin(ω i t) cos(ω i t) y(t) p ( y(t) = f i ci cos (ω i t + ϕ i ) + s i sin (ω i t + ϕ i ) ) (23) i=1 (c i, s i ), i = 1,..., p G cl (jω i ) = c 2 i + s2 i G cl (jω i ) = arctan ( ci s i ) (24a) (24b) 13

t = t 1, t 2,, t q y(t 1 ), y(t 2 ),, y(t q ) (23) J = 1 2 q y(t k) k=1 p f i (c i cos(ω i t k + ϕ i ) + s i sin(ω i t k + ϕ i )) i=1 (c i, s i ), i = 1,..., m ( 2 ) y(t 1 ), y(t 2 ),, y(t q ) *6 Y = [ y(t 1 ) y(t 2 ) y(t q ) ] R 1 q (25) C(f i, ω i ) = [ f i cos(ω i t 1 + ϕ i ) f i cos(ω i t 2 + ϕ i ) f i cos(ω i t q + ϕ i ) ] R 1 q S(f i, ω i ) = [ f i sin(ω i t 1 + ϕ i ) f i sin(ω i t 2 + ϕ i ) f i sin(ω i t q + ϕ i ) ] R 1 q P = [ ] c 1 s 1 c 2 s 2 c p s p R 1 2p, X = 2 J C(f 1, ω 1 ) S(f 1, ω 1 ) C(f 2, ω 2 ) S(f 2, ω 2 ). C(f p, ω p ) S(f p, ω p ) 2 R 2p q J = 1 (Y PX)(Y PX) 2 = 1 [ Y Y PXY Y X P + PXX P ] (26) 2 XX P J = 1 2 (P ˆP)(XX )(P ˆP) + Y Y Y X (XX ) 1 XY ˆP = Y X (XX ) 1 (27) (c i, s i ), i = 1,..., p (27) ˆP 2 J ( 2 Step 2 Step 2.1: Step 2.2: ω i f i ϕ i i = 1,..., p (21) t k y(t k ), k = 1,..., q *6 J = 0 (c i, s i ), i = 1,..., p J > 0 2 14

Step 2.3: y(t k ), k = 1,..., q f i, i = 1,..., p Y, X P 2 ˆP (27) Step 2.4: ˆP (c i, s i ), i = 1,..., p G cl (jω i ) (24) (27), X R 2p q,, ( 8 ). 500Hz, X q 500 8 60 = 240000, XX.,,. (27), q,,. V (q) := (X(q)X(q) ) 1, P(q) = Y (q)x(q) (X(q)X(q) ) 1 x(q) = [f 1 sin(ω 1 t q + ϕ 1 ), f 1 cos(ω 1 t q + ϕ 1 ),, f p sin(ω p t q + ϕ p ), f p cos(ω p t q + ϕ p )], *7 1 ( ) P(q) =P(q 1) 1 + x(q) y(t q ) + P(q 1)x(q) x(q) V (q 1), V (q 1)x(q) (28) 1 V (q) =V (q 1) 1 + x(q) V (q 1)x(q) V (q 1)x(q)x(q) V (q 1) (29) ( ). V (q 1).,, V (0), (0 ).,, P(0) V (0),,. 4.3.2 ω i, i = 1,..., p P (s) Step 3 [2] 5.6 *8 P θ (s) Step 3.1: P θ (s), ω = b 1 /b 2, *7. *8 15

, (Step 2) G cl (jω) ω o s = ±jω o G cl (s), 20 log G cl (jω) 20 log(k p b 2 ) 40 log ω (30), b 2. b 1 = ωob 2 2, P θ (s). ω o log ω 0 Step 3.2: G cl (s) i = 1, 2,, p,. 20 log G cl (jω i ) =20 log 1 (jω) 5 + a 3 (jω i ) 4 + (a 2 + K p b 2 )(jω i ) 3 + (a 1 + K I b 2 )(jω i ) 2 + jk p b 1 ω i + K I b 1 20 log 1 (jk p ω i + K I )(b 2 (jω i ) 2 + b 1 ) (31),, 20 log G cl(jω i ) =20 log 1 (jω) 5 + a 3 (jω i ) 4 + (a 2 + K p b 2 )(jω i ) 3 + (a 1 + K I b 2 )(jω i ) 2 + jk p b 1 ω i + K I b 1 (32) (a 1, a 2, a 3 )., G cl (jω i),,.,. Step 3.3: (a 1, a 2, a 3 ) (32) (a 1, a 2, a 3 ),. Matlab, G cl (s) Bode G cl (jω). b 1, b 2, p 0 P θ (s) a 1 a 2 a 3 a 1 a 2 a 3 > 0 (K p, K I ) = ( 0.1, 0.1) 2 PI G cl (s) Bode, 16

