Similar documents
() Statistik19 Statistik () 19 ( ) (18 ) ()

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

tokei01.dvi

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

Part () () Γ Part ,

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

確率論と統計学の資料

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

統計学のポイント整理

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

untitled

6.1 (P (P (P (P (P (P (, P (, P.


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

renshumondai-kaito.dvi

1 1 ( ) ( % mm % A B A B A 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

6.1 (P (P (P (P (P (P (, P (, P.101

151021slide.dvi


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

橡Taro13-EXCEL統計学.PDF

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

数理統計学Iノート

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

名称未設定

countif Excel E4:E10E4:E10 OK 2/27

1 1 [1] ( 2,625 [2] ( 2, ( ) /

countif Excel E4:E10E4:E10 OK 2/25

Microsoft Word - 信号処理3.doc

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

(Nov/2009) 2 / = (,,, ) /8

2 1 Introduction

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel = =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E E

応用数学III-4.ppt

i

分散分析・2次元正規分布

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


newmain.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

waseda2010a-jukaiki1-main.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

10:30 12:00 P.G. vs vs vs 2


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

i

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Untitled


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


熊本県数学問題正解

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

入試の軌跡

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google



Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

2011de.dvi

2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

/02/18

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

ii

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

i 18 2H 2 + O 2 2H 2 + ( ) 3K

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


30

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

(

Z: Q: R: C:

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1 Tokyo Daily Rainfall (mm) Days (mm)

(pdf) (cdf) Matlab χ ( ) F t

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

i

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Maxwell

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

Transcription:

( /main.tex) 011 8 6 1 3 8.1.............................................. 8............................................. 11.3............................................. 11.4............................................ 15.5........................................ 17.6............................................. 19 3 1 3.1................................................ 1 3............................................ 3.3,.......................................... 7 3.4............................................. 3 3.5................................... 35 3.6......................................... 39 4 4 4.1.............................................. 4 4.................................................. 43 4.3............................................. 44 4.4............................................. 46 4.5....................................... 48 5 56 5.1............................................. 56 5.............................................. 56 5.3........................................... 57 5.4............................................. 59 5.5........................................... 6 6 63 6.1................................................ 63 6............................................... 63 6.3.................................................. 64 1

6.4.................................................. 66 7 69 7.1................................ 71

1 1 17 W. (Political Arithmetic) ( ) 18 1741 17 1749 Statistik 19 Statistik (Blaise Pascal 163-166: ) Pierre de Fermat 1607(1608?)-1665, 19 (Pierre-Simon Laplace, 1749-187 ) Leonhard Euler, 1707-1783 18 ) 3

( ) 1835 1869 19 ( ) ( ) ( ) 19 Biometrics*( ) 19 0 * Biostatistics Biometrika 0 W. ( ) Sir A. (1890-196, ) ( ) K. Abraham Wald,190-1950 47 1950 1 John Wilder Tukey,1915-000 AT&T Bell Laboratories 1965 The future of data analysis 196 Mathematics of Computation 1965 Cooley Software Bit http://ja.wikipedia.org/ Statistics 1830-98 189-97 4

1869 188-1917 186-19 6 6 13 006 ISBN 978-4-335-104-6 GDP* GDP : Gross Domestic Product GDP (i) 1 http://www.stat.go.jp/index/index.htm 3 http://www.stat.go.jp/ http://www.stat.go.jp/howto/case.htm ( ) http://www.e-stat.go.jp/sg1/estat/ estattopportal.do (ii) 5

: : : statistics statisticum ( EBM) (iii) 1.. 3. 4. 5. 6. 6

URL(Uniform Resource Locator) Web http(hypertext Transfer Protocol) URL http://www.e-stat.go.jp/sg1/estat/estattopportal.do http://portal.stat.go.jp/ R (Win, Mac, Linux) R on Windows: http://plaza.umin.ac.jp/ ~takeshou/r/ http://www.google.co.jp/ Wikipedia http://ja.wikipedia.org/wiki/ http://www.openoffice.org/ http://ja.openoffice.org/ http://www.math.s.chiba-u.ac.jp/~yasuda/index-j.htm 10 11 1 13 14 15 7

