数値計算:有限要素法

Similar documents
9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

73

Part () () Γ Part ,

all.dvi

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

AHPを用いた大相撲の新しい番付編成

gr09.dvi

1 u t = au (finite difference) u t = au Von Neumann

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


A

6.1 (P (P (P (P (P (P (, P (, P.


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ct_root.dvi

all.dvi

all.dvi

nakata/nakata.html p.1/20

ばらつき抑制のための確率最適制御

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

kou05.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

直交座標系の回転

6.1 (P (P (P (P (P (P (, P (, P.101

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

min. z = 602.5x x 2 + 2

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

ランダムウォークの境界条件・偏微分方程式の数値計算

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

第5章 偏微分方程式の境界値問題

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Untitled


TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Microsoft Word - 表紙.docx

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

構造と連続体の力学基礎

名称未設定

: 1g99p038-8


微分方程式の解を見る

lecture

, = = 7 6 = 42, =


Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

第1章 微分方程式と近似解法

keisoku01.dvi

n ( (

TOP URL 1

B ver B


IV (2)

3. :, c, ν. 4. Burgers : u t + c u x = ν 2 u x 2, (3), ν. 5. : u t + u u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,.,

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

numb.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

untitled

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

05-5.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

tokei01.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

: , 2.0, 3.0, 2.0, (%) ( 2.

Microsoft Word - 11問題表紙(選択).docx

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

difgeo1.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

SO(2)

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

福大紀要 02730816/教育科学 太田 氏家

A

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Transcription:

( ) 1 / 61

1 2 3 4 ( ) 2 / 61

( ) 3 / 61

P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61

L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61

u(x) 0 L x ( ) 6 / 61

P(0) P(L) f d dx ( EA du dx ) = 0 u(0) = 0 E(L)A(L) du dx (L) = f (boundary value problem) ( ) 7 / 61

(finite element method; FEM) 1 2 3 ( ) ( ) 8 / 61

U U = f W L 0 ( ) 2 1 du 2 EA dx, dx W = f u(l) min I = U W, subject to u(0) = 0 ( ) 9 / 61

[0, L] 6 h = L/6 Pi Pj 0 xi xj L x (nodal point) x 0 = 0, x 1 = h, x 2 = 2h,, x 6 = L u i = u(xi ) u(x) 7 u 0, u 1, u 2,, u 6 ( ) 10 / 61

[x i, x j ] u(x) u(x) = u i N i,j (x) + u j N j,i (x), (x i x x j ) u i, u j x i, x j 1 0 0 xi xj L N i,j (x) = x j x { h 1 (x = xi ) = 0 (x = x j ) x 0 0 xi xj L 1 N j,i (x) = x x i { h 1 (x = xj ) = 0 (x = x i ) x ( ) 11 / 61

u(x) = u(x) (0 x L) u 0 N 0,1 (x) + u 1 N 1,0 (x) (x 0 x x 1 ) u 1 N 1,2 (x) + u 2 N 2,1 (x) (x 1 x x 2 ) u 2 N 2,3 (x) + u 3 N 3,2 (x) (x 2 x x 3 ). u 5 N 5,6 (x) + u 6 N 6,5 (x) (x 5 x x 6 ) u(x) 7 u 0, u 1,, u 6 ( ) 12 / 61

u(x) 0 h 2h 3h 4h 5h L P0 P1 P2 P3 P4 P5 P6 x ( ) 13 / 61

u(x) u5 u6 u2 u4 u0 u1 u3 0 h 2h 3h 4h 5h L P0 P1 P2 P3 P4 P5 P6 x ( ) 13 / 61

[x i, x j ] N i,j (x) = x j x, N j,i (x) = x x i h h N i,j(x) = 1 h, N j,i(x) = 1 h u(x) = u i N i,j (x) + u j N j,i (x) du = u i N dx i,j(x) + u j N j,i(x) 1 = u i h + u 1 j h = u i + u j h ( ) 14 / 61

= 7 u 0, u 1,, u 6 L 0 = u N = u 0 u 1 u 2. u 6 x1 x 0 x2 x 1 x3 + + x 2 + + x6 x 5 ( ) 15 / 61

E xj ( ) 2 1 du xj ( ) 2 x i 2 EA 1 dx = dx x i 2 EA ui + u j dx h = 1 E xj 2 h ( u 2 i + u j ) 2 A dx x i = 1 [ [ ] E V ui u i,j j 2 h 2 V i,j V i,j = xj x i A dx = [x i, x j ] V i,j V i,j ] [ ui u j ], ( ) 16 / 61

