O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

Similar documents
f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

- II

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

04.dvi

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

v er.1/ c /(21)


i

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

DVIOUT

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

6. Euler x

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1

Chap11.dvi

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

webkaitou.dvi

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Fubini

mugensho.dvi

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

入試の軌跡

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2011de.dvi

.1 1,... ( )

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

29


Part () () Γ Part ,

1 I

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

基礎数学I

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

i

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( )

熊本県数学問題正解

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

( ) f a, b n f(b) = f(a) + f (a)(b a) + + f (n 1) (a) (n 1)! (b a)n 1 + R n, R n = b a f (n) (b t)n 1 (t) (n 1)! dt. : R n = b a f (n) (b t

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


untitled


ii

Note.tex 2008/09/19( )

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

30

body.dvi

pdf

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2000年度『数学展望 I』講義録

December 28, 2018


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

meiji_resume_1.PDF


ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,


Transcription:

I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velocity) p(t) = (x(t), y(t), z(t)) ( dp dx dt = dt, dy dt, dz ) dt. ( ) = x x 2 * geometry geo 2

2. x =, x = *2 o(h) = f( + h) f() Ah o(h) h h o(h) lim h h ( ) f( + h) f() = lim A = h h o(h) f(x) x = A = f () f( + h) = f() + f ()h + o (h), g( + h) = g() + g ()h + o 2 (h) f( + h)g( + h) = (f() + f ()h + o (h))(g() + g ()h + o 2 (h)) = f()g() + (f ()g() + f()g ())h + f ()g ()h 2 + (f() + f ()h)o 2 (h) + (g() + g ()h)o (h) + o (h)o 2 (h) h o 3 (h) f( + h)g( + h) = f()g() + (f ()g() + f()g ())h + o 3 (h), o 3 (h) lim h h = (f(x)g(x)) = f (x)g(x) + f(x)g (x). ( ). (i) (f(x)g(x)) = f (x)g(x) + f(x)g (x). *2 Weierstrss 3

(ii) *3 {f(g(x))} = f (g(x))g (x). 3. (ii) o(h) =, x =, 4. (x ) = x 2 x x+h x lim h h ( ) = x x 2. = x lim h h h A x A y = x x = A A + A = > e (e x ) = e x e *4 *5 log x e x (log x) = /x (x > ) Remrk. e.2. (i) > y = x x = e x log = e log d dx x = e x log log = x log. (ii) > x x (x > ) x = e log x d dx x = e log x ( log x) = x. *3 *4 bse *5 (nturl logrithm) ln x 4

5. > y = x y = x 6. x x (x > ) 7. x < (log( x)) = x (e x ) = e x, (log x ) = x (x ), (xα ) = αx α (x > )..3. ( log x + ) x 2 + = x2 +. 8. x ( ) ( ).4. f(x) = (f(x)) 9. ( ) = (f(x)) 2 f (x) = f (x) f(x) f(x) 2. ( ) f(x) = f (x)g(x) f(x)g (x) g(x) g(x) 2 Remrk. sin(x + h) = sin x cos h + cos x sin h sin(x + h) sin x h lim h = cos h h sin x + sin h h cos h sin h, lim h h h cos x 5

y h x cos x x = y = cos x x = y = *6 (sin h h tn h (sin x) = cos x (cos x) = sin x (sin x) = cos x, (cos x) = sin x, (tn x) =. tn x (cos x) 2 = + (tn x)2.. rdin 2. 2 ( > ) log x, x, e x x *6 (rdin).7 rd rd 6

x e x x e bx (b > ) f(x) = x e bx, x > f(x) f (x) = x e bx ( bx) x /b f (x) + f(x) x = /b y C /b x lim x + f(x) = C > f(x) C C > f(x) x e x x e x x e x/2 e x/2 b = /2 x e x/2 C C > x e x Ce x/2 *7 lim x + e x/2 = lim x + x e x = log x x t = log x log x lim x + x = lim t + t e t = lim t + *7 ( ) t / = e t 7

x + t + log x << x << e x (x + ) 3. >, b > x << e bx (x + ) < < b x x b, e x e bx Remrk. x << e bx x x < e bx x = 4, b = x = 2 2 = 6 > 3 2 > e 2. 2.. lim x x/x log x << x log x lim x log(x/x ) = lim x x =. lim x x/x =. 4. lim x + xx 5. > x < lim n n x n = 6. (i) y = x 2 e x. (ii) y = x log x (x > ). 3 (inverse function) y = f(x) g x = g(y) g(f(x)) = x, f(g(y)) = y 8

f(x) sin x ( π/2 x π/2), cos x ( x π), tn x ( π/2 < x < π/2) rcsin x, rccos x, rctn x. *8 (inverse trigonometric function) x rcsin x rctn x x y + k y x x + h 7. rccos x + rcsin x = π 2 ( x π/2) 8. < < π/2 sin x = sin x *8 sin x sin x sin x (sin x) 9