.1 (set) n > 0 n 1 a A b A a A a A a A b A b / A U U A B A B d a c b A B (a A, a / B) (1) ; {, 4, 6,, 0} () ; {x x = n, n = 1,,, 10}, {n n = 1,,, 10}, {n n 1 10 } U U A B A B A B A B 8

U U A B A B A c A A \ B = A B A,B x A x B A B B A A B A B B A A A A A A,B A B, B A A = B (empty set) {} ϕ ( ) ϕ A A, B A B (intersection) A B A, B A B (union) A B U Ω U (Universe set) U A U A (complement) A c A (empty set).1 ( ) : (1) A B = A B () A B = A B. (1) (A B) C = A (B C) () (A B) C = A (B C) (3) A B = B A (4) A B = B A (5) (A B) C = (A C) (B C) 9

.1 n,a 1, A,, A n n A i = A i = A 1 A A n i=1 i n A i = A 1 A A n i=1.1 n {A i, i = 1,,, n}. a, b, c {0, 1} A, B, C (i) 1 a A; (ii) a = 1 (1 a) (A) ; (iii) max{a, b} A B; (iv) max{a, b, c} A B C; (v) min{a, b} A B; (vi) min{a, b, c} A B C..3 x i A i i x A i x i A i i x A i [ ] (exist) (all) x i x i A i x A i, i A i x A i, i.4 n x i {1, 0}, i = 1,,, n (i) max{x 1, x,, x n } = 1 (1 x 1 ) (1 x n ) (ii) min{x 1, x,, x n } = x 1 x x n 10

. 5 5 =?.3 n n (n 1) (n )... 1 n (n 1) 1 (exclamation, )! n! n n! = n(n 1)(n ) 3 1 (n 1), 0! = 1 11

10 3! = 6, 4! = 4, 5! = 10, 6! = 70, 7! = 5040, 8! = 4030, 9! = 36880, 10! = 368800 r n 1. : n r = r {}}{ n n n (.1) (permutation) (n) r = r {}}{ n(n 1)(n ) (n (r 1)) =. : n! (n r)! (.) [n] r r! = r {}}{ n(n + 1)(n + ) (n + (r 1)) = r! ( ) ( ) n + r 1 n + r 1 = r n 1 (.3) (combination) (n) r r! = n(n 1)(n ) (n (r 1)) r! = ( ) ( ) n n = r n r r {}}{ (n) r = n(n 1)(n ) (n r + 1) r {}}{ [n] r = n(n + 1)(n + ) (n + r 1) (a 1, a, a 3,, a r ), {a 1, a, a 3,, a r } r! { } = r! { } (a, b, c) {a, b, c} http://ja.wikibooks.org/wiki/ A_ (.4).5 1 5 5 5 1

(i) (ii) (iii) (iv) (v) 5 (i) 5 5! = 5 4 3 1 10 (ii) 4 4 4! = 48 (iii) 1, 3, 5 4 3 4! = 7 5 (i) (ii) (iii) 10 48 = 7.6 {0, 1,, 3, 5} 5 (4 ) 0 (i) 5 (ii) 5 (iii) 5 (iv) 5 5 (v) 5 10 (i) 0 5 4 4! = 96 (ii) 0 0 0 4 4! = 4 0 3 3! = 18 5 4 + 18 = 4 (iii) (i) (ii) 5 5 1, 3, 5 5 0 3 3 3! = 54 5 (ii) (i) 96 (iv) 5 0 5 0 4 4! = 4 5 0 3 3! = 18 4 + 18 = 4.7 5 ( ) 5 ( 5 ) = 5 4 = 10 10! ( 5 3 ) = 5 4 3 = 10 ( 5 3! ) = (5 3 ).8 6 (i) 3 (ii) 13

