Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Similar documents
p12.dvi

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

December 28, 2018

Z: Q: R: C: sin 6 5 ζ a, b

: 1g99p038-8

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Numerical Analysis II, Exam End Term Spring 2017

error_g1.eps

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ver.1 / c /(13)

untitled

201711grade1ouyou.pdf

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

untitled


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


Note.tex 2008/09/19( )

構造と連続体の力学基礎




I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

meiji_resume_1.PDF

TOP URL 1

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

v_-3_+2_1.eps

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

takei.dvi


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

chap1.dvi

30

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

A

量子力学 問題

Grushin 2MA16039T

第5章 偏微分方程式の境界値問題

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

keisoku01.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

xia2.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

数学Ⅱ演習(足助・09夏)


2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

I

三石貴志.indd

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

数学の基礎訓練I

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))


Part () () Γ Part ,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

pdf

??

ohpmain.dvi

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

v er.1/ c /(21)

chap9.dvi

数値計算:常微分方程式

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

untitled

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

KENZOU

II Brown Brown

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2011de.dvi

prime number theorem

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Z: Q: R: C:

nosenote3.dvi

Transcription:

University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n ) () Euler Euler θ = 1 Euler Euler Euler x n x n 1 t = f(t n 1, x n 1 ) (4) Euler Euler θ = 1 Euler x n x n 1 t = f(t n, x n ) (5) x n x n 1

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x 0 b M t 1 t 0 < b/m t, x, x Lipshitz f(t, x) f(t, x ) L x x (8) N t = t 1 t 0 Euler (x(t)) 1 C x(t n ) x n C t (9) Proof. Euler x n+1 = x n + tf(t n, x n ). (10) (7) t n t n+1 tn+1 x(t n+1 ) = x(t n ) + f(t, x)dt = x(t n ) + tf(t n, x(t n )) + O( t ), (11) t n (f(t) F (t) F (t + t) F (t) = tf(t) + O( t )) x(t n+1 ) x n+1 = x(t n ) x n + t[f(t n, x(t n )) f(t n, x n )] + O( t ). (1) Lipshitz x(t n+1 ) x n+1 x(t n ) x n + t f(t n, x(t n ) f(t n, x n ) + A t. (1) f(t n, x(t n ) f(t n, x n ) L x(t n ) x n (14) e n x(t n ) x n e n+1 e n + tl e n + A t = (1 + tl) e n + A t (15) e 0 = 0 n 1 e n A t (1 + tl) i = A t L [(1 + tl)n 1] (16)

(1 + tl) N = exp(l(t 1 t 0 )) (17) x(t n ) x n A t L [exp(l(t 1 t 0 )) 1] (18) 1. (local truncation error) t n 1 x n 1 = x(t n 1 ) t n t n x(t n ) x n e = x(t n ) x n (19) Scheme L(x n 1,, x n k )x n = 0 (0) e = Lx(t n ) (1) Scheme e = O( t m ) or e A t m () Scheme m m ( ) m 1 Euler x(t n+1 ) Taylor x(t n+1 ) = x(t n + t) = x(t n ) + t dx dt + t d x dt + O( t ) () dx/dt = f e Euler = O( t ). (4) Euler 1 Euler 1 Fractional Step Method 1 t n 1 x n 1 f(t, x(t)) x n

.1 Runge-Kutta R- (stage) Runge-Kutta R k (r) = f(t n 1 + ta r, x n 1 + t b rs k (s) ) (r = 1,,, R) (5) s=1 R x n = x n 1 + t c r k (r). (6) r=1 a r, b rs, c r R a r = b rs, r = 1,,, R (7) ( X = s=1 ) ( t, F (X) = x(t) ) 1 (8) f(t, x(t)) (5),(6) (consistency condition) (5),(6) R c i = 1. (9) i=1 1. b rs (s r). b rs (s > r) k (1), k (),. R R 1 4 5 6 7 8 9 10 R 10 m 1 4 4 5 6 6 7 7 m R R Euler a 1 = b 11 = 0, c 1 = 1 Euler a 1 = b 11 = 1, c 1 = 1 1 Runge-Kutta 1. a = b 1 = 1/, c = 1 k (1) = f(t n 1, x n 1 ) (0) k () = f(t n 1 + t, x n 1 + t k(1) ) (1) x n = x n 1 + tk () () 4