9. 5π/4 sin x (rcsin x) =, (rctn x 2 x) = + x 2. *9 y = f(x) x = g(y) g (y) = f (x) = f (g(y)). y + k = f(x + h), x + h = g(y + k) g(y + k) g(y) lim k k h = lim h f(x + h) f(x) = f (x). y = sin x x = rcsin y rcsin (y) = 2. rctn x 2. f(x) = ex e x 2 (sin x) = cos x = y 2 (i) (ii) g(y) (iii) g(y) y 4 b (f(x) + g(x)) dx = b f(x) dx + b g(x) dx *9

b f(x) dx = lim n n k= f( + k(b )/n) b n b f(x) dx = c f(x) dx + b c f(x) dx [, b] f(x) = x < x < x 2 < < x n = b ξ j [x j, x j ] lim j= n f(ξ j )(x j x j ), = mx{x x,, x n x n } ξ j f(x) [, b] * (integrl) b f(x) dx f (integrnd) W j (f, ) f(ξ j ) b x x j ξ j x j * B. Riemnn (826 866) A.-L. Cuchy (789 857)

Remrk. lim x j x j dx [, b] V = b I(t) t L = b Q = b (dx ) 2 + dt S(x) dx. I(t) dt. ( ) 2 dy + dt ( ) 2 dz dt. dt (r, θ) r = f(θ) θ = α, θ = β S = 2 β α f(θ) 2 dθ θ j r j α = θ < θ < < θ n = β θ j ξ j θ j r j = f(ξ j ) θ j = θ j θ j θ j 2π πr2 j = 2 r2 j θ j 2

r = f(θ) (θ j θ θ j ) S n f(ξ j ) 2 (θ j θ j ) 2 j= S = 2 β α f(θ) 2 dθ * 22. 23. (crdioid): r = ( + cos θ) ( π θ π) 4. ( ). (i) b f(x) dx + c b f(x) dx = (ii) f(x) g(x) ( x b) c f(x) dx. b b f(x) dx f(x) dx b b g(x) dx. f(x) dx. Remrk. x 24. b f(x) dx = log x = b f(y) dy =. x log(xy) = log x + log y t dt * f(θ) (θ j θ θ j ) θ ξ j, ξ j 2 f(ξ j ) 2 (θ j θ j ) S f(ξ 2 j ) 2 (θ j θ j ) j 3 j

25. b > > b b b t dt > b > b x > * 2 x lim dt = +, x t lim t dt > 2 x dt t x x + dt =, t 4.2 (Dirichlet). f(x) f(x) = { x x [, b] f(x) x = lim f(x), x lim f(x) x + 4.3. (i) (x < ) f(x) = (x = ) 2 (x > ) x = *2 e x 4

(ii) g(x) = { sin(/x) (x ) (x = ) x = 4.4. [, b] f Proof. x y = f(x) x ( ) * 3 S = x < < x n = b [x j, x j ] f W j (f) f W (f, ) = mx{w j (f)} j S f(ξ j )(x j x j ) W (f, )(b ) j= f W (f, ) * 4 S = lim j= f(ξ j )(x j x j ) *3 *4 5

x = c ( < c < b) c [x k, x k ],,, lim f(ξ j )(x j x j ) = j c f(x) dx, lim j f(ξ j )(x j x j ) = b c f(x) dx c f(x) x = c f(ξ k )(x k x k ) M(x k x k ) M b f(t)dt, b b x x f(t)dt x (indefinite integrl) (definite integrl) F (x) = f(x) F (x) f(x) (primitive function) * 5 f(x) dx f(x) dx x b f(x) dx 26 ( ). *5 6

4.5 (). f(x) [, b] d x f(t) dt = f(x). dx Proof. S(x) f(t) x t x + h M h, m h m h S(x + h) S(x) h M h f(t) t = x h S(x + h) S(x) lim h h = lim h M h = lim h m h = f(x). M h m h S(x + h) S(x) x x + h 4.6 ( * 6 ). f(x) f(x) F (x) b f(x)dx = F (b) F () F (b) F () = [ ] b F (x) *6 7

Proof. ( d x ) F (t) dt F (x) = F (x) F (x) = dx x C x F (t) dt F (x) = C F (t) dt = F (x) + C x x = = F () + C C = F () x = b b F (t) dt = F (b) + C = F (b) F (). b > b b f(x) dx = f(x) dx b 27. f(x) f() = x f (t) dt f(x) ( < x < b) (i) f (x) ( < x < b) f (, b) (incresing) (ii) f (x) > ( < x < b) f (, b) (strictly incresing) 8

* 7 2 x 2 dx = rcsin x, x 2 + 2 dx = rctn x. x2 + A dx = log(x + x 2 + A). 4.7. x 2 + dx = π 4. 4.8 ( ). (integrtion by prts) f(x)g(x) = f (x)g(x)dx + f(x)g (x)dx. (integrtion by substitution) b f(g(x))g (x)dx = g(b) g() f(y)dy. f(g(x))g (x) f(x) F (x) g(x) F (g(x)) Remrk. (i) (ii) y = g(x), g (x) = dy/dx y f(y) dy dx dx = f(y) dy *7 9

