(b) 精密さ 精密度 * precision 測定値のばらつきの程度 標準偏差の大きさに相当する (c) 精度 accuracy 測定結果の正確さと精密さを含めた 測定量の真の値との一致の度合い 補正 correction は 正確さを期すために行われる ( 系統誤差を打ち消すために行われる )

Similar documents
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

<4D F736F F D AA90CD939D8C7692C789C C F33816A8A6D92E894C52E646F63>

Microsoft PowerPoint - Inoue-statistics [互換モード]

数値計算法

Microsoft PowerPoint - 測量学.ppt [互換モード]

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

スライド 1

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

統計的データ解析

講義「○○○○」

Microsoft Word - 酸塩基

カイ二乗フィット検定、パラメータの誤差

Microsoft Word - Stattext07.doc

Microsoft PowerPoint - sc7.ppt [互換モード]

基礎統計

様々なミクロ計量モデル†

Probit , Mixed logit

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

EBNと疫学

スライド 1

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

不偏推定量

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

untitled

データ解析

Microsoft PowerPoint - stat-2014-[9] pptx

_KyoukaNaiyou_No.4

スライド 1

Microsoft Word - 補論3.2

モジュール1のまとめ

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

Microsoft Word - Stattext13.doc

<4D F736F F F696E74202D A6D82A982B381408AD698418B4B8A E E B8CDD8AB B83685D>

PowerPoint プレゼンテーション

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Microsoft PowerPoint - 三次元座標測定 ppt

測量士補 重要事項「標準偏差」

Microsoft PowerPoint - statistics pptx

しょうゆの食塩分測定方法 ( モール法 ) 手順書 1. 適用範囲 この手順書は 日本農林規格に定めるしょうゆに適用する 2. 測定方法の概要 試料に水を加え 指示薬としてクロム酸カリウム溶液を加え 0.02 mol/l 硝酸銀溶液で滴定し 滴定終点までに消費した硝酸銀溶液の量から塩化ナトリウム含有

Hara-statistics

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと

13章 回帰分析

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

情報工学概論

キレート滴定2014

測量試補 重要事項

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

ビジネス統計 統計基礎とエクセル分析 正誤表

JCG201S101-03(HP)

第7章

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

青焼 1章[15-52].indd

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint saitama2.ppt [互換モード]

ウスターソース類の食塩分測定方法 ( モール法 ) 手順書 1. 適用範囲 この手順書は 日本農林規格に定めるウスターソース類及びその周辺製品に適用する 2. 測定方法の概要試料に水を加え ろ過した後 指示薬としてクロム酸カリウム溶液を加え 0.1 mol/l 硝酸銀溶液で滴定し 滴定終点までに消費

Microsoft PowerPoint - 基礎・経済統計6.ppt

student chemistry (2019), 1, 多価酸 1 価塩基滴定曲線と酸塩基滴定における学術用語についての考察 西野光太郎, 山口悟 * 茨城県立水戸第一高等学校化学部 茨城県水戸市三の丸 (2019 年 3 月 1 日受付 ;2019 年

(Microsoft Word - \230a\225\266IChO46-Preparatory_Q36_\211\374\202Q_.doc)

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

Microsoft Word - å“Ÿåłžå¸°173.docx

2014 JAIMA セミナー ( 不確かさ編 ) 国際会議場 3 階 303 会議室

パソコンシミュレータの現状

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

PowerPoint プレゼンテーション

Microsoft Word - thesis.doc

不確かさ 資料 1/8

Medical3

Problem P5

PowerPoint プレゼンテーション

線積分.indd

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - e-stat(OLS).pptx

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Excelにおける回帰分析(最小二乗法)の手順と出力

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

数値計算法

Microsoft Word - 5章摂動法.doc

経営統計学

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

相関係数と偏差ベクトル

PowerPoint Presentation

<連載講座>アルマイト従事者のためのやさしい化学(XVII)--まとめと問題 (1)

1.民営化

フォルハルト法 NH SCN の標準液または KSCN の標準液を用い,Ag または Hg を直接沈殿滴定する方法 および Cl, Br, I, CN, 試料溶液に Fe SCN, S 2 を指示薬として加える 例 : Cl の逆滴定による定量 などを逆滴定する方法をいう Fe を加えた試料液に硝酸

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

Microsoft Word - Stattext11.doc

ギリシャ文字の読み方を教えてください

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝

環境水の分析

Microsoft Word - Stattext12.doc

Microsoft PowerPoint - JAIMAセミナー(MCM) ppt [互換モード]

<4D F736F F F696E74202D2091AA92E882C982A882AF82E995738A6D82A982B382CC88D396A182C68D6C82A695FB2E B8CDD8AB B83685D>

PowerPoint プレゼンテーション

Transcription:

誤差の話 014.4.4. 内容 誤差の話... 1 正確さ 精密さ 精度... 1 不確かさの表示... 誤差のモデル... 誤差の伝播則... 3 測定の際の注意点 独立でかたよりのない測定の実現... 4 容量分析に見る誤差... 4 問題... 6 誤差の話 正確さ 精密さ 精度 測定値の精確さあるいは不確かさをめぐっては 品質工学の長足の進歩なども背景に この0 年余りの間にさまざまな概念の整理が行われてきた しかし 真なるもの をめぐる哲学的な立場もかかわって 今日でも用語をめぐって JIS の中にさえ混乱がある ここでは基本的な概念である正確さ trueness 精密さ precision 精度 accuracy に関わって まず用語について整理しておこう ( 主に JIS 8103 計測用語に準拠する ) 測定値の不確かさを議論する際 まず何を基準に取るかが問題になる 有限回の測定で得られる標本平均 x を基準に取り 測定値との差を取ったもの x x を残差 residual 無限回の測定で得られる母平均 µ を基準に取った差 x µ を偏差 deviation と呼ぶ 不確かさは単に測定値のばらつきだけを問題にするものではない 真の値 * true value との差も不確かさに含まれる 真の値を t とする時 真の値と測定値の差 x t を誤差 error 真の値と母平均の差 µ t をかたより bias と呼ぶ 一般に 誤差が大きい として認識される測定値のばらつき dispersion の大きさは 偏差 ( あるいは残差 ) のばらつきに相当する そこで誤差をさらに偶然誤差 random error( 偏差を構成する成分 ) と系統誤差 systematic error( かたよりを構成する成分 ) に分け 偶然誤差を単に誤差とすることも多い ばらつきの大きさは標準偏差で評価される かたより ( バイアス ) と偏差あるいは残差に関わって 測定の不確かさを語る以下の3つの概念が定義される (a) 正確さ trueness かたよりが小さいこと ( つまり母平均が真の値に近いこと 以前 これを accuracy と呼んでいたことがある ) * JIS Z840-1( 測定方法及び測定結果の精確さ ( 真度及び精度 ) 第 1 部 : 一般的な原理及び定義 ISO575-1 と対応する ) では 採択された参照値 accepted reference value と呼ばれる 対象によっては真の値が母平均に等しいとされることもある JIS Z 8101-( 統計 用語と記号 第 部 : 統計的品質管理用語 ) 及び JIS Z 840-1 では 真度, 正確さ - 1/6 -

(b) 精密さ 精密度 * precision 測定値のばらつきの程度 標準偏差の大きさに相当する (c) 精度 accuracy 測定結果の正確さと精密さを含めた 測定量の真の値との一致の度合い 補正 correction は 正確さを期すために行われる ( 系統誤差を打ち消すために行われる ) 措置で ある またよくしばしば用いられる 再現性 という言葉について 繰返し性 repeatability( 同一 の測定条件下で行われた 繰返し測定結果の間の一致の度合い ) と 再現性 reproducibility( 測 定条件を変更して行われた 測定結果の間の一致の度合い ) は区別して議論されることに注意する ここで測定条件には測定原理や測定法 測定者なども含む 不確かさの表示 たいていの場合 偶然誤差には多くの要因が加減されることで寄与し 正規分布で示される確率法則に支配される 特に独立な何回かの測定の平均値( 標本平均 ) は正規分布に従うものと考えてよい ( 中心極限定理 ) 正規分布に従うとすれば N 回の測定から得られる標本標準偏差 s の標準偏差はおよそ /N s 程度になる つまりたかだか10 回程度の測定からえられる標本標準偏差には数十 % の不確かさが存在するので あまりに詳細な数値をあげつらうのは意味がない かたよりのない ( 正しく補正を行った ) 測定値に不確定さを加味して表示する際には 測定値の標本平均 x と標本標準偏差 s を用いてよく x ± ns という表示が用いられる 化学では n = 1 と取ることが多いが 分野によっては n = をとる流儀などもあり 紛らわしい場合には明記しておいた方がよい (n = は有意水準 5 % 相当 ) よりコンパクトに表示する場合には たとえば 3.664±0.015 を 3.664(15) と表記することもある なお標本分散の母平均は分散に等しい s = σ が 標本標準偏差の母平均は一般に標準偏差にならないので精密な議論の際には注意する s σ 平均 µ 標準偏差 σの正規分布に従うならば 測定値の 50 % は µ ± 0.674 σ の範囲に入ることになる この 0.674σを公算誤差 と呼ぶことがある なお場合によっては標準偏差があらかじめ推定可能なことがある (GUM 文書 ** で type B と呼ばれる類型 ) こうした場合についてはその根拠を明示しておく 誤差のモデル 測定値にどのように誤差が関わってくるか 以降考えるモデルをはっきりさせておこう 一連の N 回の測定値 x i(i = 1,,, N) が 真の値 t からかたより ( バイアス ) をもった分散 σ のランダム変数であり 次のように表し x = t + (µ t) + δx * JIS Z 8101- では 精度, 精密度, 精密さ JIS Z 840-1 では 精度 JIS Z 8101- では 精確さ, 総合精度 JIS Z 840-1 では 精確さ 最尤値が平均値と一致するという立場から正規分布を導く流儀もある そうした流儀では 誤差の三公理 ( 正負の誤差の起こる確率は等しく 絶対値の大きい誤差は現れにくく ある程度以上大きな誤差は実質上起こらない ) を重要視する 公算 は今はあまり使われないが確率のこと 現在でも 合格の公算が大きい といった風に 日常語の中で使用されている かつては確率論を公算論と呼んだ時代もある ** 国際度量衡局の文書 Evaluation of measurement data Guide to the expression of uncertainty in measurement JCGM 100:008 - /6 -