. a = b 1 = 1, c 1 = c = 1/ 1 k () = f(t n 1 + t, x n 1 + t f(t n 1, x n 1 )) = f + t = f + t x(t n ) Taylor k (1) = f(t n 1, x n 1 ) () k () = f(t n 1 + t, x n 1 + tk (1) ) (4) x n = x n 1 + t (k(1) + k () ) (5) f t + t f f x + 1 ( t f 4 t + t 4 f f x t + t 4 f f x ( f t + f f ) ( + t f x 8 t + f f x t + f f x ) + O( t ) ) + O( t ) (6) x(t n ) = x(t n 1 ) + t dx dt + t d x dt + t d x 6 dt + O( t4 ) (7) dx = f dt d x dt = df dt = f t + f f x d x dx = d f dt = d ( f dt t + f f ) x = ( f t t + f f ) ( f + x t + f f x = f f + (f + ) f t t x + f f t x + f ) f x + f ( f x t + f f ) x ( f x (8) (9) (40) (41) ) + f f x (4) e rk = x(t n+1 ) x n+1 = O( t ) (4) k (1) + k () = f + t 1 O( t ) ( f t + f f ) ( + t ) f x 4 t + f f x t + f f x + O( t ) (44) 4 4 Runge-Kutta Runge-Kutta 5

(a 1 = 0, a = b 1 = 1/, a = b = 1/, a 4 = b 4 = 1, c 1 = c = c = c 4 = 1/) 4 k (1) = f(t n 1, x n 1 ) (45) k () = f(t n 1 + t, x n 1 + t k(1) ) (46) k () = f(t n 1 + t, x n 1 + t k() ) (47) k (4) = f(t n 1 + t, x n 1 + tk () ) (48) x n = x n 1 + t 6 [k(1) + k () + k () + k (4) ] (49) e rk4 = x(t n ) x n = t5 ( ) (50) 880 ( )4 4 Runge-Kutta Gill (Runge-Kutta-GIll ) do i = 1, 4 u = f(x) x = x + t (P i u + Q i v) v = R i u + S i v end do ( = ) u, v Runge-Kutta ((45)-(48) ) Runge-Kutta P 1 = b 1 P = b, P 1 + Q R 1 = b 1 + Q R 1 = b 1 (5) P = b 4, P + Q R = b + Q R = b 4, (5) (51) P 1 + Q R 1 + Q S R 1 = b 1 + Q S R 1 = b 41 (54) P 4 = c 4, P + Q 4 R = b 4 + Q 4 R = c, (55) P + Q R + Q 4 S R = b 4 + Q 4 S R = c, (56) P 1 + Q R 1 + Q S R 1 + Q 4 S S R 1 = b 41 + Q 4 S S R 1 = c 1 (57) Runge-Kutta (51)-(57) (b 41 b 1 )(c b 4 ) = (b 4 b )(c 1 b 41 ). (58) 6

a, b, c a 1 = 0, a = 1, b 1 = 1 a = 1, b 1 = c 1 6c, b = 1 6c a 4 = 1, b 41 = 0, b 4 = 1 c, b 4 = c (59) c 1 = 1 6, c = c, c, c 4 = 1 6 c 4 Runge-Kutta a 4 = 1 c = + 6 a 1 = 0, a = 1, b 1 = 1 a = 1, b 1 = 1+, b = a 4 = 1, b 41 = 0, b 4 =, b 4 = + c 1 = 1 6, c = 6, c = + 6, c 4 = 1 6 (60) a, b, c 8 (Q, Q, Q 4, R 1, R, R, S, S ) (51)-(57) 5 R 1 = 1 Q = b 1 b 1 Q = b 4, Q 4 = c 4 P 1 = 1 P = P = + P 4 = 1 6 Q 1 = 0 Q = Q = + Q 4 = 1 R 1 = 1 R = R = + R 4 = 0 S 1 = 0 S = 4 S = +4 S 4 = 0 (61) i = 1 v Q 1 = S 1 = 0 v R 4 = S 4 = 0 Q 1, S 1 Linear Multistep Method ( x f(t, x(t)) x n k β 0 = 0 (8) (6) α i x n i = t β i f(t n i, x n i ) (α 0 0) (6) α i t n i = t β i (6) i i α i x n i = t β i f(t n i, x n i ) (64) i i 7

