Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Similar documents
mains.dvi

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

KENZOU Karman) x

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Untitled

all.dvi

meiji_resume_1.PDF

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

gr09.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

The Physics of Atmospheres CAPTER :

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

LLG-R8.Nisus.pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I

untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

総研大恒星進化概要.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

数学の基礎訓練I

基礎数学I

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

( ) ( )

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

第5章 偏微分方程式の境界値問題

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

吸収分光.PDF

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

第1章 微分方程式と近似解法

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

Note.tex 2008/09/19( )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

untitled

Contents 1 Jeans (

橡実験IIINMR.PDF

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

b3e2003.dvi

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y



TOP URL 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

30

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

TOP URL 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

Part () () Γ Part ,

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

K E N Z OU

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

構造と連続体の力学基礎


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


A 99% MS-Free Presentation

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

TOP URL 1


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


Colaprete and Toon , 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

untitled

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

( ) ,

Z: Q: R: C: sin 6 5 ζ a, b

Transcription:

65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology, by R. B. Stull, Kluwer Academic Publishers, 1988 Lectures on Air Pollution Modeling, Ed. by A. Venkatram and J. C. Wyngaard, AMS, 1988 The Structure of Atmospheric Turbulence, by J. L. Lumley and H. A. Panofsky, Monographs and Texts in Physics and Astronomy. Vol 12. Interscience Publ., Jon Wiley & Sons, 1964 Statistical Fluid Mechanics, Vols 1 & 2, by A. S. Monin and A. M. Yaglom, MIT Press, 1971 6.2

66 6 6.1 2 150 75 Venkatram and Wyngaard, Lectures on Air Pollution Modeling, 1988 6.3 m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 1988 Capping Inversion Convective Mixed Layer

6.3 67 Entrainment Zone Free Atmosphere Residual Lyer Stable nocturnal Boundary Layer Surface Layer 6.3 Kaimal, 1993 6.4 Stull, An Introduction to Boundary Layer Meteorology, 1988 Wangara 6.5 km 1km 100

68 6 6.5 Wangara Yamada and Mellor, A simulation of the Wangara atmospheric boundary data, 1975 6.4 6.4.1

6.4 69 6.6 1981 1. Ā t x = 1 N N A i,x, Ā t x = 1 T i=1 T 0 A t,x dt 2. 3. Ā x t = 1 N N A t,j, Ā x t = 1 L j=1 Ā e t,x = 1 N N k=1 A kt,x L 0 A t,x dt 6.4.2 1. σ u U, σ v U, σ w U

70 6 σ u 2. 1/2 1/2 1/2 u 2, σ v v 2, σ w w 2 σ u u, σ v u, σ w u u u 3. skewness : u 2, v 2, w 2 a b a Skewness

6.4 71 u 3 u 2 3/2 a b,c b c Flatness Kurtosis W q, Ū Θ, Ū W w q, u θ, u w 6.7 1981

72 6 6.8 Stull, An Introduction to Boundary Layer Meteorology, 1988 covariance a b u w, w θ 6.4.3 Bulk Richardson Number Flux Richardson Number Ri = g dθ Θ du 2 R f = gw θ Θ u w du R f = gw θ Θ u w du = g Θ K h dθ K m du du = K h K m R i Boussinesq

6.4 73 Navier-Stokes eq. u t + u u x + v u y + w u fv + 1 p ρ 0 x = µ 2 u ρ 0 x 2 + 2 u y 2 + 2 u 2 ρ 0 v t + u v x + v v y + w v + fu + 1 p ρ 0 y = µ 2 v ρ 0 x 2 + 2 v y 2 + 2 v 2 w t + u w x + v w y + w w + 1 p ρ 0 = ρ g + µ 2 w ρ 0 ρ 0 x 2 + 2 w y 2 + 2 w 2 Q Q θ t + u θ x + v θ y + w θ = Q µ ρ ν ν 1.467 10 5 m 2 sec - 1 0.5 sec 1 7 10 6 m 2 sec - 2 φ φ = φ + φ 6.1 Boussinesq 6.1 x ū t + ū ū ū ū + v + w x y f v + 1 p ρ 0 x = u ν 2 u 2 x + u v y + u w Reynolds 5 10 2 m 2 sec 2