1. K r θ θ, α Ĝcl 1 jω + α = 1 jω α pole Ĝcl 1 G cl P θ (s) = 100s 2 + 20000 s(s 3 + 40s 2 + 1000s + 10000) 17 0.1 [rad/sec] 600 [rad/sec] 500 Hz Nyquist 250 Hz 100 Hz 600 [rad/sec] 1 {f i } 100 17 3.1 b 1 b 2 17

17 18 18

3.2 18 G cl (0) = 1 17 0.7 [rad/sec] 19 19 3.3 l1 fminsearch 100 20 1 5 21 P (s), C(s) 1 19

20 * o 21 1 2 3 4 (r, d) (y, u) (r, d) (y, u) 4 y r d y 20

P (s), C(s) P (s) = N(s) D(s), C(s) = N c(s) D c (s) (33) (D, N), (D c, N c ) 5.1 21 21 φ(s) := D(s)D c (s) + N(s)N c (s) (34) Hurwitz, φ(s) = 0 Matlab G [num,den] = tfdata(g); num = cell2mat(num); den = cell2mat(den); max(real(roots(den))) Nyquist 2 3 5.2 d = 0 r(t) = y { 1 (t > 0) 0 (t < 0) 22 21

(settling time) T s y y s ±2% ±5% (raising time) T r y y s 10% 90% (maximum overshoot) A max y y s (peak time) T max 22 5.3 y r e = r y e ê(s) ê = S(s)ˆr + R(s) ˆd S(s), R(s) r d e P (s),c(s) S(s) = 1 1 + P (s)c(s), R(s) = P (s)s(s) = P (s) 1 + P (s)c(s) (35) (33) S(s) = D(s)D c(s), R(s) = N(s)D c(s) φ(s) φ(s) (36) S(s) r(t) d(t) y r 22

{ a (t > 0) r(t) = 0 (t < 0) { b (t > 0) d(t) = 0 (t < 0) a : b : ˆr(s) = a s, ˆd(s) = b s φ(s) Hurwitz e s e s = lim t e r (t) = lim s 0 sê(s) = e sr + e sd (37) e sr e sd D(s),N(s),N c (s),d c (s) e sr = D(0)D c(0) φ(0) a, e sd = N(0)D c(0) b (38) φ(0) a, b e s = 0 D(0)D c (0) = 0 N(0)D c (0) = 0 D(s) N(s) 21 r d y r C(s) s = 0 C 0 (s) C(s) C(s) = 1 s C 0(s), C 0 (0) 0 C(s) 1/s C(s) P (s) e s 0 1 23

20 30 40 50 60 70 80 90 100 10Gain (db) 2 10 10 1 100 101 102 10 20 30 40 50 60 70 80 90 100 2 10 10 1 100 101 102 Phase (deg) Frequency (rad/sec) Frequency (rad/sec) PI PI(Proportional-Integral) C(s) = K p + K i s PI e(t) e s 0 PI Bode (39) 23 PI Bode P θ (s) P (s) P ( ) C(s) = K p e s (37), (38) (MATLAB PI C(s) = K p + K i /s e s = 0 (37), (38) 24

6 21 12 6.1 Nyquist 12 G(s) := P (s)c(s) Nyquist G(s) Nyquist [2] Nyquist P (s) C(s) G(s) Π G(s) Nyquist ( 1, j0) N 12 N = Π G(s) Π Π = 0 Nyquist Nyquist P (s) C(s) G(s) = P (s)c(s) 12 G(s) Nyquist ( 1, j0) 25

13 Nyquist 6.2 G(s) = P (s)c(s) 6.2.1 Im G(jω pc ) = 0 ω pc GM GM = 1 G(jω pc ) Nyquist G(s) Nyquist ( 1, j0) G(s) GM Nyquist ( 1, j0) GM Nyquist ( 1, j0) G(jω gc ) = 1 ω gc PM PM = 180 + G(jω gc ) Nyquist G(s) ( ) PM[ ] Nyquist ( 1, j0) PM[ ] Nyquist ( 1, j0) 26

14 15 Bode 16 PM = 40 60, GM = 10 20 db 6.2.2 Bode P (s) P (s) = P (s)(1 + (s)) (40) (s) 27

