.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

Similar documents
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

卒業論文

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

こんにちは由美子です

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

第11回:線形回帰モデルのOLS推定

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Microsoft Word - 計量研修テキスト_第5版).doc

こんにちは由美子です

こんにちは由美子です

エクセルに出力します 推定結果の表は r(table) という行列で保存されますので matlist r(table) コマンドで 得られたの一覧を表示させます. use clear. regress

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

第13回:交差項を含む回帰・弾力性の推定

5 : 1 1

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

Microsoft Word - 計量研修テキスト_第5版).doc

9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

オーストラリア研究紀要 36号(P)☆/3.橋本

日本内科学会雑誌第102巻第4号

こんにちは由美子です

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

浜松医科大学紀要

わが国企業による資金調達方法の選択問題

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian


TS002

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

Microsoft Word - 計量研修テキスト_第5版).doc

パネル・データの分析

最小2乗法

untitled

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

082_rev2_utf8.pdf

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5

Microsoft Word - 計量研修テキスト_第5版).doc

Solution Report

1 15 R Part : website:

Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %.,

2 2 2 (Poisson Distribution) P (y = j) = e λ λ j λ > 0, j = 0, 1, 2... j! j! j E(y) = V ar(y) = λ λ y x λ = λ(x iβ) f(y i x iβ) = exp( exp(x i β)) exp

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology


Microsoft Word - 計量研修テキスト_第5版).doc

操作変数法

PowerPoint プレゼンテーション

第2回:データの加工・整理

技術研究報告第26号

Use R

インターネットを活用した経済分析 - フリーソフト Rを使おう

ed srv.cc.hit-u.ac.jp

2 PC 2.1 PC 3 Stata ado Help Official Update Recommendation : compare these dates with what is available from update query curre

研修コーナー

tnbp59-21_Web:P2/ky132379509610002944

Transcription:

3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized Method of Moments). GMM TSLS( ), 4. 3.1 GMM TSLS, TSLS, TwoSLS1.. use mus06data.dta, clear. global x2list totchr age female blhisp linc. ivregress 2sls ldrugexp (hi empunion=ssiratio ) $x2list,vce(robust) ( ). estimates store TwoSLS1 1 1. ( ) z. E {z i (y i x iβ)} = 0 (14) 2. x2list, ivmodel,.. global ivmodel ldrugexp (hi empunion=ssiratio multlc) $x2list. quietly ivregress 2sls $ivmodel,vce(robust). est store TwoSLS2 GMM.. quietly ivregress gmm $ivmodel,wmatrix(robust). est store GMM het 4 GMM 23

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion -0.89759-0.98993-0.99328 0.22113 0.20459 0.20467 totchr 0.45027 0.45121 0.45095 0.01020 0.01031 0.01031 age -0.01322-0.01414-0.01415 0.00300 0.00290 0.00290 female -0.02041-0.02784-0.02817 0.03261 0.03217 0.03219 blhisp -0.21742-0.22371-0.22310 0.03949 0.03958 0.03960 linc 0.08700 0.09427 0.09446 0.02264 0.02188 0.02190 _cons 6.78717 6.87519 6.87782 0.26885 0.25789 0.25800 legend: b/se, TwoSLS1 TwoSLS2 GMM het 10%., TwoSLS2 GMM het,,.. 2, ( ). gmm wmatrix(robust), 2sls vce(robust). 5 3.2.,. (test of overientifying restriction) 6.,,. 2 gmm.. quietly ivregress gmm $ivmodel,wmatrix(robust). estat overid Test of overidentifying restriction: Hansen s J chi2(1) = 1.04754 (p = 0.3061) 5 Microeconometrics Using Stata, Revised Edition gmm 6 Hansen Sargan Hansen-Sargan 24