(iii) (i) 6 3 ( 6 3 ) ( 3 ) (6 3 ) (3 ) 0 3 60 (ii) (i) 6 ( 6 ) ( 4 ) (6 )(4 ) 15 6 90 (iii) (ii) (ii) 45 n, r ( ) ( ) n n = ( r ) n ( r ) n + 1 n = r r ( ) n + r 1 ( ) n r n r 1 n 1 r 1 n 1 r 1 n, r 1 r ( ) π (0! = 1) n = (π) ( ) 3 π (π 1) (π ) 3 = = (3) 5 = 3 3! 6 5 5! 3 (3 1) (3 ) (3 3) (3 4) = 0 5! O = (0, 0) (North) (East) 4 1 5 15 35 70 16 10 3 1 1 4 3 10 0 35 56 84 6 10 15 1 8 b a + b 1 1 3 4 5 6 7 a 1 1 1 1 1 1 O 1 3 4 5 6 m, n = 0, 1,, (m, n) N(m, n) = ( m+n n ) = (m+n m ) N(0, 3) = 1, N(, 3) = N(3, ) = 10, N(3, 3) = 0 N(m, n) = k k (m, n) k = 15 (m, n) = (, 4), (4, ) k = 5 14

(m, n) = (5, 5) N(m, n) + N(m 1, n + 1) = N(m, n + 1) ( m+n n ) + (m+n n+1 ) = (m+n+1 n+1 ) (x + 1) m+n (x + 1) = (x + 1) m+n+1 x n.9 (m, n) N(m, n) = ( m+n n ) = (m+n m ) : a, b n ;(a + b) n (a + b) n = n {}}{ (a + b) (a + b) (a + b) n (a + b) a b a b a ( ) ( r b ) n r a r a r b b r n n = = (n) r = (n) n r r n r r! (n r)! ( ) ( ) ( ) ( ) ( ) n n n n n (a + b) n = a n b 0 + a n 1 b 1 + + a n r b r + + a 1 b n 1 + a 0 b n 0 1 r n 1 n.4 (event) (probability). : N A #(A) A P(A) P(A) = #(A) N a A, {a} P({a}) = 1, a N n P({a 1, a,, a n }) = n N, a i A : 1 1 1 1,,3,4,5,6 6 : Ω( ) #(Ω) < 15

1 A 0 P(A) 1 ( ) ϕ P(ϕ) = 0, 3 Ω P(Ω) = 1. : A,B A B = ϕ A B (mutually exclusive) (mutually disjoint) A B (exclusive event) A B A B A B = ϕ P(A B) = P(A) + P(B) A B = ϕ P(A B) = 0 P(A B) + P(A B) = P(A) + P(B) (.5) a b c = a b c {a i } i a i, Π i a i A 1, A,, A n n i=1 A i = i A i = A 1 A A 3 A ni=1 n A i = i A i = A 1 A A 3 A n = A 1 A A 3 A n.10 3 5 ( 5 ) = 10 ( 3 ) = 3 (3 )/(5 ) = 3/10.11 7 5 3 3 1 3 ( 1 3 ) = 0 3 A 3 B P(A) = ( 7 3 )/(1 3 ) = 35/0, P(B) = ( 5 3 )/(1 3 ) = 10/0 3 A B A B, A B = P(A B) = P(A) + P(B) = 35/0 + 10/0 = 45/0 = 9/44. ( ) : A A A A A (complement) A c A A P(A) = 1 P(A) (.6).1 5 3 8 3 1 8 3 ( 8 3 ) = 56 1 A P(A) 3 P(A) = ( 5 3 )/(8 3 ) = 10/56 P(A) = 1 P(A) = 1 ( 5 3 )/(8 3 ) = 3/8 16

.13 A, B, C (1) P(A B) = P(A) + P(B) P(A B) = P(A) + P(B) {P(A B) () P(A B) = 1 P(A B) = 1 P(A B) = 1 P(A B) (3) P(A B C) = P(A) + P(B) + P(C) {P(A B) + P(B C) + P(C A)} + P(A B C) = P(A) + P(B) + P(C) {P(A B) + P(B C) + P(C A)} + P(A B C) (4) P(A B C) = 1 P(A B C) = 1 P(A B C) = 1 P(A B C).5 (conditional probability); A B A B (conditional probability) P(B A) P(A) = 0 P(B A) = P(A B) P(A) (.7) Ω A B A A B A A B B A A B P(Ω) = 1, P(A B) P(B A) = P(A B) P(A) P(A B) = P(A) P(B A) (.8) P(B A) P(A) A B A B B A (independent), P(B A) = P(B A) P(A B) = P(A) P(B) A P(B A) = P(B) A B 17