16 Bode *9 (s) r(ω) (jω) r(ω) ω R (41) (40),(41) P (s) P (s) ( P, C) Nyquist P (s) P (s) G(s) = P (s)c(s) G(s) = P (s)c(s)(1 + (s)) = G(s) + G(s) (s) (s) G(s) G(s) (41) (s) G(s) Nyquist ( 1, j0) 17 G(s) G (s) Nyquist (41) ω G(jω) G(jω) r(ω) G(jω) Nyquist G(jω) G(jω) r(ω) G(jω) ( ) ω ( 1, j0) 1 + G(jω) r(ω) G(jω) ω R G(jω) ( 1, j0) *9 P (s) 28

17 (P, C) G(s) = P (s)c(s) (40),(41) P (jω)c(jω) 1 + P (jω)c(jω) r(ω) 1 ω R (42) T (s) := P (s)c(s) 1 + P (s)c(s) S(s) + T (s) = 1 (43) r(ω) r(ω) r(ω) T (s) P (s) ω 1 T (jω) P (jω)c(jω) G(s) (42) T (jω)r(ω) < 1, ω (44) 29

sup T (jω)r(ω) (45) ω 1 sup ω G(jω) G H Matlab norm(g,inf) 6.3 r d y ŷ = T (s)ˆr + P (s)s(s) ˆd (46) S(0) = 0, T (0) = 1 T (s) T (0) 1/ 2 ( 3dB ) ω b ω b ω b * 10 T (s) = G(s)/(1 + G(s)) PM 90 G(s) ω gc ω b ω gc ω b [3] ω gc d y d y P (s)s(s) P (s) S(s) G(jω) > 1 S(jω) 1 G(jω) 1 G(jω) Bode [2] 7.1 S(jω) T (jω) (43) S(jω) S(jω) G(jω) G(s) *10 T r T r 1/ω b [2] 30

6.4 G(s) C(s) (i) PM = 40 60, GM = 10 20 db (ii) ω 1 G(jω) ω 1 G(jω) (iii) ω gc (iv) ω gc G(jω) 20 [db/dec] G(s) 18 G 20dB/dec 0 ω 1 ω gc ω2 ω 18 31

P (s) := P γ (s) PI C(s) = K p + K i /s 1. G(s) (i) (iv) PI K p, K i a P γ (s) G(s) Bode GM, PM, ω gc 2. PI 3. ±5 [V] 1 C(s) 90 (i) (iv) K p, K i G(s) Bode P γ (s) 4. 3. PI a (i) (iv) 32

7 2 19 2 12 M(s) P 1 (s)m(s) 19 2 C(s) 2 M(s) P (s) 1 M(s) * 11 ŷ = P (s)(û + ˆd) û = C(s)[M(s)ˆr ŷ] + P (s) 1 M(s)ˆr û r, d y ŷ = M(s)ˆr + P (s) 1 + P (s)c(s) ˆd (47) C(s) M(s) r y M(s) M(s) 0 M(0) = 1 M(s), P (s) 1 M(s) M(0) = 1 *11 M(s) P (s) M(s) P (s) 33

P (s) P (s) 1 P (s) 1 M(s) 34

8 2 2 2 4 1 2 2 γ Step 1: P γ (s) γ û = C γ (s)(ˆr ˆγ) 20 γ Step 2: γ = θ + α C γ (s) (θ, α) û = [ C 1 (s) C 2 (s) ] [ˆr ˆθ ], C ˆα 1 (s) = C 2 (s) = C γ (s) * 12 C 1 (s) C 2 (s) C γ (s) C 1 (s) C 2 (s) Step 3: 2 (i) (θ, α) Step 1 2 p m P (s) m p C(s) Re λ 0 λ [ ] Ip P (λ) det 0 C(λ) I m I q q q (ii) Step 2 C 1 (s) C 2 (s) [ *12 r = r 1 + r 2 û = C 1 (s) ] [ ˆr 1 C 2 (s) ˆθ ] ˆr 2 ˆα 35

(iii) Step 3 2 α θ γ = θ + α θ Step 1: α û = C α (s)ˆα α 0 Step 2: P θ (s), P α (s) C α (s) P (s) θ P (s) 2 (C θ, M) (i) 2 (a) (b) 21 2 (ii) 2 u P θ (s), P α (s) d C θ (s), C α (s) 36

(iii) C θ (s), M(s) C α (s) C θ (s), M(s) C α (s) (a) u ±5 [V] (b) γ 0 90 0 90 0 3 γ (c) (b),(c) γ 5% (i) Bode (ii) ( ) ( ) 37

9 2, 2. 1. PI 2.,.,. 10 * 13 1 ( P PI [1] Alessandro de Luca and Bruno Siciliano. Trajectory control of a non-linear one-link flexible arm. International Journal of Control, Vol. 50, No. 5, pp. 1699 1715, 1989. [2].., 2002. [3],.., 1998. *13 38