4.9. log x dx log x x log x (x log x) = log x +. x log x = log x dx + dx log x dx = x log x x 4.. n = 2, 3,... x (x 2 + 2 ) n dx = 2 2n (x 2 + 2 ) n. 28. n = 29. x 2 x 2 dx, xe x2 dx 4.. I n (x) = (x 2 + 2 ) n dx ( x ) = (x 2 + 2 ) n (x 2 + 2 ) n 2n x2 + 2 2 (x 2 + 2 ) n+ = 2n (x 2 + 2 ) n + 2 2 n (x 2 + 2 ) n+ 2 2 ni n+ (x) (2n )I n (x) = x (x 2 + 2 ) n 2

(recursive reltion) I (x) = x 2 + 2 dx = rctn x I 2 (x), I 3 (x),... 3. n =, 2,... x n e x dx 4.2. (i) (ii) x 2 dx = rcsin. 4x x 2 2 x2 + A dx = 2 ( x x 2 + A + A log x + x 2 + A Proof. (i) dx = x 2 dx = rcsin. 4x x 2 4 (x 2) 2 2 (ii) x2 + A x x 2 + A ). (x x 2 + A) = x 2 + A + x 2 x2 + A. x x2 + A dx = log + x2 + A x 2 x2 + A = x2 + A A x2 + A = x 2 + A A x2 + A (x x 2 + A) = 2 x 2 + A A x2 + A x2 + A dx 2

3. (x 2 x 2 ) 2 x 2 dx = ( x 2 2 x 2 + 2 rcsin x ) x 2 t 2 dt * 8 g(x) f(x) dx, deg g < deg f f(x) (x 2 + x + b) m, (x + c) n g(x) f(x) = p(x) (x 2 + x + b) m + q(x) (x + c) n p(x) q(x) p(x) x 2 +x+b x 2 +x+b x 2 +x+b p(x) (αx + β)(x 2 + x + b) k, k < m *8 rtionl function. 22

αx + β (x 2 + x + b) l dx, l m q(x) { (x + c) l dx = if l, ( l)(x+c) l log x + c if l = x 2 + x + b = (x + /2) 2 + b 2 /4 y = x + /2 Ay + B (y 2 + C) l dy 4.8, 4.9 4.3. x 3 + dx x 3 + = (x + )(x 2 x + ) x 3 + = x + + bx + c x 2 x +, b, c = /3, b = /3, c = 2/3 x 3 + dx = 3 x + dx x 2 3 x 2 x + dx = 3 log(x + ) 2(x /2) 3 6 (x /2) 2 + 3/4 dx = 3 log(x + ) 6 (x /2) 2 + 3/4 d(x /2)2 + 2 (x /2) 2 + 3/4 dx = 3 log(x + ) 3 6 log(x2 x + ) + 3 rctn((2x )/ 3) 23

32. x 3 dx, x 4 dx 33. x 4 + dx 4.4. + e x + e 2x dx t = ex + t + t 2 t dt 34. + e x dx + e2x y = f(x) x = ϕ(t), y = ψ(t) t x, y R(x, y) x = ϕ(t) R(x, f(x)) dx = R(x, y) dx = R(ϕ(t), ψ(t))ϕ (t) dt ϕ, ψ t * 9 x 2 + y 2 = (, ) t y = t(x + ), x 2 + y 2 = x = t2 + t 2, y = 2t + t 2 *9 (rtionl curve) 24

dx = x 2 y dx t y y = t(x + ) x x = cos θ, y = sin θ t sin θ t cos θdθ = 2 t2 ( + t 2 ) 2 dt cos θ = ( t 2 )/( + t 2 ) dθ = 2dt/( + t 2 ) ( ) t 2 R(cos θ, sin θ) dθ = R + t 2, 2t 2 + t 2 + t 2 dt 35. cos θ = 2 cos 2 θ 2, sin θ = 2 cos θ 2 sin θ 2 t = tn(θ/2) y = x 2 y = t(x + ), y 2 = x 2 25

x = + t2 t 2, y = 2t t 2 t 36. x2 dx 5 * 2 f () > f () = f () < f(x) x = f(x) x = f(x) x = f () = f (x) x = y = f(x) x = f() * 2 f(x) f() x x f () f(x) f() + f ()(x ), x *2 *2 locl mximum (locl minimum). 26

* 22 f(x) x = (liner pproximtion) f(x) (, f()) 5.. (i) + x + x/2 x x =...5. (ii) sin x x x = 2π/36 sin.7. 5.2. x f(x) = 4πx 3 /3 x = r f(r + r) f(r) f(r) 3 r r V V 6378Km 7km 6357Km 7Km 7 6378 r r 7 6357 V/V.3%.8% 5.3. x e x e x 2x, log( + x) x (x ) lim x e x e x log( + x) = lim 2x x x = 2. f(x) = f() + f(x) f() f ()(x ) = x x f (t) dt f (t) dt f ()(x ) *22 27