t n t n 1 = t t n α i = t (β i + iα i ) (65) i i t n, t α i = 0 (66) iα i = (66),(67) (consistency condition) k β i (67) γ i x n i = ϕ n, n = n 0, n 0 + 1, (68) γ n γ 0 0, γ k 0 x n0, x n0+1, {x n } γ i x n i = 0, n = n 0, n 0 + 1, (69) {ˆx n } (68) {ψ n } x n = ˆx n + ψ n ϕ n k γ i 0 ψ n = ϕ/ γ i (70) (69) {x n,t }, t = 1,, K a 1 x n,1 + a x n, + + a K x n,k = 0, n = n 0, n 0 + 1, (71) a i (69) k {ˆx n,t }, t = 1,, k fundamental system (69) k t=1 d tx n,t (69) x n,t = rt n γ i rt i = 0. (7) r t P (r) = k γ ir i = 0 P (r) = 0 k r t {r n t } (69) fundamental system (68) x n = d t rt n + ψ n (7) t=1 P (r) = 0 r j, j = 1,, p µ j ( p j=1 µ j = k) x n = [d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]r n 1 + [d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]r n + + [d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]r n p + ψ n (74) 8

trivial dx/dt = 0, x(0) = 0 α i x n i = 0 (75) ρ ζ ζ α i ζ n i = 0 (76) x n = t[d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]ζ1 n + t[d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]ζ n + + t[d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]ζp n (77) t 0 x(t) = 0 lim t 0,n t=x tnq ζ n i = X lim n nq 1 ζ n i = 0 (78) ζ i < 1 Definition 1. ρ(ζ) 1 (zero stable) n e = 1 [ α i x(t n i ) t β i f(x(t n i ))] (79) α 0 = 1 α 0 [ α i x(t n i ) t β i x (t n i )] (80) m x m m p m p m (t) = (t t n ) m p 0,, p m m p j (j = 1,, m) e = 0 m (80) p j (t t n ) j = 0 α 0 e = α i = 0 (81) 9

j 0 α 0 e = = [α i (t n i t n ) j tβ i j(t n i t n ) j 1 ] (8) ( i t) j 1 [ i tα i j tβ i ] (8) = ( t) j [i j α i + ji j 1 β i ] = 0 (84) j=0 α i = 0 (85) i j α i = j i j 1 β i (j 1) (86) m α i, β i (i = 0,, k)k + 1 k + 1 m + 1 k m = k k > m = k + 1 [Dahlquist(1956)] m t n Taylor x(t) = x (t) = m j=0 p j (t)x (j) (t n ) j! m p j (t)x(j) (t n ) j=1 j! + p m+1(t)x (m+1) (ξ(t)) (m + 1)! + p m+1(t)x (m+1) (η(t)) (m + 1)! (87) (88) x (j) (t) x t j ξ(t),η(t) t n,t L e = Lx Lp 0 = Lp 1 = = Lp m = 0. [ ] p m+1 (t n i )x (m+1) (ξ i (t n i )) p Lx = α i tβ m+1(t n i )x (m+1) (η i (t n i )) i (89) (m + 1)! (m + 1)! i=1 i=1 t n i ξ i (t n i ), η i (t n i ) t n 1 p m+1 (t n i )x (m+1) (ξ i (t n i )) α i (m + 1)! α ( i t) m+1 x (m+1) (ξ i (t n i )) i (m + 1)! (90) i=1 tm+1 (m + 1)! α i i m+1 x (m+1) (ξ i (t n i)) (91) i=1 10

p β m+1(t n i )x (m+1) (η i (t n i )) i (m + 1)! β ( i t) m x (m+1) (η i (t n i )) i m! (9) i=1 i=1 tm m! β i i m x (m+1) (η i (t n i)) (9) i=1 Lx Lx = sup t [t n k,t n] x (m+1) (t) M t m+1 (94) M = 1 α i i m+1 + 1 β i i m (m + 1)! m! (95) i=1 i=1 Lx = O( t m+1 ) (96).1.1.1 1 k = 1 k = 1 k+1 = m+1 m = k = m m = 1 j = 1 α 0 + α 1 =0, (97) α 1 = (β 0 + β 1 ) (98) α 0 = 1 α 1 = 1, β 1 = 1 β 0 x n x n 1 = t (β 0 f n + (1 β 0 )f n 1 ). (99) () m = j = α 1 = β 1 (100) β 1 = 1/, β 0 = 1/ 1.1. Adams α 0 = 1 α i (i = 1,, k) 1 (α l ) ( α l = α 0 = 1) l = 1 Adams 1 Adams 1 β 0 11