L ( ) 2 1 du U = 0 2 EA dx dx = 1 [ ] [ [ ] E V u0 u 0,1 V 0,1 u0 1 2 h 2 V 0,1 V 0,1 u 1 [ ] [ 1 [ ] E V u1 u 1,2 V 1,2 u1 2 2 h 2 V 1,2 V 1,2 u 2 [ ] [ 1 [ ] E V u2 u 2,3 V 2,3 u2 3 2 h 2 V 2,3 V 2,3 u 3 [ ] [ 1 [ ] E V u5 u 5,6 V 5,6 u5 6 2 h 2 V 5,6 V 5,6 u 6 ] + ] + ] + + ] ( ) 17 / 61

K = E h 2 U = 1 2 u N T Ku N V 0,1 V 0,1 V 0,1 V 0,1 + V 1,2 V 1,2 V 1,2 V 1,2 + V 2,3 V 2,3 V 2,3......... V 4,5 + V 5,6 V 5,6 V 5,6 V 5,6 ( ) 18 / 61

K = E h 2 U = 1 2 u N T Ku N V 0,1 V 0,1 V 0,1 V 0,1 + V 1,2 V 1,2 V 1,2 V 1,2 + V 2,3 V 2,3 V 2,3......... V 4,5 + V 5,6 V 5,6 V 5,6 V 5,6 ( ) 18 / 61

K = E h 2 U = 1 2 u N T Ku N V 0,1 V 0,1 V 0,1 V 0,1 + V 1,2 V 1,2 V 1,2 V 1,2 + V 2,3 V 2,3 V 2,3......... V 4,5 + V 5,6 V 5,6 V 5,6 V 5,6 ( ) 18 / 61

K = E h 2 U = 1 2 u N T Ku N V 0,1 V 0,1 V 0,1 V 0,1 + V 1,2 V 1,2 V 1,2 V 1,2 + V 2,3 V 2,3 V 2,3......... V 4,5 + V 5,6 V 5,6 V 5,6 V 5,6 ( ) 18 / 61

A V i,j = Ah 1 1 1 2 1 K = EA 1 2 1 h 1 2 1 1 2 1 1 2 1 1 1 ( ) 19 / 61

A V i,j = Ah 1 1 1 1+1 1 K = EA 1 1+1 1 h 1 1+1 1 1 1+1 1 1 1+1 1 1 1 ( ) 20 / 61

A V i,j = Ah 1 1 1 1+1 1 K = EA 1 1+1 1 h 1 1+1 1 1 1+1 1 1 1+1 1 1 1 ( ) 20 / 61

f W = f u(l) = f u 6 W = f T u N f = 0 0 0 0 0 0 f ( ) 21 / 61

u(0) = u 0 = 0 a T u N = 0 a = 1 0 0 0 0 0 0 ( ) 22 / 61

min I = U W, subject to u(0) = 0 min I (u N ) = 1 2 ut N K u N f T u N, subject to a T u N = 0 ( ) 23 / 61

( ) min I (u N ) = 1 2 ut N K u N f T u N, subject to a T u N = 0 min J(u N, λ) = I (u N ) λa T u N = 1 2 ut N K u N f T u N λa T u N ( ) 24 / 61

( ) J u N = Ku N f λa = 0 J λ = at u N = 0 [ K a a T 0 ] [ un λ ] = [ f 0 ] ( ) 25 / 61

( ) J u N = Ku N f λa = 0 J λ = at u N = 0 [ K a a T 0 ] [ un λ ] = [ f 0 ] ( ) 25 / 61

( ) J u N = Ku N f λa = 0 J λ = at u N = 0 [ K a a T 0 ] [ un λ ] = [ f 0 ] = u N λ ( ) 25 / 61

A(x) = a 2bx (a, b a 2bL > 0 ) E V i,j = xj x i (a 2bx) dx = [ ax bx 2] xj x i = {a b(x i + x j )} h V 0,1 = (a bh)h, V 1,2 = (a 3bh)h, V 2,3 = (a 5bh)h, [0, L] 4 a bh K = E h a + bh a + bh 2a 4bh a + 3bh a + 3bh 2a 8bh a + 5bh a + 5bh 2a 12bh a + 7bh a + 7bh a 7bh ( ) 26 / 61