x = b d dt (f (t)(b t)) = f (t) + f (t)(b t) t b ( b t ) b b = x f (t) dt f ()(b ) = f(x) = f() + f ()(x ) + b x f (t)(b t) dt f (t)(x t) dt f(x) t x f (t) M x x f (t)(x t) dt f (t) (x t) dt M x (x t) dt = M 2 M x 2 /2 (x )2 37. < x x < 5.4. ( + t) = ( + t) 3/2 /4 t. /4 * 23..5 8 (.)2 =.25 7 38. sin f (t) x f (t) ( t x) f () f (t) f () x f (t)(x t) dt x f ()(x t) dt = 2 f ()(x ) 2 f(x) f() + f ()(x ) + 2 f ()(x ) 2 (x ) *23 f (t). <.5 28

f(x) x = * 24 (qudrtic pproximtion) f () = f () f(x) x = (, f()) f () x = x = f () * 25 y = f(x) x 5.5. f () = (i) f () < f(x) x = (ii) f () > f(x) x = 5.6. (i) cos x x 2 /2 x = = 2π/36 cos.99986 (ii) + x x/2 x 2 /8 cos x x 2 /2 (x ) lim x + x x/2 cos x = lim x x 2 /8 x 2 /2 = 4. 39. x e x (x > ) > *24 x *25 f () 29

f (x) f (x) x * 26 f(x) f, b f(( t) + tb) ( t)f() + tf(b), t y = f(x) b x 5.7 (Jensen ). f(x) [, b] f (x) f (x) ( x b) t,..., t n t j j t j = {c j } n j= [, b] * 27 n f t j c j j= n t j f(c j ) j= Proof. f(x) = f(c) + f (c)(x c) + x c f (t)(x t) dt f (t) f(x) f(c) + f (c)(x c) c b, x b x = c j, c = t j c j f(c j ) f(c) + f (c)(c j c) *26 *27 j t jc j b t j t j c j t j b j 3

t j j t j f(c j ) f(c) + f (c) j j 4. f(x) f(c) + f (c)(x c) t j (c j c) = f(c) 5.8. p = {p j } j n, q = {q j } j n p j >, q j > (reltive entropy) H(p, q) = n j= p j log p j q j log x H(p, q) = p j log q n j log q j p j = log = p j p j f(x) f (x) f (x) = c f (x) j= { f(x) < if x < c, f(x) > if x > c f(x) x < c x > c x = c (point of inflection) 5.9. f(x) f (c) = x = c f (x) (c, f(c)) 5.. f(x) = x 3 x = 3

5.. f(x) = e x2 /2σ 2 f (x) = e x2 /2σ 2 x2 σ 2 x < σ x > σ x = ±σ 4. y = f(x) f (c) = f (c) x = c 42. f(x) y = f(x) σ 4 6 6.. f(x) n n f (n) C n * 28 C 43 (Leibniz Rule). C n f(x), g(x) f(x)g(x) C n d n ( ) dx n f(x)g(x) = n nc k f (k) (x)g (n k) (x). k= f(x) = e x, g(x) = e bx *28 f () (x) = f(x) C 32

6.2 (). C n+ f(x) f(x) = f() + f ()(x ) + + n! f (n) ()(x ) n + R n (x), R n (x) = n! x f (n+) (t)(x t) n dt R n (x) (reminder) Proof. n n =, f(x) = f()+f ()(x )+ + (n )! f (n ) ()(x ) n + (n )! d ( f (n) (t)(x t) n) = n! dt (n )! f (n) (x t) n + n! f (n+) (t)(x t) n t (n )! x f (n) (t)(x t) n dt = n! f (n) ()(x ) n + n! x b f (n) (t)(x t) n dt f (n+) (t)(x t) n dt Remrk. B. Tylor (823) Gsprd de Prony (85) de Prony 33

6.3. x e x = + x + 2 x2 + + n! xn + e t (x t) n dt. n! sin x = x 3! x3 + + ( ) n (2n )! x2n + ( ) n (2n)! cos x = 2 x2 + + ( ) n (2n)! x2n x (x t) 2n cos t dt. + ( ) n (x t) 2n+ cos t dt. (2n + )! log( + x) = x 2 x2 + + ( ) n+ x n xn + ( ) n+ (x t) n dt. ( + x) n+ ( + x) α α(α ) = + αx + x 2 α(α )... (α n + ) + + x n 2 n! α(α )... (α n) x + ( + x) α n (x t) n dt. n! 44. x 45. g d n x (n )! dx n g(t)(x t) n dt = g(x) 46. ((t )f(t)), ((b t)f(t)), ((b t)(t )f (t)) [, b] b f(t) dt = f() + f(b) (b ) 2 2 b (b t)(t )f (t) dt 34

x e x Ce x/2 (x > ) f(x), g(x) C > x f(x) Cg(x) f(x) g(x) f(x) = O(g(x)) * 29 x e x = O(e x/2 ) 6.4. n! n A n (A > ) n log n! log(n!) = log 2 + log 3 + + log n n log x dx log x dx = n log n n + (n =, 2,... ) A n n! = O((Ae/n) n ) 47. n! = O((n/e) n ) x x x = f(x), g(x) f(x) x = g(x) f(x)/g(x) x = C > f(x) C g(x) x = *29 big O Pul Bchmnn (894) Edmund Lndu (99) little o O Ordnung (order) Omicron 35