Adams-Bashforth ( ( ) x n = x n 1 + t f(t n 1, x n 1 ) 1 ) f(t n, x n ), (101) ( ( ) x n = x n 1 + t 1 f(t n 1, x n 1 ) 4 f(t n, x n ) + 5 ) 1 f(t n, x n ). (10) k Adams-Bashforth α i =,..., k β β 0 = 0 k (k 1) 1 = k Adams-Moulton ( 5 ( ) x n = x n 1 + t 1 f(t n, x n ) + f(t n 1, x n 1 ) 1 ) 1 f(t n, x n ) (10) ( ( )4 x n = x n 1 + t 8 f(t n, x n ) + 19 4 f(t n 1, x n 1 ) (104) 5 4 f(t n, x n ) + 1 4 f(t n, x n ) Adams-Moulton β 0 k + 1 Nystöm: l = generalized Milen-Simpson: l = Cotes: k = l ) (105).1. BDF (Backward Differentiation Formulae) β i = 0 (i 0) Gear (BDF) (Stiffly-Stable Method) [Gear] β 0 = 1 α (85)(86) α i x n i = β 0 f(t n, x n ) (106) x n x n 1 + 1 x n = f(t n, x n ) (107) 11 6 x n x n 1 + x n 1 x n = f(t n, x n ). (108) k + 1 k k 6 1 BDF f(t, x) f [7]( BDF[explicit BDF] ) α i (i = 0,, k) β 0 (85)(86) β i (i = 1,, k ) k < i k i α i = 0 k = k k = 1 Adams-Bashforth 1

1: Coefficients of Gear s BDF Method Coefficient k = 1 k = k = k = 4 k = 5 k = 6 11 5 17 49 α 0 1 6 1 60 0 α 1 1 4 5 6 1 15 α 0 5 α 0 0 1 4 10 0 α 4 0 0 0 1 4 α 5 0 0 0 0 1 5 6 5 α 6 0 0 0 0 0 1 6 5 4 15 4 Coefficient k = 1 k = 1 : Coefficients of explicit BDF Method k = k = k = k = k = k = 4 k = k = k = 4 k = 4 11 5 α 0 1 6 1 α 1 1 4 1 1 1 α 0 α 0 0 0 0 1 4 1 α 4 0 0 0 0 0 4 β 0 0 0 0 0 0 0 8 1 β 1 1 4 4 β 0 1 7 49 β 0 0 1 6 9 1 1 4 β 4 0 0 0 7 1 0 1 1

.1.4 (Predictor-Corrector) 1 1) (P) )f(x n ) (E) ) (C) 4) x n f(x n ) (E) ᾱ i x n i = t α i x n i = t β i f(t n i, x n i ) (109) i=1 β i f(t n i, x n i ) (110) 4 PEC α 0 x (0) n + ᾱ i x i = t β i f(t i, x (0) i ) (111) i=1 α i x i = t i=1 β i f(t i, x (0) i ) (11) 1 PEC(E) P(EC) (E).1.5 Lagrange Polynomial Interpolation x f N +1 (x j, f(x j )), j = 0,, N f(x) N P N P N (x) = l 0 0(x) =1, N f(x j )l N j (x) (11) j=0 l N j (x) = (x x 0)(x x 1 ) (x x j 1 )(x x j+1 ) (x x N ) (x j x 0 )(x j x 1 ) (x j x j 1 )(x j x j+1 ) (x j x N ) (114) (N 1). (115) (t n i, f(t n i, x n i )) i = 1,..., N P e N (t n, f(t n, x n )) e explicit (t n 1, f(t n 1, x n 1 )) P1 e f x n x n 1 + tn t n 1 P e 1 (t)dt = x n 1 + tn t n 1 f(t n 1, x n 1 )dt = x n 1 + (t n t n 1 )f(t n 1, x n 1 ) (116) Euler P e, P e Adams-Bashforth P e t t n t t n 1 (t) =f(t n 1, x n 1 ) + f(t n, x n ) (117) t n 1 t n t n t n 1 P e (t t n )(t t n ) (t) =f(t n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) + f(t (t t n 1 )(t t n ) n, x n ) (t n t n 1 )(t n t n ) (t t n 1 )(t t n ) + f(t n, x n ) (t n t n 1 )(t n t n ). (118) 14

