h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

Similar documents
IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

LMS NLMS LMS Least Mean Square LMS Normalized LMS NLMS AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N =

4 4 2 RAW (PCA) RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

2005 1

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

1.indd

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

ds2.dvi

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

untitled

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

抄録/抄録1    (1)V

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

10_08.dvi

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

(DFT) 009 DFT: Discrete Fourier Transform N x[n] DFT N 1 X[k] = x[n]wn kn, k = 0, 1,, N 1 (6 ) n=0 1) W N = e j π N W N twidd

yoo_graduation_thesis.dvi

2013 M

renshumondai-kaito.dvi

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi


UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

impulse_response.dvi


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

P361

³ÎΨÏÀ


main.dvi

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

1 Tokyo Daily Rainfall (mm) Days (mm)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

IPSJ SIG Technical Report Vol.2010-AVM-68 No /3/ High-Efficient 2-pass Video Coding Algorithm based on Macroblock Rate-Distortion Kazu

2006 Indexed Fuzzy Vault 3ADM1117 3ADM3225

it-ken_open.key

JIS Z803: (substitution method) 3 LCR LCR GPIB

読めば必ずわかる 分散分析の基礎 第2版

ばらつき抑制のための確率最適制御


:EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ), Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag.

main.dvi

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

22 / ( ) OD (Origin-Destination)

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

waseda2010a-jukaiki1-main.dvi

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

untitled

201711grade1ouyou.pdf

カルマンフィルターによるベータ推定( )

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

Summary 3D cinemas are becoming real thanks to digital image processing technology. The most feasible and stable technology based on the binocular dis

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5


& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

図 2: 高周波成分を用いた超解像 解像度度画像とそれらを低解像度化して得られる 低解像度画像との差により低解像度の高周波成分 を得る 高解像度と低解像度の高周波成分から位 置関係を保ったままパッチ領域をそれぞれ切り出 し 高解像度パッチ画像と低解像度パッチ画像の ペアとしてデータベースに登録する

6.1 (P (P (P (P (P (P (, P (, P.

Part () () Γ Part ,

SICE東北支部研究集会資料(2017年)

seminar0220a.dvi

プログラム

GJG160842_O.QXD

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)


Microsoft Word - 信号処理3.doc


x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

: , 2.0, 3.0, 2.0, (%) ( 2.

3807 (3)(2) ,267 1 Fig. 1 Advertisement to the author of a blog. 3 (1) (2) (3) (2) (1) TV 2-0 Adsense (2) Web ) 6) 3

sumi.indd

solutionJIS.dvi

1).1-5) - 9 -

日立評論2007年3月号 : ソフトウェア開発への

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

2_05.dvi

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

original: 2011/11/5 revised: 2012/10/30, 2013/12/ : 2 V i V t2 V o V L V H V i V i V t1 V o V H V L V t1 V t2 1 Q 1 1 Q

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Transcription:

1 -- 5 5 2011 2 1940 N. Wiener FFT 5-1 5-2 Norbert Wiener 1894 1912 MIT c 2011 1/(12)

1 -- 5 -- 5 5--1 2008 3 h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5 4) (5 1) S (ω) Ŝ (ω) E(ω) = S (ω) Ŝ (ω) = S (ω) H(ω)X(ω) (5 5) E[ E(ω) 2 ] = E[ S (ω) H(ω)X(ω) 2 ] (5 6) E[ ] (5 6) H(ω) E[ (ω) 2 ] H(ω) = 2H(ω)P XX (ω) 2P XS (ω) (5 7) P XX (ω) P XS (ω) P XX (ω) = E[ X(ω) 2 ] (5 8) P XS (ω) = E[X(ω)S (ω)] (5 9) P XX (ω) c 2011 2/(12)