g(x) f(x) O(g) f(x) f O(g) (nottion) f (x), f 2 (x) f (x) f 2 (x) O(g) f (x) = f 2 (x) + O(g(x)) O(g(x)) f f 2 x f 2 f O(g) f(x) = O(g(x)) 6.5. f(x) = x 2 sin(/x), g(x) = x 2 f(x) g(x) C = x 2 sin(/x) = O(x 2 ) f(x) 48. lim x f(x) = O(g(x)) g(x) t x ( x t ) f (n+) (t) M n+ (x) R n (x) n! M n+(x) x x t n dt = (n + )! M n+(x) x n+ lim x M n+ (x) = f (n+) () n R n (x) = O((x ) n+ ). f() + f ()(x ) + + n! f (n) ()(x ) n ( ) 6.6 ( * 3 ). C n+ f(x) x = f(x) = f() + f ()(x ) + 2 f ()(x ) 2 + + f (n) () (x ) n + O((x ) n+ ). n! *3 Tylor 36

f(x) = c + c (x ) + + c n (x ) n + O((x ) n+ ) c k = f (k) ()/k! ( k n) Proof. b + b (x ) + + b n (x ) n = O((x ) n+ ) b = b = = b n = O b + b (x ) + + b n (x ) n C x n+ x x b = x = x b = 6.7. x = e x = + x + 2 x2 + + n! xn + O(x n+ ). sin x = x 3! x3 + + ( ) n (2n + )! x2n+ + O(x 2n+3 ). cos x = 2 x2 + + ( ) n (2n)! x2n + O(x 2n+2 ). log( + x) = x 2 x2 + + ( ) n+ n xn + O(x n+ ). ( + x) α = + αx + α(α ) x 2 + O(x 3 ). 2 49. f(x) = tn x x = 5. C n+2 f(x) lim (f(x) x (x ) n+ f() f ()(x ) n! ) f (n) ()(x ) n = 6.8. f(x) = O(x m ), g(x) = O(x n ) α, β m n = min{m, n} (iii) m 37

(i) αf(x) + βg(x) = O(x m n ). (ii) f(x)g(x) = O(x m+n ). (iii) g(f(x)) = O(x mn ). 5. (iii) m = 6.9. f(x) = 2x x 2 + O(x 3 ), g(x) = x + 3x 2 + O(x 3 ) (i) f(x) g(x) = + 3x 4x 2 + O(x 3 ). (ii) f(x)g(x) = (2x x 2 + O(x 3 ))( x + 3x 2 + O(x 3 )) = 2x 3x 2 + O(x 3 ). (iii) g(f(x)) = (2x x 2 +O(x 3 ))+3(2x x 2 +O(x 3 )) 2 +O(x 3 ) = 2x+3x 2 +O(x 3 ). 6.. e x sin x e x = + x + 2 x2 + 6 x3 + O(x 4 ), sin x = x 6 x3 + O(x 5 ) e x sin x = x + x 2 + 3 x3 + O(x 4 ) 6.. y = cos x = 2 x2 + 4! x4 + O(x 6 ) + y = y + y2 + O(y 3 ) cos x = ( x2 /2+x 4 /4!+O(x 6 ))+( x 2 /2+O(x 4 )) 2 +O(x 6 ) = + 2 x2 + 5 24 x4 +O(x 6 ). 6.2. tn x tn x = x + bx 3 + cx 5 + O(x 7 ) cos x = x 2 /2 + x 4 /4! + O(x 6 ) tn x cos x ( x 2 /2+x 4 /4!+O(x 6 ))(x+bx 3 +cx 5 +O(x 7 )) = x+(b /2)x 3 +(c b/2+/4!)x 5 +O(x 7 ) 38

sin x = x x 3 /6 + x 5 /5! + O(x 7 ) =, b 2 = 6, c b 2 + 4! = 5! tn x = x + 3 x3 + 2 5 x5 + O(x 7 ). f(x) = f() + f ()x + 2 f ()x 2 + 6.3. cos x lim x x sin x Proof. cos x x sin x = ( x2 /2 + ) x(x x 3 /3! + ) = x2 /2 x 4 /4! + x 2 x 4 /3! + = /2 + O(x2 ) + O(x 2 ) 2. 6.4. 2 = 24 = 24 24 = 2 5 24 24 = 32 ( 2 ) 24 24 +... 52. e 53. sin 6 54. cos x x mc 2 (v/c) 2 (m >, c > ) v 39