P(A B) = P(A) P(B) (.9) n {A 1, A,, A n } (i), A i A j (ii) P(A 1 A A n ) = P(A 1 )P(A ) P(A n ) (i) (pairwise independent) 1 15 15 1 A 3 B A = {, 4, 6, 8, 10, 1, 14}, B = {3, 6, 9, 1, 15} 3 p p 7 6 A B = {6, 1}. A B A B P(A B) P(B A) = = P(A) 7 {B 1, B,, B n } Ω (partition), (i) B i B j = ϕ (i = j), (ii) Ω = i B i.3 {B 1, B,, B n } Ω P(A) = P(A B 1 )P(B 1 ) + P(A B )P(B ) + + P(A B n )P(B n ) (.10) : 1 A 3 B 4 C A = {, 4, 6}, B = {3, 6}, C = {4, 5, 6}., P(B A) = P(B) A B P(C A) = P(C) A C A, B A B A B A B P(B A) = P(B) n.14 3 5 1 1 1 1 1 1 1 3, 1 5 5. 3 5 5 = 6 5 18

: E p n E r ( n r )pr (1 p) n r, (r = 0, 1,,, n) Binom(n, p).15 1 5 3 4 1 1 3 6 = 1 1 ( ) 3 5 3 4 ( 5 1 4 ( 4 ) 1 1 ) 5 4 = 10 3 3 43.16 60% 4% 50 1 50 A 50 B P(A) = 60 = 0.6, P(A B) = 100 4 P(A B) = 0.4. P(B A) = = 0.7. 100 P(A).17 5 3 a b a b 1 a A b B a 4 P(B A) = 4 = 1. P(A B) = P(A) P(B A) = 3 5 1 = 3 10..18 1 13 (1) a 1 b 1 a b () a 1 b 1 a b a A b B (1) A B A A 1 B PA(B) () A A B.6.4 A Ω {B 1, B,, B n } P(B i ),P(A B i ), (i = 1,,, n) P(B i A) = P(A B i) P(B i ) j P(A B j )P(B j ) 19

(belief) 1763 Thomas Bayes(170-1761) ( ) n r θ θ (aleatory) (epistemological) ( ) P(B A) = P(B) P(A B) P(B) P(A B), B = {Y = b} A P(A B) = P(A Y = b) b A L(b) L(b) = ( ) P(A Y = b) 0

3 3.1 ( ):{H} {T} {1, 0} (random variable) X H (Head),T (Tail) 1 X 4 X X {0, 1, } (1, ) X (H, H) p (H, T) 1 p(1 p) (T, H) 1 p(1 p) (T, T) 0 (1 p) p X = 0 (1 p) X = 1 p(1 p) X = p X 0 1 (1 p) p(1 p) p 1 X x p X (x) (1 p) if x = 0 ( ) p X (x) = p(1 p) if x = 1 p p X (x) = p x (1 p) x, x = 0, 1, if x = x n ( ) n p X (x) = p x (1 p) n x, x = 0, 1,,, n (3.1) x X Binom(n, p) n, p (Binomial distribution) X x 1, x,, x n p i = P(X = x i ), i = 1,,, n (i) 0 p k, (ii) n p i = 1 x i p i i x x 1 x x n P(X = x) p 1 p p n 1,pdf(probability density function) (discrete density) 1

X (probability distribution) {X = x k } p X (x k ) = p k, k = 1,,, n {x 1, x,, x n } {X x}, F X (x) = P(X x), < x < (3.) (distribution function) (i), (ii) 0 1, (iii) f X (x) = d dx F X(x) F X (x) = x f X (t) dt (discrete type) P(a X b) = P(X = x i ) = p X (x i ) a x i b a x i b (continuous type) P(a X b) = f X(x) dx = {x : a x b} b a f X (x) dx 3. c X r x 1, x,, x r n nc X 1 + X + + X n c nc (X 1 + X + + X n ) = 0, c c = 1 n (X 1 + X + + X n ) P(X = x i ) = f X (x i ), i = 1,,, r N n (x) x X 1, X,, X n x N n (x) = i 1 {Xi =x} X 1 + X + + X n = r i=1 x in n (x i ), X 1 + X + + X n n = r N n (x x i ) i n i=1 *1 N n (x)/n n f X (x) = P(X = x) (3.3) *1