偏差 δx は次の関係を満たす正規分布に従うランダム変数であるとする δx = 0 (δx) = x = σ またかたより µ t と偏差 δx が測定値 ( あるいは真の値 ) に比して十分小さい µ t << x δx << x ものとして考える すると測定値 x についての比較的ゆっくり変化する関数 f(x) について f(x) の導 関数を f (x) とすると次の関係が成り立つ f(x) = f(t) + f (t) [(µ t) + δx] f(x) = f(t) + f (t) (µ t) (f(x)) = f (t) σ たとえば f(x) = ln x であれば ln x = ln t + (µ t)/t (ln x) = σ /t より ln x のかたよりは 真の値 t に対する相対的なかたよりに ln x の標準偏差は真の値 t に対 する相対的な標準偏差 σ/ t に対応する 誤差の伝播則 いくつかの独立な測定値の関数としてある量 z が与えられ 測定値の不確かさが小さければ z のかたより ( バイアス ) はそれぞれの測定値のかたよりの和 分散はそれぞれの測定値の分散の和 の形で表現できる 簡単のため z が 変数 x と y の関数 z(x, y) である場合を考えよう 前節でも述 べたように z のかたよりの平均は z t z = ( z/ x) (µ x t x) + ( z/ y) (µ y t y) 分散 σ z = z は次式のように x と y の分散の和の形で表わされる (x と y が独立なので共分散 xy が 0 になる ): z = ( z + δz) = (δz) = (( z/ x) δx + ( z/ y) δy) = ( z/ x) x + ( z/ x) ( z/ y) xy + ( z/ y) y = ( z/ x) x + ( z/ y) y 多変数の場合にも容易に拡張でき いくつかの独立な観測値 x 1, x,, x n からある値 z = f(x 1, x,, x n) を求める時 z の分散は次式で与えられる z = ( f/ x i) x i i これを誤差の伝播則 law of error propagation と呼ぶ たとえば z が つの物理量の積 z = xy で表される場合には ( 分散を σ の形で表記 ) σ z = y σ x + x σ y つまり σ z z = σx x + σy y - 3/6 -