(i) + t t = cos x (ii) (ii) ( + c x + c 2 x 2 +... ) 2 = cos x 55. ex e x e x x + e x 6.5. ( lim + n = e n n). Proof. ( n log + ) = n( n n ( ) 2 + ) 2 n = 2 2 n +. 6.6. sin x lim (cos x)/x x Proof. cos x = 2 x2 +, x sin x = x 2 3! x4 + lim (cos x x)/x sin x = lim ( 2 ) /x 2 x2 x = e /2. 6.7. lim (( + n /n)n e) = Proof. log( + /n) n = n log( + /n) = 2 4 n + 3 n 2 +

e ( + /n) n = e /2n+/3n2 + = ( /2n + /3n 2 + ) + ( /2n + /3n 2 + )2 2 + ( /2n + /3n 2 + )3 + 3! = 2n + 24 n 2 + ( + /n) n e e/2n lim n n(( + /n)n e) = e 2 56. e ( e = lim + ) n n n e n 57. [, ] f(x) ( lim + f(/n) ) ( + f(2/n) ) (... + f(n/n) ) n n n n 58. = e f(t) dt lim rctn x = π/2 x + π 2 rctn x = x + b x 2 + c ( ) x 3 + O x 4, b, c 59. y = tn x x (x ) R n (x) lim R n(x) = n lim n x f (n+) (t)(x t) n dt = n! 4

f(x) = f() + f ()(x ) + 2 f ()(x ) 2 + + n! f (n) ()(x ) n + f(x) x = (Tylor expnsion) (Tylor series) x x (power series), 6.8 ( ). x x < α e x = + x + 2 x2 + 3! x3 +, () sin x = x 3! x3 + 5! x5 7! x7 +, (2) cos x = 2 x2 + 4! x4 6! x6 +, (3) log( + x) = x 2 x2 + 3 x3 4 x4 +, (4) ( + x) α = + αx + α(α ) x 2 + 2 α(α )(α 2) x 3 +. (5) 3! Proof. () n! x e t (x t) n dt x n+ e x (n + )! 6.4 R n (x) (2), (3) (4) x R n (x) = ( ) n (x t) n dt ( + t) n+ t x x t x t + t x R n (x) x n+ x (n ) 42

(5) n! x f (n+) (t)(x t) n dt = x n! α(α ) (α n) ( + t) α n (x t) n dt x > n α n x ( + t) α n (x t) n dt x < x < x ( ) n x t x ( + t) dt α + t = mx{( x t)/( t); t x } = x x x < (x t) n dt = xn+ n +. ( ) n x t ( t) α dt t ( ) n x t x ( t) α dt x n ( t) α dt. t α(α ) (α n) x n (n ) n! α * 3 α > l < α l l α(α ) (α n) n! = = α(α ) (α l + )(l α) (n α) n! α(α ) (α l + ) l α n α (l )! l n α(α ) (α l + ). (l )! α < l α < l + l (n + )(n + 2) (n + l) (l )! n α l α l + n α n + l α(α ) (α n) n! (n + )(n + 2) (n + l) (l )! *3 Divide nd rule 43

n l x n * 32 Remrk. lim n x f (n+) (t)(x t) n dt = n! f(x) = { e /x if x >, if x f f (n) () = (n =,,... ) R n (x) = f(x) x > lim R n(x) = e /x n 6. f (n) (x) = p n (/x)e /x, x > (p n (/x) /x 2n ) f (n) () = 6. (i) t > n =,, 2, e kt k n e nt n! ( e t ) n+. k= (ii) f(x) = k= e kt cos(k 2 x) f C e 2nt f (2n) () (2n)! ( e t ) 2n+. *32 x < x = e 44

6.9. f(x) x = (i) g(x) x = f(x)g(x) x = (ii) g(x) x = f() g(f(x)) x = g(x) = /x f() /f(x) x = (iii) f () x = f() f * 33 ( x)( + x + x 2 + + x n ) = x n x x x = + x + x2 + + x n + xn x. + x = x + x2 + + ( ) n x n + ( ) n xn + x. *33 http://www.mth.ngoy-u.c.jp/ ymgmi/teching/complex/complex2.pdf (iii) http://www.mth.ngoy-u.c.jp/ ymgmi/teching/functionl/hilbert2.pdf 45

log( + x) = x dt ( t + t 2 + ( ) n t n + ( ) n + t ) = x 2 x2 + 3 x3 + + ( ) n n xn + ( ) n x R n (x) = ( ) n x t n + t dt tn t n + t dt. log( + x) x = t n R n () = + t dt t n dt = (n ) n + log 2 = 2 + 3 4 + 62. log( + x) 63., b > x b + x dx = ( ) n n + b n= = 2, b = 64. rctn x x = rctn x = x + t 2 dt. Remrk. B. Tylor Newton Tylor (75) Tylor J. Stirling (77) C. Mclurin (742) 46

Newton J. Gregory (Newton ) Tylor Newton (665) (67) Gregory Gregory Newton Tylor J.- L. Lgrnge (772) A. L. Cuchy (82) * 34 Mdhv (Hindu of Sngmgrm (35 425) Kerl Newton-Gregory 7 x /2 dx, x 2 dx improper integrl Remrk. *34 H.N. Jhnke, A History of Anlysis, AMS, 23. 47

7.. x α dx = x α dx = { α if < α <, + otherwise. { α if α >, + otherwise. 65. α > e αx dx 7.2. log x dx y = log x x = log x x log x x log x dx = [x log x x] = x = x log x log x x = x log x x= x = x = > lim log + = /t t + log = log t t (log t << t) 48