X x 1 x x r N n (x)/n N n (x 1 )/n N n (x )/n N n (x r )/n 1 f X (x) = P(X = x) f X (x 1 ) f X (x ) f X (x r ) 1 (3.3) µ = r i=1 x i f X (x i ) c µ > c µ = c X µ = i x i P(X = x i ) = x i p X (x i ) (3.4) i f X (x) = d dx F X(x) = d dx P(X x), ( < x < ) µ = x f X (x) dx (3.5) : X :{p X (x i ), i = 1,, }, :{ f X (x), < x < } µ = E(X) (expectation) (mean) average E(X) = x i p X (x i ) : E(X) = i x f X (x) dx : x m (x m) E[(X m) ] X m X m X (variance) V(X) V(X) = E[(X m) ] = i (x i m) p X (x i ) : V(X) = (x m) f X (x) dx : X (standard deviation) σ(x) σ(x) = V(X) V(X) (X m) = X mx + m V(X) = E[(X m) ] = E[X mx + m ] = E[X ] me(x) + m = E[X ] m V(X) = E[X(X 1)] + m m 3

3.1 (1) () 1 X X [0, 1] X (Uniform distribution) X Uni f {1,,, 6}, X Uni f [0, 1] P(X 1 + X = a) = P(X 1 = k)p(x = a k) k 3 ( ) X ( ) 3 X 1 P(X 1 + X = 7) = k P(X 1 = k)p(x = 7 k) = P(X 1 = 1)P(X = 7 1) + P(X 1 = )P(X = 7 ) + + + P(X 1 = 6)P(X = 7 6) = (1/6)(5/36) + (1/6)(4/36) + (1/6)(3/36) + (1/6)(/36) + (1/6)(1/36) = 15/16 7 X 1 = 1,,, 6, X =, 3,, 1 X ( ):X 1 ( ) 1 (1/6) (1/6) 3 (1/6) 4 (1/6) 5 (1/6) 6 (1/6) (1/36) 3 4 5 6 7 8 3 (/36) 4 5 6 7 8 9 4 (3/36) 5 6 7 8 9 10 5 (4/36) 6 7 8 9 10 11 6 (5/36) 7 8 9 10 11 1 7 (6/36) 8 9 10 11 1 13 8 (5/36) 9 10 11 1 13 14 9 (4/36) 10 11 1 13 14 15 10 (3/36) 11 1 13 14 15 16 11 (/36) 1 13 14 15 16 17 1 (1/36) 13 14 15 16 17 18 [ ] X a,b Y = ax + b Y (i) E(Y) = ae(x) + b (iii) σ(y) = a σ(x) (ii) V(Y) = a V(X) (b ) n X,Y (X, Y) 4

{X = a} {Y = b} (X, Y) = (a, b) f X,Y (a, b) = P(X = a, Y = b) f X (a) = b f X,Y (a, b), f Y (b) = a f X,Y (a, b) P(X 1 + X = a) = f X,Y (x, y) (3.6) {(x,y) x+y=a} x + y = a (x, y) E(X) = i x i p X (x i ) x f X (x)dx E[(X a) ] = i (x i a) p X (x i ) = i xi p X(x i ) a i x i p X (x i ) + a E[(X a) ] = (x a) f X (x)dx = x f X (x)dx a x f X (x)dx + a V(X) a = E(X) i xi p X(x i ) {E(X)} V(X) = x f X (x)dx {E(X)} (3.8) (X, Y) h(x, Y) h(x i, y j )p X,Y (x i, y j ) i j E[h(X, Y)] = h(x, y) f X,Y (x, y) dxdy {p X (x i, y j )} (x i, y j ) {p X (x i, y j )} p X,Y (x i, y j ) = p Y (y j ), p X,Y (x i, y j ) = p X (x i ) i j A i = {X = x i }, B j = {Y = y j } (Marginal distribution) (3.7) (3.9) 3.1 F X,Y (x, y) = P({X x} {Y y}) = P(X x, Y y) Y X x y {X x, Y y} (x, y) Y y (0, 0) x X 3. X Y (covariance) cov(x, Y) = E[(X µ X )(Y µ Y )] = E[XY] µ X µ Y 5