P(x) r(x) = 3(a bx) (a, b a bl > 0 ) A(x) = πr 2 = 3π(a bx) 2 xj ] x=xj V i,j = 3π(a bx) 2 (a bx)3 dx = [π x i b x=x i = π { 3a 2 3ab(x i + x j ) + b 2 (xi 2 + x i x j + xj 2 ) } h [0, L] 4 (x i = ih h = L/4) V 0,1 = π(3a 2 3abh + b 2 h 2 )h V 1,2 = π(3a 2 9abh + 7b 2 h 2 )h V 2,3 = π(3a 2 15abh + 19b 2 h 2 )h V 3,4 = π(3a 2 21abh + 37b 2 h 2 )h ( ) 27 / 61

( ) 28 / 61

P(0) P(x) u(x,t) 0 P(L) f(t) P(0) P(x) t P(L) ( ) 29 / 61

T = L 0 ( ) 2 1 u L 2 ρa 1 dx = t 0 2 ρa u2 dx 7 u 0, u 1,, u 6 [x i, x j ] u(x, t) u(x, t) = u i (t) N i,j (x) + u j (t) N j,i (x), (x i x x j ) u(x, t) = u i (t) N i,j (x) + u j (t) N j,i (x), (x i x x j ) ( ) 30 / 61

xj x i 1 2 ρa u2 dx = 1 2 m i,j; i,j = xj = 1 2 m i,j; j,i = m j,i; i,j = xj ρa { u i (t) N i,j (x) + u j (t) N j,i (x)} 2 dx x i [ ] [ ] [ ] m ui u i,j; i,j m i,j; j,i ui j m j,i; i,j m j,i; j,i u j x i ρa (N i,j ) 2 dx, m j,i; j,i = xj x i ρa N i,j N j,i dx xj x i ρa (N j,i ) 2 dx, ( ) 31 / 61

L T = 1 ρa u 2 dx 2 0 = 1 [ ] [ ] [ m u0 u 0,1; 0,1 m 0,1; 1,0 u0 1 2 m 1,0; 0,1 m 1,0; 1,0 u 1 1 [ ] [ ] [ m u1 u 1,2; 1,2 m 1,2; 2,1 u1 2 2 m 2,1; 1,2 m 2,1; 2,1 u 2 1 [ ] [ ] [ m u2 u 2,3; 2,3 m 2,3; 3,2 u2 3 2 m 3,2; 2,3 m 3,2; 3,2 u 3 1 [ ] [ ] [ m u5 u 5,6; 5,6 m 5,6; 6,5 u5 6 2 m 6,5; 5,6 m 6,5; 6,5 u 6 ] + ] + ] + + ] = 1 2 u N T M u N ( ) 32 / 61

M = m 0,1; 0,1 m 0,1; 1,0 m 1,0; 0,1 m 1,0; 1,0 + m 1,2; 1,2 m 1,2; 2,1. m 2,1; 1,2.. m4,5; 5,4 m 5,4; 4,5 m 5,4; 5,4 + m 5,6; 5,6 m 5,6; 6,5 m 6,5; 5,6 m 6,5; 6,5 ( ) 33 / 61

A ρ xj x i (N i,j ) 2 dx = xj x i N i,j N j,i dx = M = ρah 6 xj x i (N j,i ) 2 dx = h 3 xj x i N j,i N i,j dx = h 6 2 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 2 ( ) 34 / 61

A ρ M = ρah 6 2 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 2 ( ) 35 / 61

A ρ M = ρah 6 2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2 ( ) 36 / 61

A ρ M = ρah 6 2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2+2 1 1 2 ( ) 36 / 61

A(x) = a 2bx (a, b a 2bL > 0 ) ρ xj x (N i,j ) 2 dx = h x i 12 (3x i + x j ), xj x (N j,i ) 2 dx = h x i 12 (x i + 3x j ), xj x i x N i,j N j,i dx = xj x i x N j,i N i,j dx = h 12 (x i + x j ) m i,j; i,j = ρh 6 {2a b(3x i + x j )}, m j,i; j,i = ρh 6 {2a b(x i + 3x j )}, m i,j; j,i = m j,i; i,j = ρh 6 {a b(x i + x j )} ( ) 37 / 61

[0, L] 4 2a bh M = ρh 6 a bh a bh 4a 8bh a 3bh a 3bh 4a 16bh a 5bh a 5bh 4a 24bh a 7bh a 7bh 2a 15bh ( ) 38 / 61

L(u N, u N ) = T U + W + λr = 1 2 u N T M u N 1 2 u N T Ku N + f T u N + λa T u N L d L = Ku N + f + λa Mü N = 0 u N dt u N ( ) 39 / 61