tn x n x n 1 P e (t)dt t n 1 tn ( ) t t n t t n 1 = f(t n 1, x n 1 ) + f(t n, x n ) dt t n 1 t n 1 t n t n t n 1 [ ( ) f(tn 1, x n 1 ) t = t n 1 t n t n t f(t ( )] n, x n ) t tn t n 1 t n t n 1t t n 1 = f(t ( ) n 1, x n 1 ) t0 (t n + t n 1 ) t n t 0 f(t ( ) n, x n 1 ) t0 (t n + t n 1 ) t n 1 t 0 t 1 t 1 =f(t n 1, x n 1 ) t 0 t 1 ((t n t n 1 ) + (t n 1 t n )) f(t n, x n ) t 0 t 1 ((t n t n 1 )) =f(t n 1, x n 1 ) t 0 ( t 0 + t 1 ) t 1 f(t n, x n ) t 0 t 1. (119) t i = t n i t n i 1 i t = t i ( x n x n 1 t f(t n 1, x n 1 ) 1 ) f(t n, x n ) (10) 15

tn x n x n 1 P e (t)dt t n 1 tn ( (t t n )(t t n ) = f(t n 1, x n 1 ) t n 1 (t n 1 t n )(t n 1 t n ) + f(t (t t n 1 )(t t n ) n, x n ) (t n t n 1 )(t n t n ) ) (t t n 1 )(t t n ) +f(t n, x n ) dt (t n t n 1 )(t n t n ) [ ( )] f(t n 1, x n 1 ) t tn = (t n 1 t n )(t n 1 t n ) (t n + t n ) t + t n t n t t n 1 [ ( )] f(t n, x n ) t tn + (t n t n 1 )(t n t n ) (t n 1 + t n ) t + t n 1t n t t n 1 [ ( )] f(t n, x n ) t tn + (t n t n 1 )(t n t n ) (t n 1 + t n ) t + t n 1t n t t n 1 ( = f(t ( ) n 1, x n 1 ) t0 t n + t n t n 1 + tn 1) (t n + t n ) t 0 (t n + t n 1 ) + t n t n t 0 t 1 ( t 1 + t ) ( + f(t ( ) n, x n ) t0 t n + t n t n 1 + tn 1) (t n 1 + t n ) t 0 (t n + t n 1 ) + t n 1 t n t 0 t 1 t ( + f(t ( ) n, x n ) t0 t n + t n t n 1 + tn 1) (t n 1 + t n ) t 0 (t n + t n 1 ) + t n 1 t n t 0 ( t 1 + t ) t = f(t n 1, x n 1 ) t 0 ( ( t 6 t 1 ( t 1 + t ) n + t n t n 1 + t ) n 1) (tn + t n ) (t n + t n 1 ) + 6t n t n f(t n, x n ) t 0 6 t 1 t + f(t n, x n ) t 0 6 t ( t 1 + t ) ( ( t n + t n t n 1 + t ) ) n 1 (tn 1 + t n ) (t n + t n 1 ) + 6t n 1 t n ( ( t n + t n t n 1 + t ) ) n 1 (tn 1 + t n ) (t n + t n 1 ) + 6t n 1 t n. (11) t i = t n t n i = i 1 j=0 t j (t n + t n t n 1 + t n 1) (t n i + t n j ) (t n + t n 1 ) + 6t n i t n j ( = t n + t n (t n t 0 ) + (t n t 0 ) ) ( t n t i t j) (tn t 0 ) + 6 (t n t i) ( t n t ) j = t 0 t 0 ( t i + t j) + 6 t i t j (1) 16