µ X, µ Y 3.3 : X a Y b {X = a} {Y = b} P({X = a} {Y = b}) = P(X = a, Y = b) P(X = a) P(Y = b) X Y 3.1 X Y F X,Y (x, y) = F X (x)f Y (y), x, y 3. X, Y, E(X + Y) = E(X) + E(Y) (3.9) h(x, y) = x + y 3.3 X, Y, E(X Y) = E(X) E(Y) 3.1 1 X Y = X + 3 [ ] P(X = i) = 1 6, i = 1,,, 6. E(X) = 6 i=1 i 1 6 = (1 + + 3 + 4 + 5 + 6) 1 6 = 7 ( ) 7 V(X) = E(X ) = (1 + + 3 3 + 4 + 5 + 6 ) 1 6 49 4 = 91 6 49 4 = 35 1 Y E(Y) = E(X + 3) = E(X) + 3 = 7 + 3 = 10, Y V(Y) = V(X) = 4 35 1 = 35 3. X,Y 3.4 (i) V(X + Y) = V(X) + V(Y) (ii) V(X Y) = V(X) + V(Y),cov(X, Y) = 0 V(X + Y) = V(X) + V(Y) + cov(x, Y) V(X Y) = V(X) + V(Y) cov(x, Y) 3. A,B 1 A 3 0 3 6

1 B 1 1 1 3 A,B X,Y E(X + Y) E(XY) X Y X + Y XY 1 1 1 1 1 3 3 0 3 3 0 4 1 3 5 1 3 4 3 6 0 0 {X = 1} 4/6 = /3 {X = 0} /6 = 1/3 {Y = 1} 1/6 {Y = } 3/6 = 1/ {Y = 3} /6 = 1/3 E(X) = 1 /3 + 0 1/3 = /3, V(X) = 1 /3 + 0 1/3 (/3) = /9 E(Y) = 1 1/6 + 1/ + 3 1/3 = 13/6, V(Y) = 1 1/6 + 1/ + 3 1/3 (13/6) = 17/36 {XY = 0} /6 = 1/3 {X + Y = } /6 = 1/3 {XY = 1} 1/6 {X + Y = 3} 3/6 = 1/ {XY = } /6 = 1/3 {X + Y = 4} 1/6 {XY = 3} 1/6 E(X + Y) = 1/3 + 3 1/ + 4 1/6 = 17/6, V(X + Y) = 1/3 + 3 1/ + 4 1/6 (17/6) == 17/36. E(XY) = 0 1/3 + 1 1/6 + 1/3 + 3 1/6 = 4/3, V(XY) = 0 1/3 + 1 1/6 + 1/3 + 3 1/6 (4/3) = 3 16/9 = 11/9. cov(x, Y) = E(XY) E(X)E(Y) = 4/3 /3 13/6 = 1/9 V(X) + V(Y) + cov(x, Y) = /9 + 17/36 + ( 1/9) = 17/36 V(X + Y) 3. X, Y X + Y XY X + Y 3.3, 1 3 1 X X {0,1,,3} {X = 1} 3 1 1 1/6 5/6 3 3(1/6)(5/6) X X 0 1 3 (5/6) 3 3(1/6)(5/6) 3(5/6) (1/6) (1/6) 3 1 1 A p n A X X q = 1 p 7

X 0 1 k n ( ) ( ) ( ) ( ) ( ) n n n n n q n p 1 q n 1 p q n p k q n k p n 1 0 1 k n (binomial distribution) Binom(n, p) P(X = k) = ( ) n p k q n k, k = 0, 1,,, n (3.10) k 3.3 1 6 X X X q = 1 p ( ) ( ) n n 1 X k = n, k = 1,,, n 1 k k 1 n ( ) n E(X) = k p k q n k n 1 ( ) n 1 = np k p k 1 q n k = np k k=0 k=1 ( ) ( ) n n X X = X(X 1) + X k(k 1) = n(n 1), k =, 3,, n k k 1 X V(X) = n k=0 k(k 1)(n k )pk q n k + np = n(n 1)p n = n(n 1)p + np = npq k= (n k )pk q n k + np 3.5 X q = 1 p X Binom(n, p) = E(X) = np, V(X) = npq ( ) ( ) ( ) Binom(n, p) = 3 5 8 8,, 8,, 8, 3 10 10 10 : ( ) n p(k) = p k (1 p) n k, k = 0, 1,,, n k 0.30 0.5 0.0 0.15 0.10 n p 3 (p = 3 10 ), (p = 10 5 = 1 ), (p = 8 10 ) 0.05 4 6 8 1:,p = 1 n = 8, 16, 3 3 B(8, 1 ),B(16, 1 ),B(3, 1 ) 8

