chap1_MDpotentials.ppt

Similar documents
1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

PowerPoint Presentation

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

スケーリング理論とはなにか? - --尺度を変えて見えること--

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

vdw-df vdw-df vdw-df 2

スライド 1

SPring-8_seminar_

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

2/24



, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

JFE.dvi

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

スライド 1

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

EGunGPU

TQFT_yokota

London -van der Waals Coulomb Fe, Mn

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

Annual-report-vol-61.pdf


3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

rcnp01may-2

PowerPoint Presentation

A

untitled

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

28 Horizontal angle correction using straight line detection in an equirectangular image

X線分析の進歩 39 別刷

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

untitled


MUFFIN3

( )

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

原子・分子架橋系の量子輸送の理論 現状と展望

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

200708_LesHouches_02.ppt

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

SPring8菅野印刷.PDF

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

Frontier Simulation Software for Industrial Science

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

untitled

XFEL/SPring-8

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

1 2 2 (Dielecrics) Maxwell ( ) D H


K E N Z OU

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

TOP URL 1

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

SFN

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

RX501NC_LTE Mobile Router取説.indb

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


untitled

all.dvi

C:CAD?????????w???W??KUT?????????4?N?????O???I??1?O_?I??1?i???jweb?p.IPO

スライド 1


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

薄膜結晶成長の基礎3.dvi

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices


Nosé Hoover 1.2 ( 1) (a) (b) 1:

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

linearal1.dvi




nosenote3.dvi

untitled

1


表紙

1

Transcription:

simplest Morse : simplest (1 Well-chosen functional form is more useful than elaborate fitting strategies!! Phys. Rev. 34, 57 (1929 ( 2 E ij = D e 1" exp("#(r ij " r e 2 r ij = r i " r j r ij =r e E ij : D e =, α=, r e = 2

: simplest (2 Lennard-Jones i< j + $ E = 4" & # ' 1 - -% r i, j, ij ( 12 $ * # ' & % r ij ( 6. 0 0 / E r ij = 2 1/ 6 " ~ 1.1" "# Proceedings of the Physical Society 43, 461 (1931 (van der Waals ( /r 3 - -1/r 6 ( : Ar 84K 87K (

: Si (1 Si as a covalent system Stillinger-Weber Phys. Rev. B 31, 5262 (1985 E = i< j i< j<k " v 2 (r ij + " v 3 ( r ij, r i, j i, j,k ik for diamond structure v 2 deep well v 3 ( r 1, r 2 = g(r 1 g(r 2 h(l 12 l 12 = r 1 " r r 2 r 1 r 2 h(l = (l + 1 3 2 sp 3

: Si (2 Tersoff (T1,T2,T3 Phys. Rev. Lett. 56, 632 (1986; Phys. Rev. B 32, 6991 (1988; Phys. Rev. B 38, 9902 (1988 Si-Si Si i< j $ [ ] E = " R (r ij + p(# ij " A (r ij i, j " R (r ij repulsive, " A (r ij attractive p(" ij bond order " ij = # v * 3 ( r ij, r ik Stillinger-Weber k 4

: Si (3 EDIP for Si (environment-dependent interatomic potential M.Z. Bazant et al.,phys. Rev. B. 56, 8542 (1997 Tersoff 2 3 (= EDIP Si (= EDIP for C (environment-dependent interatomic potential N. Marks, J. Phys.: Condens. Matter 14, 2901 (2002 EDIP for Si C Tersoff diamond graphite

: 2 2 / e.g., Elastic moduli: i< j For E = " v 2 (r ij i, j C "#$% = 1 2&N i.k / i,k ( d 2 v 2 (r ik ' 1 dv 2 (r ik + r ik," r ik,# r ik,$ r ik,% * 2-2 dr ik r ik, r ik ( dr ik transferability

: ( AMBER

: (1 (sp-valent metals Nearly-free electron approach pseudopotential 2 : E = # S * ( q r S( q r $ V ion ps ( q r 2 %( q r 2&( q r r q "0 with $ S( q r = 1 exp("iq r # r j N j "( q r =1# 8$%( q r /q 2 "( r q =1# 8$%( r q [1# G(q]/q 2 "( q r = linear response func. (Lindhard = % r p,spin V ion ps ( q r = Fourier Transform of the pseudopot. f fermi (" r p + r q # f fermi (" r p " r p #" r p + r q + i$

: (2 E = E 0 + 1 N i< j #"(r ij "(r = 4Z 2 with ion #r i, j & % 0 V ion ps (q 2 $(q sin(qr q dq "(r Al 2k F 1/3 Φ cohesive energy cohesive energy LDA-DFT 2 Al Dragens et al., Phys.Rev. B 11, 2226 (1975

: -EAM (1 Embedded-atom method i< j #i E = #"(r ij + # F($ i with " i = $ " atom (r ij i, j i j "(r ij 2 ( F(" i ρ i ( : : F(" i = a" i = a $ " atom (r ij #i j 2 F(" i = a" i # b " i fitting LDA-DFT Puska et a., (1981

: -EAM (2 EAM 1 Φ ρ (r 0 E /N = AZ " B Z A = 1 2 "(r 0 + a# atom (r 0 (< 0 B = b " atom (r 0 (> 0 Z= E vs. Z E( Z 0 < E( Z, Z = Z 0 E/N 1980 embedded-atom method / Finnis-Sinclair N-body pot. / the glue model Z Al LDA-DFT results by Heine et al. (1991

: -EAM (3 EAM 2 vacancy formation energy ( B=0 EAM 2 "#U vac = 2A = Z " 2A # Z " A = ZA A=0 EAM "#U vac = Z=4 cohesive energy : minus U coh = "ZA (> 0 " #U vac = $ZA = U coh Z=4 cohesive energy : minus U coh = B Z (> 0 = "BZ( Z " Z "1 # " B 2 Z " #U vac = B 2 Z = 1 2 U coh Al "U vac ~ 0.5U coh EAM

: : ES+, ReaxFF Goddard group (Caltech

: (1 ES+ Metal/oxide V ES+ =V EAM +V ES V EAM = # F [" i ] + # $ ij r ij i { } V ES =! 0 i q i + 1 2 J 0 2 " i q i + 1 2 i i< j ( F.H. Streitz and J.W. Mintmire, Phys. Rev. B 50, 11996 (1994 Embedded-Atom method : " i% j $ "V ES+ ( # d 3 r 1 d 3 i ( r 1 ;q i # j r 2 ;q j r 2 $ "q i V ES (Σ i q i =0 {q i } r 12 O 2 on Al " i 1s

: (2 ES+ α-alumina Streitz-Mintmire Experiment E c (ev/al 2 O 3 31.8 31.8 a (Å 5.13 5.13 C 11 (GPa 537 497 C 12 (GPa 180 164 C 13 (GPa 106 111 C 33 (GPa 509 498 C 14 (GPa -30-24 C 44 (GPa 130 147 C 66 (GPa 179 167

: Al Al Nanoparticles --- (radius~100å In high O-density: explosion Application: Ignition powder In low O-density and room temp.: Unique oxidation behavior: amorphous surface oxides (20 ~ 40Å Application: Nanophase materials... unique electrical, chemical, & mechanical behavior Aumann et al. (1995

: (3 ( =1500K 1ps=10-12

: (4 70 Å