t n x n x n 1 t ( 0 t 0 t 0 ( t 0 + t 1 + t ) + 6 ( t 0 + t 1 ) ( t 0 + t 1 + t ) ) f(t n 1, x n 1 ) 6 t 1 ( t 1 + t ) t ( 0 t 0 t 0 ( t 0 + t 1 + t ) + 6 t 0 ( t 0 + t 1 + t ) ) f(t n, x n ) 6 t 1 ( t 1 + t ) + t ( 0 t 0 t 0 ( t 0 + t 1 ) + 6 t 0 ( t 0 + t 1 ) ) f(t n, x n ) 6 t ( t 1 + t ) = t 0 + t 0 ( t 1 + t ) + 6 t 0 t 1 ( t 1 + t ) f(t n 1, x n 1 ) 6 t 1 ( t 1 + t ) t 0 + t 0 ( t 1 + t ) 6 t 1 t f(t n, x n ) + t 0 + t 0 t 1 6 t ( t 1 + t ) f(t n, x n ) (1) x n x n 1 1 f(t n 1.x n 1 ) 4 f(t n, x n ) + 5 1 f(t n, x n ) (14) Adams-Bashforth (t n, f(t n, x n )) N + 1 P i N P i 0 =f(t n, x n ), (15) P1 i =f(t n, x n ) t t n 1 t t n + f(t n 1 ), (16) t n t n 1 t n 1 t n P i =f(t n, x n ) (t t n 1)(t t n ) (t n t n 1 )(t n t n ) + f(t (t t n )(t t n ) n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) (t t n )(t t n 1 ) + f(t n, x n ) (17) (t n t n )(t n t n 1 ) x n x n 1 t 0 f(t n, x n ), (18) x n x n 1 t 0 (f(t n, x n ) + f(t n 1, x n 1 )), (19) x n x n 1 0 + t 0 t 1 6( t 0 + t 1 ) f(t n, x n ) + t 0 + t 0 t 1 f(t n 1, x n 1 ) 6 t 1 Euler Adams-Moulton t 0 6 ( t 0 + t 1 ) t 1 f(t n, x n ). f(t n, x n ) x BDF (t n i, x n i ) (i = 0,..., N) x Q N (t) (10) t t n 1 t t n Q 1 (t) = x n + x n 1 (11) t n t n 1 t n 1 t n dx dt dq 1 = dt x n t n t n 1 + x n 1 t n 1 t n = x n x n 1 t 0 = f(t n, x n ). (1) 17

(t t n 1 )(t t n ) Q (t) = x n (t n t n 1 )(t n t n ) + x (t t n )(t t n ) n 1 (t n 1 t n )(t n 1 t n ) + x (t t n )(t t n 1 ) n (t n t n )(t n t n 1 ) dx dt dq dt t (t n 1 + t n ) =x n (t n t n 1 )(t n t n ) + x t (t n + t n ) n 1 (t n 1 t n )(t n 1 t n ) + x t (t n + t n 1 ) n (t n t n )(t n t n 1 ). (14) t = t n dx t n t n 1 t n dt x n t=tn (t n t n 1 )(t n t n ) + x t n t n t n n 1 (t n 1 t n )(t n 1 t n ) + x t n t n t n 1 n (t n t n )(t n t n 1 ) t 0 = t 1 (1) t 0 + t 1 =x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n = f(t n, x n ). (15) t 0 t 1 ( t 0 + t 1 ) t 1 4 Q x n x n 1 + 1 x n = f(t n, x n ). (16) (t t n 1 )(t t n )(t t n ) Q (t) =x n (t n t n 1 )(t n t n )(t n t n ) + x (t t n )(t t n )(t t n ) n 1 (t n 1 t n )(t n 1 t n )(t n 1 t n ) (t t n )(t t n 1 )(t t n ) + x n (t n t n )(t n t n 1 )(t n t n ) + x (t t n )(t t n 1 )(t t n ) n (t n t n )(t n t n 1 )(t n t n ). (17) x Q t = t n dx x n ( dt t t=tn t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) n t n (t n 1 + t n + t n ) + (t n 1 t n + t n t n + t n t n 1 ) ) x n 1 ( t t 0 t 1 ( t 1 + t ) n t n (t n + t n + t n ) + (t n t n + t n t n + t n t n ) ) x n ( + t ( t 0 + t 1 ) t 1 t n t n (t n + t n 1 + t n ) + (t n t n 1 + t n 1 t n + t n t n ) ) x n ( t ( t 0 + t 1 + t )( t 1 + t ) t n t n (t n + t n 1 + t n ) + (t n t n 1 + t n 1 t n + t n t n ) ) x n = t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) ( t 0( t 0 + t 1 ) + ( t 0 + t 1 )( t 0 + t 1 + t ) + t 0 ( t 0 + t 1 + t )) x n 1 t 0 t 1 ( t 1 + t ) ( t 0 + t 1 )( t 0 + t 1 + t ) x n + t 0 ( t 0 + t 1 + t ) ( t 0 + t 1 ) t 1 t x n t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t )( t 1 + t ) t =x n t 0 + (4 t 1 + t ) t 0 + t 1 ( t 1 + t ) t 0 ( t 0 + t 1 )( t 0 + t 1 + t ) x n 1 ( t 0 + t 1 )( t 0 + t 1 + t ) t 0 t 1 ( t 1 + t ) + x n t 0 ( t 0 + t 1 + t ) ( t 0 + t 1 ) t 1 t x n t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t )( t 1 + t ) t =f(t n, x n ). (18) 18