66. x 2 dx = [ x ] x= x= = 2. y = g(x) x y = g(x) 7.3 ( ). (i) f(x) g(x), x (ii) g(x)dx < + f(x) dx f(x) g(x), x > g(x)dx < + 49 f(x) dx

7.4. I n = x n e x dx (n =,, 2, ) Proof. x n e x/2 x x n e x Me x/2, x M > I n+ = (n + )I n, n =,, 2, I = + I n = n! e x dx = 7.5. e x2 dx Proof. x e x2 e x e x2 dx = e x2 dx + e x2 dx + e x2 dx e x dx < + 7.6 ( ). x > Γ(x) = + t x e t dt Γ(x + ) = xγ(x), Γ() =. Γ(n + ) = n!. 5

Proof. dt = + dt 7.7. e x2 dx = Γ ( ). 2 * 35 π II Γ(/2) = π 67. > b < ( log x) x b dx 68. ( π 2 rctn x ) dx, > 69. sin x x dx Remrk. f(t) dt < x lim x f(t) dt improper integrl *35 (Gussin integrl) 5

7.8. f(x) = { sin(/x) (x ) (x = ) b lim sin(/x) dx + 8 (sequence) { n } n n = + 2 + 3 + n= (series) * 36 n= n S = lim n k n k= * 37, n = + n= *36 sequence sequence series *37 52

(geometric series * 38 ) ( x)( + x + x 2 + + x n ) = x n+ x < n + x + x 2 + = x < < =. 2... ( j {,,..., 9}) (deciml expnsion) = k= { k } k = k=2 k k k = 9 ( k 2) k=2 k k k k < 9 k = k=2 = [] * 39 ( ) = 2 = 2 + k=3 k k 2 k = 9 ( k 3) 2 = [ 2 ] *38 geometric sequence rithmetic sequence rithmetic men, geometric men rithmetric *39 [x] x 53

k = [ k k k ] { k } k = 9 ( k m) m m k= m k k = k= k k + k=m m 9 k = k= k k + m =. 2... m 2 m, m = m + 8.. Proof. = l/m (l, m ) m m {,,..., m } m n (n-dic system) < < k = n k, k {,,..., n } k= { k } k = [n k n k n k ] n. 2... m (n )(n ) =. 2... m 2 m, m = m + 54

8.2. + 2 + 3 + lim n = n 8.3. n + 2 + 3 + α > ζ(α) = n= n α α = ζ(α) < + α >. n= n = +. n+ x dx n k= n k + x dx + 2 lim + + n n log n =, log n k+ 2k(k + ) x k k kx dx 2k 2 γ = lim ( + 2 + + n ) log n n (Euler s constnt) 7. k=n (k + ) 2 k=n k(k + ) = n /2 < γ < γ =.5772... 55

8.4. { n } n lim 2n = = lim 2n+ n n lim n = n 8.5 (Leibniz). { n } n 2 + 3 4 +... 8.6. 2 + 3 4 + = log 2 (N. Merctor, 668). 3 + 5 7 + = π 4 (G.W. Leibniz, 682). 8.7. n n n = lim F N n= k F k Proof. k k F k= k {, 2,..., n} F F + + n k lim k F F N k F n k 7. < + = + 56

8.8. {n, n 2,... } 8.9. n n nk = k= n. n= n < + n (bsolutely convergent) f(x) dx f(x) dx < * 4 8.. n c nx n x = x < Proof. lim n c n n = c n n M (n ) n M > x < c n x n = n= c n n x n M n= x n = M x <. n= 8.. (i) x e x = + x + 2 x2 + 3! x3 +, sin x = x 3! x3 + 5! x5 7! x7 +, cos x = 2 x2 + 4! x4 6! x6 + *4 http://www.mth.ngoy-u.c.jp/~ymgmi/teching/teching.html 57

(ii) x < log( + x) = x 2 x2 + 3 x3 4 x4 +, ( + x) = + x + ( ) x 2 + 2 ( )( 2) x 3 + 3! (iii) e x sin x dx (iv) ( * 4 x sin(t 2 ) dt = lim sin(t 2 ) dt x 72. > ( t) Newton t = ± (i) < < (ii) < < ( t) = c t c 2 t 2... c k > (iii) ( n c k = k= lim t k= n c k t k = lim t ( t) k=n+ 8.2 ( ). n n n n n n c k t k ) lim t ( ( t) ) =. Proof. n = b n c n, b n, c n, n = b n + c n *4 Fresnel integrl π/8 58

n b n n c n n = n n b n n c n { n } Remrk. (conditionlly convergent) { i } i I i = lim i I i F I i F i < + summble i R i I Remrk. lim F I i F i i. i I i I i I i (supremum) { } sup i ; F I i F 8.3. { i } i I I I = n I n i = i i I n= i I n 8.4. n < +, n= b n < + n= 59