74 6 E S t + ū E S x + v E S y = ρ wg ρ 0 ū ρ 0 w u 2 + w E S ū p x + v p y + w p x + u v y + u w u w x + v w + w 2 y ρ 0 v u v x + v 2 y + v w 6.2 ES E S ρ 0 2 6.2 E S t ū2 + v 2 + w 2 + {E S ū + ρ 0 ūu x 2 + vu v + wu w ū = ρ wg + ρ 0 u 2 x + u v ū y + u w ū + } + ū p + y {} + {} u t + ū u x u + v y = fv 1 ρ 0 p x + + w u + u ū x ū + v y u 2 x + u v y + u w E T t + } {E T ū + ρ 0 u x 3 + u v 2 + u w 2 + u p = gρ w ū ρ 0 u 2 x + u v ū y + u w ū + ū u u u + w + u + v + w x y + y {} + {} E T E T ρ 0 2 u 2 + v 2 + w 2 E S, E T i ii iii Reynolds

6.5 75 6.4.4 Closure problem Navier- Stokes 1 2 Reynolds Reynolds Reynolds Closure Problem 6.5 6.5.1 closure K-theory closure. Dū Dt = fv 1 p ρ 0 D θ Dt = u 2 x + u v y + u w x u θ x + v θ y + w θ Dū Dt = t + ū y + v + w 6.3 u w w θ - q u q = K q x, v q = K q y, w q = K q K u w = K m U, θ w = K h Θ K h 1.35K m

76 6 K h 2.5K m a 1925 S z z Sz Sz δz z S S = Sz δz Sz { = Sz + S } δz + Sz = S δz 6.4 w du/ > 0 w = cu du/ < 0 w = cu u u = du/δz w = c du δz w S S w = c du S δz2 = K S E 6.5. l K E l 2 du, l 2 cδz 2 b K examples 6.9 l = kz c i Log profile l = kz K E = κ 2 z 2 du 0 = d du K E = d κ 2 z 2 du du

6.5 77 6.9 Stull, An Introduction to Boundary Layer Meteorology, 1988 du/ > 0 0 = d κ 2 z 2 du 2 = 2κ 2 z 2 du + 2κ 2 z 2 du d 2 U 2 du + z d2 U 2 = 0 U = γ ln z z 0

78 6 z 0 6.10 6.10 1994 ii Ekman spiral / t = 0 / x = / y = 0 θ/ = 0 U g, V g w = 0 x fv = du w K m - fu U g = dv w fv = K m d 2 U 2 fv = K m d 2 fu U g = K m d 2 V 2 2 d 2 V fu g + K m 2 = Km 2 d 4 V 4

6.5 79 z U U g, V 0 V = A expλz f 2 = Kmλ 2 4 λ = ± ±i f K m z z = 0 V = U = 0 z U U g f λ = 1 ± i 2K m U = U g [ 1 e γz cosγz ] V = U g e γz sinγz f γ = 2K m h E = π/γ K m 10 m 2 /sec 2, f 10 4 sec 1 h E 1400 m 6.11 Elman Stull, An Introduction to Boundary Layer Meteorology, 1988 d Refine K-theory Mellor & Yamada level 2 Mellor, G.L. and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1807.

80 6 Full u w, v w = lq S U M, V w θ = lq S Θ H S M 3A 1 γ 1 C 1 6A 1 + 3A 2 Γ/B 1 γ 1 γ 2 Γ + 3A 1 Γ/B 1 γ 1 γ 2 Γ S H 3A 2 γ 1 γ 2 Γ γ 1 1 3 2A 1, γ 2 B 2 + 6A 1 B 1 B 1 w θ R f Γ, R f βg 1 R f u w U + v w V = γ 1 γ 1 + γ 2 6.5.2 1.5 closure a TKE Mellor & Yamada, 1982 level 2.25 2.5 q 2 t + u q2 + = Prod + Dissip + x x Prod Buoy + Shear = βg w θ θ K m = S M l q, K m = S H l q, K q = S q q K q q 2 x + u ū i i u j = gk θ H x j + K m ūi + ū j 2 x j x i 3 δ ijq 2 S M b TKE Yamada, 1983 q 2 l model Level 2.5 l a q 2 l level 2 c k ϵ Rodi, 1985; Detering & Etling, 1985; Kitada, 1987 k ϵ σ Yamada & Mellor