5%, 2. 1... ivregress gmm ldrugexp (hi empunion=ssiratio lowincome multlc firmsz) $x2list, >wmatrix(robust) Instrumental variables (GMM) regression Number of obs = 10,089 Wald chi2(6) = 2042.12 R-squared = 0.0829 GMM weight matrix: Robust Root MSE = 1.3043 Robust ldrugexp Coef. Std. Err. z P> z [95% Conf. Interval] hi_empunion -.8124043.1846433-4.40 0.000-1.174299 -.45051 totchr.449488.010047 44.74 0.000.4297962.4691799 age -.0124598.0027466-4.54 0.000 -.0178432 -.0070765 female -.0104528.0306889-0.34 0.733 -.0706019.0496963 blhisp -.2061018.0382891-5.38 0.000 -.2811471 -.1310566 linc.0796532.0203397 3.92 0.000.0397882.1195183 _cons 6.7126.2425973 27.67 0.000 6.237118 7.188081 Instrumented: Instruments: hi_empunion totchr age female blhisp linc ssiratio lowincome multlc firmsz. estat overid Test of overidentifying restriction: Hansen s J chi2(3) = 11.5903 (p = 0.0089) 1%,., hi empunion -0.812,. GMM, TSLS,. 3.3 GMM,. Microeconometrics Using Stata, Revised Edition, Stata Press 9 Linear panel-data models: Extensions.,. y it = γ 1 y i,t 1 + + γ p y i,t p + x itβ + α i + ϵ it, t = p + 1,..., T (15) α i. x it ϵ it., γ 1,, γ p β 7. AR(1) y it = γ 1 y i,t 1 + α i + ϵ it 7 25

,. 1 ϵ i1. y,., 2, γ 1 1., γ 1 0, α i.,,. 15 within 8., within y i,t 1 ȳ i ϵ it ϵ i., within p = 1,. y it = γ 1 y i,t 1 + x itβ + α i + ϵ it ȳ i = γ 1 ȳ i + x iβ + α i + ϵ i, γ, within. y it ȳ i = γ 1 (y i,t 1 ȳ i ) + (x it x i) β+ (ϵ it ϵ i ) 15 ϵ it, y i,t 1 ȳ i ϵ it ϵ i., y i,t 1 ϵ i,t 1., ϵ i, ϵ i,t 1, y i,t 1 ϵ i. (y i,t 1 ȳ i ),,., within,,,. FD within FD(first difference).,. y it = γ 1 y i,t 1 + + γ p y i,t p + x itβ + ϵ it, t = p + 1,..., T (16) 15. within,., ϵ it., FD, y i,t 1 ϵ it, OLS. y it = γ 1 y i,t 1 + γ 2 y i,t 2 + ϵ it, t = p + 1,..., T, y i,t 1 = y i,t 1 y i,t 2 ϵ it = ϵ it ϵ i,t 1., y i,t 1 ϵ i,t 1,., y i,t 2. (y i,t 2 y i,t 3 ) (ϵ it ϵ i,t 1 ),, y i,t 2 ϵ it 8 within 26

., FD p 2. Anderson and Hsiao (1981) ϵ it y i,t 2 y i,t 1., x it,., Arellano and Bond (1991),, ϵ it,. Arellano and Bond. 3.4 Arellano-Bond : AR(2).,. 16 AR,,. GMM, Arellano-Bond. y it = α + γ 1 y i,t 1 + γ 2 y i,t 2 + ϵ it, t = 4, 5, 6, 7 7.,, 4. t y y y ( 1) y ( 2) ϵ ϵ 1 y i1 ϵ i1 2 y i2 y i2 y i1 ϵ i2 ϵ i2 ϵ i1 3 y i3 y i3 y i2 y i2 y i1 ϵ i3 ϵ i3 ϵ i2 4 y i4 y i4 y i3 y i3 y i2 y i2 y i1 ϵ i4 ϵ i4 ϵ i3 5 y i5 y i5 y i4 y i4 y i3 y i3 y i2 ϵ i5 ϵ i5 ϵ i4 6 y i6 y i6 y i5 y i5 y i4 y i4 y i3 ϵ i6 ϵ i6 ϵ i5 7 y i7 y i7 y i6 y i6 y i5 y i5 y i4 ϵ i7 ϵ i7 ϵ i6, t = 4 ϵ i4 y i1 y i2, t = 5 ϵ i5 y i1, y i2, y i3, t = 6 4, t = 7 5., 2 + 3 + 4 + 5 = 14,, 15. 27