P X S (ω) (5 7) 0 (5 6) H(ω) (5 7) 2H(ω)P XX (ω) 2P XS (ω) = 0 (5 10) H(ω) = P XS (ω) P XX (ω) (5 11) (5 11) X(ω) S (ω) W(ω) = F[w(n)] (5 12) S (ω) X(ω) P XX (ω) = P S S (ω) + P WW (ω) (5 13) X(ω) S (ω) P XS = E[(S (ω) + W(ω))S (ω)] = E[ S (ω) 2 ] = P S S (ω) (5 14) S (ω) (5 13) (5 14) (5 11) H(ω) = P S S (ω) P S S (ω) + P WW (ω) (5 15) (5 15) 2) [ ] (5 15) ˆP S S (ω) = S (ω) 2 (5 16) ( ) c 2011 3/(12)

ˆP WW (ω) = W(ω) 2 (5 17) (5 16)(5 17) (5 15) S (ω) H(ω) = 2 (5 18) S (ω) 2 + W(ω) 2 (5 18) S (ω) 2 S (ω) 2 X(ω) 2 (5 19) 3) 1) S (ω) 2 2) S (ω) 2 = X(ω) 2 W(ω) 2 (5 20) W(ω) 2 X(ω) 2 (5 20) (5 18) H(ω) = X(ω) 2 W(ω) 2 X(ω) 2 (5 21) Spectral Subtraction : SS SS 5 1 3.4kHz 10kHz 3.4kHz 10kHz 51.2ms 1/2 SS X(ω) (5 1) H(ω) S (ω) (5 21) c 2011 4/(12)

H(ω) = X(ω) 2 W(ω) 2 X(ω) 2 (5 22) (5 22) X(ω) 2 < W(ω) 2 (5 23) 0 H(ω) 1 (5 24) (5 22) H(ω) H R (ω) = H(ω) + H(ω) 2 (5 25) (5 23) 0 5 1 SS 5 1 SS c 2011 5/(12)

1) S.F. Boll, Suppression of Acoustic Noise in Speech Using Spectral Subtraction, IEEE Trans. Acoustics, Speech and Signal Processing, vol.assp-27, no.7, pp.113-120, 1979. 2) S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, Second Edition, Wiley, 2000. 3) J.S. Lim and A.V. Oppenheim, Enhancement and bandwidth cpmpression of noisy speech, Proc. IEEE, vol.67, no.12, pp.1586-1604, 1979. c 2011 6/(12)

1 -- 5 -- 5 5--2 2009 7 1) WF WF WF WF 5--2--1 N x y y y = Bx + n (5 26) B n n x WF x ˆx ˆx = Ay (5 27) E[ x ˆx 2 ] E[( )] ( ) ( ) ( ) A 2) A = RB T (BRB T + Q) 1 (5 28) ( ) T ( ) ( ) 1 ( ) R Q R = E[xx T ] Q = E[nn T ] (5 29) (5 30) B Q (5 28) WF R R WF WF 1 WF x n WF 2-D DFT 2-D DCT c 2011 7/(12)

2-D DFT B x n X Y 2-D DFT U U U H U H U U H U = UU H = I I (5 27) (5 28) 2-D DFT 3) ˆX = ΩY Ω = UAU H = ΛD H (DΛD H + Γ) 1 (5 31) (5 32) a 2-D DFT A = Ua D = UBU H Λ = URU H Γ = UQU H Ω WF ω DFT (k) ω DFT (k) = λ(k)d H (k) ; k = 1, 2,, N λ(k) d(k) 2 + γ(k) (5 33) d(k) 2 λ(k) γ(k) D 2 Λ Γ k ˆx = U H ˆX B X Y 2-D DFT 2-D DCT 2 2-D DWT WF 2-D DWT 2-D DWT 2-D DWT WF (5 33) WF WF 2-D DWT β(k) ω DWT (k) = β(k) + σ ; k = 1, 2,, N (5 34) 2 β(k) 2-D DWT σ 2 3 FIR-WF 4) x x S y S WF FIR-WF FIR-WF WF WF x ˆx ˆx = a T y S (5 35) a E[(x ˆx) 2 ] a 5) a = C 1 c (5 36) c 2011 8/(12)