6.5 81 6.5.3 Monin-Obukov similarity theory a Monin Obukov 1946 1954 z m 2 /sec 2 τ 0 ρ u w K m/sec m/sec 2 /K H 0 c p ρ w θ Q 0 g Θ Monin-Obukov u 1/2 τ0 = u ρ w 1/2 Monin-Obukov T Q 0 u = w θ u L u3 Θ κgq 0 = u3 Θ κgw θ κ 0.4 Monin-Obukov L F F F F = F * G F z/l G F z/l ζ z/l

82 6 Θ > 0 w θ < 0, T > 0, L > 0 Θ = 0 w θ = 0, T = 0, L = Θ < 0 w θ > 0, T < 0, L < 0 b i Monin-Obukov 6.6 ζ du = u κl G mz/l 6.6 dθ = T κl G hz/l 6.7 Uz = u κl f mz/l f m z 0 /L f m ζ ζ G m ζ z 0 roughness κ u [Uz U L /2] κ u [Uz U L /2] = f m ζ f m ±0.5 ζ 6.12 Monin-Obukov

6.5 83 6.12 1981 ii L >> 1, ζ << 1 ζ = 0 logarithmic law or log law U z = u z κ ln z 0 du = u 1 κ z = u L κl z = u κl 1 ζ G m = 1 ζ z 0 6.6 G m z = 0 φ m ζ = ζg m ζ 6.8 φ h ζ = ζg h ζ 6.9 φ m 0 = 1 ζ << 1 φ m

84 6 φ m ζ = 1 + βζ + du = u κl G m = u κlζ φ mζ U z u κl ln z z 0 + β z z 0 L log+linear law u 1 + βζ κlζ ζ >> 1 L << 1 Q 0 u z z Q 0 u z zgq0 u f Θ 0 1/3 z T f Q 0 u f u f z 1/3 u L T f z 1/3 T L z/l >> 1 φ m φ h = κz dθ T κz T f T z T f z 1/3 T L ζ >> 1 z z L

6.5 85 du u L z φ m = κz du u φ h = κz dθ T κz u u L z L κz T T L z L 6.13 1981 iii u 2 = τ 0 ρ = u w du = K m K m = u2 du = κu L G m ζ = κu z φ m ζ K m = u T dθ = κu L G h ζ = κu z φ h ζ

86 6 Richardson Gradient Richardson number Pr = K m K h = G m G h = φ m φ h Ri = g dθ Θ du 2 = g T Θ κl G h u 2 κl 2 G 2 m = G h G 2 = Pr m G m Flux Richardson number R f gw θ /Θ u w U Z de T dt = u w U + g w θ Θ = u w U 1 R f flux Richardson 1 K R f = gw θ /Θ u w U = K H g K m Θ θ/ U/ 2 = K H R i K m 6.14 1981 KEYPS φ

6.5 87 φ 4 γζφ 3 1 = 0 6.10 Kazanski & Monin 1956, Ellison 1957, Yamamoto 1959, Panofsky 1961 KEYPS Obukov 1946 O KEYPS KEYPS 6.10 K n K n = κzu φ m κzu ζ 1/3 R f >> 1, or ζ >> 1 K f K f = κzu φ m κzu R f 1/4 K = κzu 1 γr f 1/4 K = κzu φ, R f = ζ φ 6.10 γ 10 6.5.4 Canopy z = h z = d u = u z d κ ln, forz h z 0 d zero-plane displacement d h d 0.7h a a F = 1 2 ρcau2 6.11 c 6.11

88 6 6.15 1981 d K du = 1 2 ρcau2 6.12 a K l K = l 2 du/ l 6.12 z = h u h u = u h exp [γz h], γ = ρ ac 4l 2 1/3 z < h z = h 6.16 1981

6.5 89 b model 1cm 2 10 4 100mm 0.3 3 Yeh & Brutsaert, 1971 Sellers 1985 SiB Dickinson 1984 BATS MATSIRO, MINoSGI

90 6 6.17 SiB