mus08psidextract.dta, AR(2)... use mus08psidextract.dta, clear. xtabond lwage,lags(2) vce(robust) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 15 Wald chi2(2) = 1253.03 One-step results (Std. Err. adjusted for clustering on id) Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..5707517.0333941 17.09 0.000.5053005.6362029 L2..2675649.0242641 11.03 0.000.2200082.3151216 _cons 1.203588.164496 7.32 0.000.8811814 1.525994 Instruments for differenced equation GMM-type: L(2/.).lwage Instruments for level equation Standard: _cons 4,165,, ( ) 4 595 = 2, 380. lwage L1. L2. y i,t 1 y i,t 2., FD. L(2/.), t y i,t 2, y i,t 3,..., y i,1., 0.57 + 0.27 = 0.84,. GMM 1, (S.E ) 2. 28

. xtabond lwage,lags(2) twostep vce(robust) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 15 Wald chi2(2) = 1974.40 Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..6095931.0330542 18.44 0.000.544808.6743782 L2..2708335.0279226 9.70 0.000.2161061.3255608 _cons.9182262.1339978 6.85 0.000.6555952 1.180857 Instruments for differenced equation GMM-type: L(2/.).lwage Instruments for level equation Standard: _cons 1 2, S.E. 2. T, Arellano-Bond,,. maxldep()., t y i,t 2.. xtabond lwage,lags(2) vce(robust) maxldep(1) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 5 Wald chi2(2) = 1372.33 One-step results (Std. Err. adjusted for clustering on id) Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..4863642.1919353 2.53 0.011.110178.8625505 L2..3647456.1661008 2.20 0.028.039194.6902973 _cons 1.127609.2429357 4.64 0.000.6514633 1.603754 Instruments for differenced equation GMM-type: L(2/2).lwage 29

Instruments for level equation Standard: _cons t = 4 7 y i2, y i3, y i4, y i5 5.,, 6., maxldep(2), S.E., xtabond xtabond2. 3.5 Arellano-Bond.,,, fem( ),blk( ),ed( ). occ( 1), south( 1), smsa( 1),ind( 1)... xtabond lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) > endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep vce(robust) > artests(3) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 40 Wald chi2(10) = 1287.77 Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..611753.0373491 16.38 0.000.5385501.6849559 L2..2409058.0319939 7.53 0.000.1781989.3036127 wks --. -.0159751.0082523-1.94 0.053 -.0321493.000199 L1..0039944.0027425 1.46 0.145 -.0013807.0093695 ms.1859324.144458 1.29 0.198 -.0972.4690649 union -.1531329.1677842-0.91 0.361 -.4819839.1757181 occ -.0357509.0347705-1.03 0.304 -.1038999.032398 south -.0250368.2150806-0.12 0.907 -.446587.3965134 smsa -.0848223.0525243-1.61 0.106 -.187768.0181235 ind.0227008.0424207 0.54 0.593 -.0604422.1058437 _cons 1.639999.4981019 3.29 0.001.6637377 2.616261 Instruments for differenced equation GMM-type: L(2/4).lwage L(1/2).L.wks L(2/3).ms L(2/3).union Standard: D.occ D.south D.smsa D.ind Instruments for level equation Standard: _cons 30

, occ, endogenous() ms union., lag(0,2), 0., ms union 1., L1.., 2., ms ms t 1 ms t 2., pre(wks,lag(1,2)) wks 9. endogenous().,, 5%. ϵ it., AR(2), 2 ϵ it ϵ i,t k (k 2)., COV ( ϵ it, ϵ i,t 1 ) = COV (ϵ it ϵ i,t 1, ϵ i,t 1 ϵ i,t 2 ) = COV (ϵ i,t 1, ϵ i,t 1 ) 0,, k 2. COV ( ϵ it, ϵ i,t k ) = COV (ϵ it ϵ i,t 1, ϵ i,t k ϵ i,t k 1 ) = 0. artests(). artests(3)., artests(2),, 3.. estat abond Arellano-Bond test for zero autocorrelation in first-differenced errors Order z Prob > z 1-4.5244 0.0000 2-1.6041 0.1087 3.35729 0.7209 H0: no autocorrelation. 2,.,. estat sargan, vce(robust),,. 9 31