R = a T u N Ṙ = a T u N R = a T ü N a T ü N + 2νa T u N + ν 2 a T u N = 0 ( ) 40 / 61

Mü N λa = Ku N + f a T ü N = a T (2ν u N + ν 2 u N ) u N = v N [ M a a T ] [ vn λ ] [ = Ku N + f a T (2νv N + ν 2 u N ) ] ( ) 41 / 61

λ, µ ( ) 42 / 61

P i P i P i Pk Pi Pj ( ) 43 / 61

P i P i P i Pk Pi Pj ( ) 43 / 61

P i P i P i Pk Pi uk ui Pj uj P i P i P i u i = [ ui v i ] [ uj, u j = v j ] [ uk, u k = v k ] ( ) 43 / 61

U i,j,k = 1 [ u T 2 i uj T uk T K i,j,k (6 6) ] Ki,j,k u i u j u k K i,j,k = λj i,j,k λ J i,j,k λ, Jµ i,j,k (6 6) + µj i,j,k µ ( ) 44 / 61

1 P2 P2 1 1 P3 P0 1 P1 P1 ( ) 45 / 61

J 0,1,2 λ = J 3,2,1 λ = 1 2 J 0,1,2 µ = J 3,2,1 µ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 3 1 2 1 1 0 1 3 0 1 1 2 2 0 2 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 2 0 0 0 2 ( ) 46 / 61

P2 P3 P2 P2 P3 1 = 1 + 1 1 P0 1 P1 P0 1 P1 P1 ( ) 47 / 61

U = U 0,1,2 + U 3,2,1 = 1 2 [ u T 0 u T 1 u T 2 u T 3 ] K u 0 u 1 u 2 u 3 K (8 8) J λ, J µ (8 8) K = λj λ + µj µ ( ) 48 / 61

J λ (0, 0) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (0, 1) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (0, 2) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (1, 0) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (1, 1) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (1, 2) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (2, 0) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (2, 1) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J λ (2, 2) J 0,1,2 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 49 / 61

J 0,1,2 λ J λ J λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 50 / 61

J λ (3, 3) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (3, 2) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (3, 1) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (2, 3) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (2, 2) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (2, 1) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (1, 3) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (1, 2) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J λ (1, 1) J 3,2,1 λ = 1 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 ( ) 51 / 61

J 3,2,1 λ J λ J λ = 1 2 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 ( ) 52 / 61

J 0,1,2 λ J 3,2,1 λ 1 1 1 0 0 1 1 1 1 0 0 1 J λ = 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 2 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 ( ) 53 / 61

J 0,1,2 µ J µ J µ = 1 2 3 1 2 1 1 0 1 3 0 1 1 2 2 0 2 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 2 0 0 0 2 ( ) 54 / 61

J 3,2,1 µ J µ J µ = 1 2 1 0 0 1 1 1 0 2 0 0 0 2 0 0 2 0 2 0 1 0 0 1 1 1 1 0 2 1 3 1 1 2 0 1 1 3 ( ) 55 / 61

J 0,1,2 µ J 1,3,2 µ J µ = 1 2 3 1 2 1 1 0 1 3 0 1 1 2 2 0 3 0 0 1 1 1 1 1 0 3 1 0 0 2 1 1 0 1 3 0 2 0 0 2 1 0 0 3 1 1 1 0 2 1 3 1 1 2 0 1 1 3 ( ) 56 / 61

U = 1 2 u N T Ku N, T = 1 2 u N T M u N = = ( ) 57 / 61

x = x 1 x 2 x 3 y x y x y 1 = y x x 2 y x 3 ( ) 58 / 61

b = b 1 b 2 b 3 y = b T x = b 1 x 1 + b 2 x 2 + b 3 x 3 y x 1 = b 1, y x 2 = b 2, y x 3 = b 3 ( b T x ) = b x ( ) 59 / 61

A = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 y = 1 2 x T Ax = 1 2 { a11 x 2 1 + a 22 x 2 2 + a 33 x 2 3 + 2a 12 x 1 x 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 } y x 1 = 1 2 {a 11 2x 1 + 2a 12 x 2 + 2a 13 x 3 } = a 11 x 1 + a 12 x 2 + a 13 x 3 ( ) 60 / 61

y x 1 = a 11 x 1 + a 12 x 2 + a 13 x 3 y x 2 = a 12 x 1 + a 22 x 2 + a 23 x 3 y x 3 = a 13 x 1 + a 23 x 2 + a 33 x 3 ( ) 1 x 2 x T Ax = Ax ( ) 61 / 61