0.5 0.0 0.15 0.10 0.05 5 10 15 0 5 30 3.3 7 3 100 X X X Binom(n, p), n = 100, p = 7 10. P(X = k) = ( 100 k ) ( ) 7 k ( 310 ) 100 k, 10 k = 0, 1,,, 100 X E(X) = µx = k k P(X = k) k ( n k ) = n( n 1 k 1 ) µ X = 100 i=0 k (100 k ) ( ) 7 k ( 310 ) 100 k 10 = 100 100 i=1 ( 99 k 1 ) ( ) 7 k ( 310 ) 100 k ( 10 = 100 7 ) ( 710 10 + 10 3 ) 99 = 70. X var(x) var(x) = E(X µ X ) = k (k µ X ) P(X = k) = k k P(X = k) (µ X ) = E(X ) µ X E(X ) = E(X(X 1)) + EX k(k 1) ( n k ) = n(n 1)(n k ) E(X(X 1)) = 100 i=0 k(k 1) (100 k ) ( ) 7 k ( 310 ) 100 k 10 = 100 99 100 i= ( 98 k ) ( ) 7 k ( 3 ) 100 k ( 10 10 = 100 99 710 ) ( 7 10 + 10 3 ) 98 = n(n 1)p = 99 49 = 4851. var(x) = 4851 + 70 70 = 1 = np(1 p). : (Poisson) (rare event) p p (n λ p = p n 0, n, np n np n λ e exp(a) = e a = lim n (1 + a n )n a n ( n k )pk (1 p) n k λk k! e λ. Po(λ) X Po(λ) : p X (k) = λk k! e λ, k = 0, 1,, (3.11) np np(1 p) np λ, λ np(1 p) = np (np) p λ λ 0 = λ 3.4 X Po(λ) E(X) = λ, var(x) = E(X ) {E(X)} = λ ; n Z N(0, 1) ϕ(z) = 1 ( exp 1 π z) (3.1) 9

Z, f Z (z) ϕ(z) ( ) 0.4 0.3 0. 0.1-3 - -1 1 3 N(0, 1) 1 X X y = f (x) (1) () y = f (x) x 1 b (3) a x b X f (x)dx a f (x) X X P(X = x) = lim h 0 P(x X x + h) = x+h lim h 0 f (x)dx = 0 P x P(X = a) = P(X = b) = 0 P(a X < b), P(a < X b), P(a < X < b), P(a X b), X µ, σ f X (x) = 1 (x µ) e σ = 1 (x µ) exp{ πσ πσ σ } (3.13) X N(µ, σ ) X µ σ 1 1 πσ πσ µ σ σ X N(µ, σ ) E[X] = x f X (x)dx = µ, var[x] = E(X ) E(X) = x f X (x)dx µ = σ X (1) x = µ y x = µ () x (3) σ x = µ 30