. xtabond lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) > endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep artests(3). estat sargan. estat sargan Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid chi2(29) = 39.87571 Prob > chi2 = 0.0860. 5%. 3.6 xtdpdsys Arellano-Bond E (y is ϵ it ) = 0 (s t 2), FD y i,t 2, y i,t 3,.... Arellano and Bover (1995) Blundell and Bond (1998)., E (y i,y 1 ϵ it ) = 0, Stata xtdpdsys. 10.. xtdpdsys lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) >endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep vce(robust) >artests(3) 10 ado xtabond2 xtabond 32

System dynamic panel-data estimation Number of obs = 2,975 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 5 avg = 5 max = 5 Number of instruments = 60 Wald chi2(10) = 2270.88 Two-step results WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..6017533.0291502 20.64 0.000.5446199.6588866 L2..2880537.0285319 10.10 0.000.2321322.3439752 wks --. -.0014979.0056143-0.27 0.790 -.0125017.009506 L1..0006786.0015694 0.43 0.665 -.0023973.0037545 ms.0395337.0558543 0.71 0.479 -.0699386.1490061 union -.0422409.0719919-0.59 0.557 -.1833423.0988606 occ -.0508803.0331149-1.54 0.124 -.1157843.0140237 south -.1062817.083753-1.27 0.204 -.2704346.0578713 smsa -.0483567.0479016-1.01 0.313 -.1422422.0455288 ind.0144749.031448 0.46 0.645 -.0471621.0761118 _cons.9584113.3632287 2.64 0.008.2464961 1.670327 Instruments for differenced equation GMM-type: L(2/4).lwage L(1/2).L.wks L(2/3).ms L(2/3).union Standard: D.occ D.south D.smsa D.ind Instruments for level equation GMM-type: LD.lwage LD.wks LD.ms LD.union Standard: _cons 40 60.,., 10-60%. xtabond, estat abond,, vce(robust), estat sargan. 3.7 xtdpd ϵ it., estat abond?. ϵ it xtdpd Stata,.. xtdpd L(0/2).lwage L(0/1).wks occ south smsa ind ms union, >div(occ south smsa ind) dgmmiv(lwage,lagrange(2 4)) >dgmmiv(ms union,lagrange(2 3)) dgmmiv(l.wks,lagrange(1 2)) >lgmmiv(lwage wks ms union) twostep vce(robust) artests(3) 33

Dynamic panel-data estimation Number of obs = 2,975 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 5 avg = 5 max = 5 Number of instruments = 60 Wald chi2(10) = 2270.88 Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L1..6017533.0291502 20.64 0.000.5446199.6588866 L2..2880537.0285319 10.10 0.000.2321322.3439752 wks --. -.0014979.0056143-0.27 0.790 -.0125017.009506 L1..0006786.0015694 0.43 0.665 -.0023973.0037545 occ -.0508803.0331149-1.54 0.124 -.1157843.0140237 south -.1062817.083753-1.27 0.204 -.2704346.0578713 smsa -.0483567.0479016-1.01 0.313 -.1422422.0455288 ind.0144749.031448 0.46 0.645 -.0471621.0761118 ms.0395337.0558543 0.71 0.479 -.0699386.1490061 union -.0422409.0719919-0.59 0.557 -.1833423.0988606 _cons.9584113.3632287 2.64 0.008.2464961 1.670327 Instruments for differenced equation GMM-type: L(2/4).lwage L(2/3).ms L(2/3).union L(1/2).L.wks Standard: D.occ D.south D.smsa D.ind Instruments for level equation GMM-type: LD.lwage LD.wks LD.ms LD.union Standard: _cons 15 ϵ it MA(1),, ϵ it = η it + δη i,t 1. η it i.i.id.. GMM GMM. GMM TSLS,. ( ),, GMM,.. 34

,... Y i = β 0 + β 1 X 1i + + β k X ki + β k+1 W 1i + + β k+r W ri + u i, i = 1,..., n, Y i β 0, β 1,..., β k+r X 1i,..., X ki k, u i. W 1i...., W ri r u i. u i,. Z 1i..., Z mi m. (m > k),. m < k, ( ), m = k.,,,. 4. 2016 11 35