I = {i = (m, n); m, n }, c i = m b n c i < + i I ( ) ( ) c i = m b n. i I m= n= m,n m b n 8.5. f(x) = k x k, g(x) = k= b l x l, l= x < r x f(x)g(x) = n c n x n, c n = k b n k n= 8.6. x <, y < (x + y xy) n = (x n + x n y + + xy n + y n ) n= n= k=, 2, 3, 4, 2 + 3 4 + 6

+ p q n + 3 + + 2p 2 4 2q +... + 2(n )p + + + 2np 2(n )q + 2 2nq (6) + ( 3 + + 2np 2 + 4 + + ) 2nq + 2 + + 2np 2 4 2np 2 ( + 2 + + ) qn γ n = + 2 + + n log n log(2pn) + γ 2pn 2 (log(pn) + γ pn) 2 (log(qn) + γ qn) = log(2p) 2 log p 2 log q + γ 2pn 2 γ pn 2 γ qn n log(2p) 2 log p 2 log q = log(2 p/q) 8.7. 2 + 3 4 + = log 2, + 3 2 + 5 + 7 4 + = 3 log 2. 2 2 + 3 4 + ( ) ( * 42 ) *42 Bernhrd Riemnn (826 866) (828 877) 6

73 (Chllenging). A A A A Wikipedi quntity vrible * 43 (i) (ii) (iii) (differentil eqution) *43 62

* 44 x I(x) x, I x x + I(x) I(x + ) I(x) x I(x) I(x + x) I(x) x x x di dx = I I = I(x) di I dx = I x x x (x x ) = x I = I(x ) di I(x) x I dx dx = I(x ) I di = log I(x) log I(x ) I(x) = I e (x x ) I x (x I I x I x I x, x 2,..., x n I, I 2,..., I n (I j I j ) (x j x j ) I j j j *44 Beer s lw. Bier 63

n n di = dx I n di, dx di = dx I, A t h S, V, v t H T h S = S(h) V = h 64 S(x) dx.

V (t + t) V (t) Av t dv dt = Av. t t + t m * 45 2 mv2 = mgh v = 2gh. t dv dt = S(h)dh dt V, v dh h dt = 2gA S(h). h t S(h) h dh dt = 2gA h t t t = t = T H S(h) h dh = 2gAT H T S(h) S S H h dh = 2gAT T = 2S 2gA H. *45 m 65

y = f(x) y (trctrix) (, ) y x y. (x, y) y = dy dx (x x) + y y (, y dy dxx) ( ) 2 dy x 2 + x 2 = 2 dx dy dx dy dx = ± 2 x 2. x x ( 2 u y = ± 2 du = ± log + 2 x 2 u x 2 x 2 ) u = sin θ rcsin(x/) π/2 rcsin(x/) rcsin(x/) sin θ dθ sin θ dθ = π/2 π/2 sin θ dθ 2 x 2. sin θ = 2t/( + t 2 ), dθ = 2dt/( + t 2 ) θ = π/2 t =, x/ = sin θ t = ( + 2 x 2 )/x rcsin(x/) + 2 x dθ = log t = log 2. π/2 sin θ x B lim Γ(t) = + t + 66

x = t x t + x = (t )u u = u + Γ(t + ) = t t+ e t u t e t tu du. g(u) = u t e t tu u = log g(u) u = Tylor log g(u) = t(log u u + ) = t 2 (u )2 + t 3 (u )3 +.... t t < u < + t t + < ɛ < + g(u)du t t /2 e t Γ(t) Stirling +ɛ ɛ ɛ t ɛ t e t(u )2 /2 du = ɛ t t e x2 /2 dx n! ( n ) n 2πn e + ɛ t e x2 /2 dx e x2 /2 dx = 2π +ɛ Γ(t + ) t t+ e t e t(x )2 /2 dx t + 67 ɛ

+ u t e t tu du = + e t(x log(+x)) dx y = { x log( + x) if x, x log( + x) if < x x y, y x x + e t(x log(+x)) dx = y 2 = x log( + x) x dy dx = x 2( + x) y = + dx ty2 e dy dy x 2( + x) x log( + x) > dx lim y dy = lim 2( + x) x log( + x) x x dx lim y + y dy = lim 2( + x) = 2 x + x t + g(y) = dx dy z = ty + u t e t tu du = t + =, ( ) z e z2 g dz t + + ( ) z + lim t u t e t tu du = lim e z2 g dz = e z2 g() dz = πg() t + t + t g(y) = dx dy x < y = ± x (x x 2 /2 + x 3 /3... ) = x 2 2 3 x +... 68

g() = == () dy dx 2( + x) 2 3 x +... x= = 2 ( ) z g = g() + g () t z + 2 t g () z2 t +... e z2 z dz =, e z2 z 2 dz = π 2 t u t e t tu du = ( ) π g() + g () 4 t +... (symptotic expnsion) x = 2y + 2 3 y2 + 2 8 y3 +... g() = 2, g () = 2 3,... 74. y = ± 2 x2 3 x3 +... x x = 2y + 2 3 y2 + 2 8 y3 +... x = y + by 2 + cy 3 +... y 69