C c y S y S x C = E[y S y T S ] c = E[y S x] (5 37) (5 38) (5 36) a WF 1 a = C 1 c + C 1 1 1 T C 1 1 (1 1T C 1 c) (5 39) 1 1 4 WF WF WF 6) (5 28) WF (5 28) 0 Q B WF B B WF 1 WF 2 WF 1 WF WF Tichonov 2) d H (k) ω DFT (k) = d(k) 2 + ɛ ; k = 1, 2,, N (5 40) 2 ɛ 2 (5 33) WF λ(k) γ(k) 5 WF MMSE 5) ˆx = E[x y] (5 41) E[x y] y x x n MMSE WF 5) 5--2--2 WF 5--2--1(4) WF WF c 2011 9/(12)

1 WF WF 7) 2 1 2-D DWT 2-D DCT 2 1 WF a 2-D DWT 2-D DWT (5 34) β(k) 2 W 1 2-D DWT 2-D DWT X ˆX 1 W 2 X ˆX 2 = W 2 W1 T ˆX 1 (5 34) β(k) ˆX 2 2 (k) ˆX 2 (k) ˆX 2 k W 2 2-D DWT β(k) (5 34) WF 7) b 2-D DCT 2-D DCT 2-D DCT 8) 2 WF 1 2-D DCT WF 2 1 WF 8) 2 x f (x) y f (x y) x ˆx(y) L[x, ˆx(y)] L[x, ˆx(y)] L[x, ˆx(y)] = x ˆx(y) 2 (5 42) x x L[x, ˆx(y)] E[L[x, ˆx(y)] x] f (x) EE[L[x, ˆx(y)] x] EE[L[x, ˆx(y)] y] f (y) f (x y) E[L[x, ˆx(y)] y] 2 ˆx(y) = E[x y] MMSE 5) WF MMSE c 2011 10/(12)

f (x) 9) 3 GMM 4) x L GMM M f (x L ) = P(s i )N(x L 0, R i ) i=1 (5 43) f ( ) M P(s) s N( µ, R) µ R ( ) GMM M E[ x ˆx 2 ] = N E[(x ˆx) 2 s i ]P(s i ) i=1 (5 44) E[(x ˆx) 2 s i ] WF FIR WF 10) GMM 11) WF WF a DWT DWT Λ L DWT Λ LO Λ L Γ L GMM [z i : i = 1, 2,, M] i z i Λ LO + Γ L GSM 10) b GMM EM 12) P(s i ), R i : i = 1, 2, M GMM 5--2--1(5) WF MMSE GMM WF MMSE 1) A. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. c 2011 11/(12)

2), II, vol.71, no.6, pp.593-601, June 1988. 3) Richard A. Haddad, Thomas W. Parsons, Digital Signal Processing, NY: Computer Science Press, 1991. 4) P.A. Maragos, R.W. Shafer and R.M. Mersereau, Two-Dimensional Linear Prediction and Its Application to Adaptive Predictive Coding of Images, IEEE Trans. Acoust. Speech & Signal Processing, vol. ASSP 32, no.6, pp.1213-1228, Dec. 1988. 5) Louis L. Scharf, Statistical Signal Processing, MA: Addison-Wesley Publishing Company, 1991. 6) R. Neelamani, H. Choi, and R.G. Baraniuk, ForWaRD: Fourier wavelet regularized deconvolution for ill-conditioned systems, IEEE Trans. Signal Process., vol.52, no.2, pp.418-433, Feb. 2004. 7) S. Ghael, A. Sayeed, R. Baraniuk, Improved wavelet denoising via empirical wiener filtering, Proceedings of SPIE, San Diego, July 1997. 8) Foi, A., V. Katkovnik, and K. Egiazarian, Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images, IEEE Trans. Image Process., vol.16, no.5, pp.1395-1411, May 2007. 9) Jose M. Bioucas-Dias, Bayesian Wavelet-Based Image Deconvolution:A GEM Algorithm Exploiting a Class of Heavy-Tailed Priors, IEEE Trans. Image Process., vol.15, no.4, April 2006. 10) Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli, Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain, IEEE Trans. Image Process, vol.12, no.11, Nov. 2003. 11) Yamane et. al., Image Restoration Using a Universal GMM Learning and Adaptive Wiener Filter, IEICE Trans. A, vol.92-a, no.10, Oct. 2009. 12) A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. B, vol.39, pp.1-38, 1977. c 2011 12/(12)