が成立して z の相対誤差 δz/z の分散は x と y それぞれの相対誤差の分散の和になる 同様の関 係は z = x/y という除算についても成立し 有効数字の乗除計算の基礎となる 測定の際の注意点 独立でかたよりのない測定の実現 測定値のばらつきについては統計的な取り扱いを用いて あいまいさのない形で処理することが 可能である 一方 かたより ( バイアス 真の値と測定値の母平均の差 µ t) については個々のケ ースについて慎重な検討が求められ ややもすれば恣意的になってしまう このため測定に当たっては 少々不確かさが大きくなっても かたよりのない測定を目指すのが原則である また統計的な取り扱いを実現する上で 個々の測定ができるだけ独立に行われることが望ましい 例えば物差しでカードの幅を測る際 カードの一端を物差しの切りの良い目盛りに当てるのは好ましくない 最小目盛りの 1/10 まで読み取るわけだが 一般に目盛りの位置の視認にはかたよりが生じることが知られている たとえば物差しの最小目盛りを 1 mm とすると 0.5 mm の読み取りにはほとんどかたよりが生じないが 人によっては 0.3 mm 付近の読み取りに 0.05 mm 0.7 mm 付近の読み取りに +0.05 mm のかたよりが生じることは十分ありうる したがってカードの一端を切りの良い目盛りに合わせ 寸法を読み取ったとすると 全体として 0.5 mm 近傍の数値の出現頻度は下がるであろう こうしたかたよりはそれ自体は小さいものだが こうした測定をいくつものパーツについて積み重ね 大きな構造体を構成する段になると 無視できないかたよりとなり得る したがって最初物差しをカードに当てる時 切りの良い位置に持っていこうなどと考えず ある程度でたらめに物差しを当てて カードの両端に対応する目盛りを 1/10 まで読み取って差を取る こうすることで 測定値のばらつきは 倍になるが かたよりをなくす方が望ましいのである 同様のことは滴定の際のビュレットの目盛りの読み取りにも言える 最初にビュレットの切りの良い目盛りにメニスカスを合わせて滴定を行った方が 読み取りの誤差を小さくできるように思えるし それを推奨する流派さえ存在する しかしそれは滴定値のばらつきを小さくすることには貢献しても 滴定値にかたよりをもたらすので推奨はできない 容量分析に見る誤差 実際の測定に当たっては かたよりを避けることができない場合が多いが それをできるだけ打ち消す努力が払われている その端的な例として酸塩基滴定の実験を考えよう 話を具体的にするために 0.1 mol/l 塩酸の標定を 0.0498 mol/l のシュウ酸溶液を標準物質にして BTB を指示薬に 0.1 mol/l 水酸化ナトリウム溶液を用いて行なったとしよう シュウ酸溶液 塩酸はそれぞれ同じ 10 ml のピペットを用いて精確に採取し シュウ酸については 10.14 ml 塩酸については 9.78 ml の滴定値を得たとする ここから得られる塩酸濃度の誤差を ピペットの誤差と滴定の終点の判定にともなう誤差から考えてみる まずピペットの誤差として ここでは典型的な値として このピペットで採取する溶液の量のかたよりが 0.015 ml( 採取する溶液量 9.985 ml) で標準偏差が 0.006 ml であったとしよう 次に滴定操作における当量点の誤差を考える かりに常に1 滴 0.04 ml ずつ滴下していったものとしよう 指示薬の変色が十分鋭敏であれば 滴下後少しでも当量点 V e を超えれば滴定終点 V t として判定されることになる したがってこの場合 実験的に求められる滴定終点と当量点の差 V t V e は 0 から 0.04 ml の間に均一に分布するランダム変数と考えることができ その平均は 0.0 ml 分散は 0.0 /3 ml である つまり滴定値のかたよりは V t V e = 0.0 ml 標準偏差は 0.01 ml である もし1 滴ずつではなく半滴ずつ滴下しておれば かたより 標準偏差はこの半分になる - 4/6 -

さてこの標定実験では 塩酸の濃度 c HCl は 水酸化ナトリウム溶液によるシュウ酸溶液の滴定値 v Ox と塩酸の滴定値 v HCl から次の式で求めることができる c HCl = Vox V HCl v HCl v ox c ox ここで V Ox V HCl はそれぞれピペットで採取したシュウ酸 塩酸の体積 c ox はシュウ酸溶液の濃度である まず両辺の対数を取って それぞれの項のかたよりと分散を評価してみよう まずかたよりは次のようになる ( 上つき はそれぞれの値の真の値を表すものとする ): c HCl c HCl /c HCl = V ox V ox /V ox V HCl V HCl /V HCl + v HCl v HCl /v HCl v ox v ox /v ox 同じピペットを使っているので V ox V ox /V ox = V HCl V HCl /V HCl である また塩酸とシュウ酸で終点の判定にともなうかたよりは等しい v HCl v HCl = v ox v ox と考えられるから 得られる塩酸濃度のかたよりは c HCl c HCl /c HCl = v HCl v HCl (1/v HCl 1/v ox) ここで v ox = 10.14 ml 9.78 ml = v HCl なので 最終的に塩酸濃度のかたよりは c HCl c HCl /c HCl 0 である 分散は次式で評価される c HCl /c HCl = V ox /V ox + V HCl /V HCl + v HCl /v HCl + v ox /v ox [(0.006 ml) + (0.006 ml) + (0.0 /3) ml + (0.0 /3) ml ]/(10 ml) = 3.4 10 6 したがって塩酸濃度は 0.0961 mol/l で標準偏差は (0.0961 mol/l) 1.8 10 3 = 0.000 mol/l と評価される このかたよりと分散の評価から ほぼ同じスケールの濃度 容量の実験を行うことで かたよりが除かれていることが分かるだろう 標定操作を行わず 1 回の滴定操作で濃度を決めるのは ばらつきを小さくすることにはなっても かたよりを生むので専門的にはあまり好まれないのである - 5/6 -

問題 学生番号 氏名 JIS 規格に定められているホールピペットの許容誤差は ピペットの容量が 10 ml であれば 0.0 ml 0 ml であれば 0.03 ml である (JIS R3505) 市販の 10 ml ピペットを 回用いて 0 ml 測り取るのと 0 ml のピペットを用い 1 回で測り取るのとでは 誤差はどちらが大きいだろうか ---------------------------------------------------- - 6/6 -