t 0 = t 1 = t 11 6 x n x n 1 + x n 1 x n = f(t n, x n ) (19) dq dt t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 P e (t n ) (140) tn = f(t n 1, x n 1 ) t n t n t n 1 t n + f(t n, x n ) t n t n 1 t n t n 1 dq dt x n t 0 + (4 t 1 + t ) t 0 + t 1 ( t 1 + t ) t 0 ( t 0 + t 1 ) ( t 0 + t 1 + t ) = f(t n 1, x n 1 ) t 0 + t 1 t 1 f(t n, x n ) t 0 t 1, (141) P e (t n ) (14) t=tn x n 1 ( t 0 + t 1 ) ( t 0 + t 1 + t ) t 0 t 1 ( t 1 + t ) t 0 ( t 0 + t 1 + t ) t 0 ( t 0 + t 1 ) + x n x n ( t 0 + t 1 ) t 1 t ( t 0 + t 1 + t ) ( t 1 + t ) t (t n t n )(t n t n ) = f(t n 1, x n 1 ) (t n 1 t n )(t n 1 t n ) + f(t (t n t n 1 )(t n t n ) n, x n ) (t n t n 1 )(t n t n ) (t n t n 1 )(t n t n ) + f(t n, x n ) (t n t n 1 )(t n t n ) = f(t n 1, x n 1 ) ( t 0 + t 1 )( t 0 + t 1 + t ) t 1 ( t 1 + t ) t 0 = t 1 = t f(t n, x n ) t 0( t 0 + t 1 + t ) t 1 t + f(t n, x n ) t 0( t 0 + t 1 ) ( t 1 + t ) t (14) 11 6 x n x n 1 + x n 1 x n = f(t n 1, x n 1 ) f(t n, x n ) + f(t n, x n ). (144) dq dt t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 = f(t n 1, x n 1 ) ( t 0 + t 1 )( t 0 + t 1 + t ) t 1 ( t 1 + t ) P e (t n ) (145) t=tn f(t n, x n ) t 0( t 0 + t 1 + t ) t 1 t + f(t n, x n ) t 0( t 0 + t 1 ) ( t 1 + t ) t (146) 19

(85), (86) dq dt c 1 P e (t n ) + c P e (t n ) (147) t=tn (c 1 + c = 1) t 0 + t 1 x n t 0 ( t 0 + t 1 ) x t 0 + t 1 t 0 n 1 + x n t 0 t 1 ( t 0 + t 1 ) t 1 = f(t n 1, x n 1 ) ( t 0 + t 1 )(c t 0 + t 1 + t ) t 1 ( t 1 + t ) c = / t 0 = t 1 = t f(t n, x n ) t 0(c ( t 0 + t 1 ) + t ) t 1 t + f(t n, x n ) c t 0 ( t 0 + t 1 ) ( t 1 + t ) t. (148) x n x n 1 + 1 x n = 8 f(t n 1, x n 1 ) 7 f(t n, x n ) f(t n, x n ) (149) c = /. Taylor Hamilton ( ) Symplectic(leap-flog) 4 bound bound ( (standard test problem) ) dx dt = λx, λ C. (150) x Rλ 0 bound (Rλ < 0 ) Euler x n = x 0 (1 + λ t) n λ t 1 [bounded] ( λ t < 1 [convergent]) λ t bound λ t (stability region) ( strict stability region) Definition (A-stability (Dahlquist)). C {λ : Rλ < 0} A 0

A Runge-Kutta A A A A R R Runge-Kutta A A C(α) = {λ C : arg(λ) α} A(α) [Widlund] (Stiff Stability)[Gear] Definition (Widlund). α (0, π/) W α = {λ t : π arg(λ t) < α} A(α) α A(0) A(0) k k + 1 α [0, π/] k = m =, k = m = 4 k m A(α) Definition 4 (Gear). R 1, R [stiffly stable] R 1 = {λ t : Rλ t < a} (151) R = {λ t : a Rλ t b, Iλ t c} (15) a, b, c λ t R 1 4.1 Runge-Kutta x 0 = 1 Runge-Kutta x n = ξ(λ t) n K = (k (1), k (),, k (R) ) T, B = (b rs ), C = (c r ), E = (1, 1, ) K = λ(x n 1 E + tbk) (15) x n = x n 1 + tc T K (154) K x n = x n 1 + tc T (I λ tb) 1 λx n 1 E. (155) ξ(λ t) = 1 + λ tc T (I λ tb) 1 E. (156) ξ(λ t) 1 4.1 Runge-Kutta (R 4) R > 4 6 5 Runge-Kutta Lawson[9] 1

Im(λ t) R1 c R -a b Re(λ t) -c 4. (150) (α i λ tβ i )x n i = 0. (157) ρ(ζ) = σ(ζ) = α i ζ i (158) β i ζ i (159) π(ζ, λ t) = ρ(ζ) λ tσ(ζ) = 0 (160) ζ i (157) x n = t[d 1,1 + d 1, n + d 1, n(n 1) + + d 1,µ1 n(n 1) (n µ 1 1)]ζ1 n + t[d,1 + d, n + d, n(n 1) + + d,µ n(n 1) (n µ 1)]ζ n + + t[d p,1 + d p, n + d p, n(n 1) + + d p,µ n(n 1) (n µ p 1)]ζp n (161) ζ i < 4. 4.

4 Stability Diagram of Runge-Kutta Method Stage[ R]& Order[ m ] R=1, m=1 R=, m= R=, m= R=4, m=4 R=6, m=5[ Lawson] Im( λ t) 0 - -4-7 -6-5 -4 - - -1 0 Re( λ t) 1: Stability diagram of Runge-Kutta method.

1.5 1 Stability Diagram of Adams-Bashforth Method Number of Steps k=1 k= k= k=4 k=5 k=6 0.5 Im( λ t) 0-0.5-1 -1.5-1.5-1 -0.5 0 0.5 1 1.5 Re( λ t) : Stability diagram of Adams-Bashfortht method. 4

4 Stability Diagram of Adams-Moulton Method Number of Steps k=1 k= k= k=4 k=5 k=6 1 Im( λ t) 0-1 - - -6-5 -4 - - -1 0 1 Re( λ t) : Stability diagram of Adams-Moulton method. 5

0 15 10 Stability Diagram of Gear s BDF Method Number of Steps k=1 k= k= k=4 k=5 k=6 5 Im( λ t) 0-5 -10-15 -5 0 5 10 15 0 5 0 Re( λ t) 4: Stability diagram of BDF method. 6

1.5 1 Stability Diagram of explicit BDF Method Number of Steps k=1 k= k= k=4 k=[ α k=[ =0] =0, α 4 =0] 0.5 Im( λ t) 0-0.5-1 - -1.5-1 -0.5 0 0.5 Re( λ t) 5: Stability diagram of explicit BDF method. 7

4. stiffness Definition 5. λ t, t = 1,,, m dx dt = Ax + Φ(t) (16) Rλ t < 0, t = 1,,, m max t=1,,,m Rλ t min t=1,,,m Rλ t (stiff) stiffness ratio [1] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations (John Wiley & Sons, Chichester/New York, 1987). [] J.D. Lambert, Computational Methods in Ordinary Differential Equations (John Wiley & Sons, London, 197). [] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, N.J., 197). [4] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems (Interscience, New York, 1957). [5] P. Hartman, Ordinary Differential Equations (John Wiley & Sons, New York, 1964). [6] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics (Springer, Berlin, 1991). [7] G.E. Karniadakis et al, J. Comput. Phys 97, 414 (1991); M.A. Hulsen, MEAH-18 (1996). [8] S. Gill, Proc. Cambridge Philos. Soc. 47, 95 (1951). [9] J.D. Lawson, SIAM J. Numer. Anal. 9??(197). 8