X N(µ, σ ) Z = X µ N(0, 1) σ σ Z N(0, 1) ϕ(z) = 1 π e z < z < (standard normal distribution) 3.3 0.4 1 = 0.3989 π Φ(x) = P(Z x) = x ϕ(z)dz = x 1 π e z dz x Φ(x) X N(µ, σ ) Z = X µ σ X = σz + µ Z N(0, 1) (i) P ( 0.5 Z 0.5) = 0.389 (ii) P ( 1 Z 1) = 0.687 (iii) P ( 1.645 Z 1.645) = 0.9000 (iv) P ( 1.96 Z 1.96) = 0.9500 (v) P ( Z ) = 0.9545 (vi) P ( 3 Z 3) = 0.9973 ( z F(z) = F X (z) =NORMSDIST(z) *F(z) -1 P z X µ ) ( z = F(z) 1. p p = P z σ p/ X µ ) z σ p/ = ) ) P ( z p/ Z z p/ = P ( Z z p/ z p/, =NORMSINVDIST((1+p)/) z p/ (Normal distribution table) : Φ(z) = F Z (z) = P(Z z) = 1 P(Z > z) = 1 P( Z < z) = 1 P(Z z) = 1 F Z ( z) = 1 Φ( z) 3.5 Z, (1) P(Z <.5) () P(1 Z <.5) (3) P( 0.8 < Z) (4) P( 0.8 < Z < 1.5) (1) P(Z <.5) = P(Z.5) = Φ(.5) = 0.9938 () P(1 Z <.5) = P(1 Z.5) = P({Z.5} {1 > Z}) = P(Z.5) P(Z 1) = Φ(.5) Φ(1) = 0.9938 0.8413 = 0.155 (3) P( 0.8 < Z) = P(Z > 0.8) = 1 P(Z 0.8) = 0.119 (4) P( 0.8 < Z < 1.5) = P(Z 1.5) P(Z 0.8) = Φ(1.5) (1 Φ(0.8)) = 0.933 + 0.7881 1 = 0.713 3.6 X N(3, 4 ) P(1 X 7) 31

X N(µ, σ ) Z = X µ N(0, 1) σ σ X N(3, 4 ) Z = X 3 N(0, 1) 4 P(1 X 7) = P( 1 3 Z 7 3 ) = P( 0.5 Z 1) = P(Z 4 4 1) P(Z > 0.5) = Φ(1) (1 Φ(0.5)) = 0.8413 + 0.6915 1 = 0.538 3.4 :central limit theorem CLT... µ σ n N(µ, σ /n). ( ).. µ σ n x n µ σ /n n N(µ, σ ) n N(µ, σ /n) n σ /n x µ : Wikipedia (009/0 4/5 1:17 UTC ) 3

.. Abraham De Moivre(1667-1754) 1730 Miscellanea Analytica 1733 Document of Chance X Bin(n, p) ( ) n P(X = x) = p x q n x x x = 0, 1,,, n npq ( n x ) 1 ( ) x np p x q n x 1 e npq π q = 1 p π e e π n n n! Bin(5, 1/),Bin(0, 1/) : 0.4 0.9 0.35 0.3 0.5 0. 0.15 0.1 0.05 0 0 1 3 4 5 0.8 0.7 0.6 0.5 0.4 0.3 0. 0.1 0 二項正規 0.45 0.4 0.35 0.3 0.5 0. 0.15 0.1 0.05 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 0.5 0.45 0.4 0.35 0.3 0.5 0. 0.15 0.1 0.05 0 二項正規 3.6 X 1, X,, µ 0 < σ < n i=1 X i nµ nσ N(0, 1) (n ) t ( n ) P i=1 X i nµ t 1 t e x / dx nσ π 3.7 33

3.8 1 800 380 X X X Binom(800, 1 ). X Z = X 800 1 800 1 1 = X 400 10 800 Z N(0, 1) 380 400 P(X 380) = P(Z 10 ) = P(Z ) = P(Z 1.414) = 1 Φ(1.414) = 0.0793 P(0 X 380) = 380 k=0 (800 k ) 800 = 0.08395 34

3.5 n n (Pierre Simon de Laplace), 1749-187 Polya(190) 3.7 (Central Limit Theorem) X 1, X,, µ σ S n = n i=1 X i, n, S n nµ nσ N(0, 1) X n = 1 n n i=1 X i X n nµ σ/ n N(0, 1) 1730 De Moivre Miscellanea Analytica 1733 The Doctrine of Chances 1738 The Doctrine of Chances Analytical Theory of Probabilities (181) ( ) n, p X Bin(n, p), n P(X = x) = p x (1 p) x x ( ) P(X = x) 1 exp π x np 1 / np(1 p) np(1 p) ( ) ( ) 35

0.4 ϕ(x) 0.3 0. 0.1-3 - -1 1 3 x ϕ(x) = 1 ( exp 1 ) π x = 1 e 1/x π npqp(x = x) ϕ (u), u = x np npq, q = 1 p n = 10, p = 0.7 0 1 3 4 5 6 7 8 9 10 0.000 0.000 0.00 0.013 0.053 0.149 0.90 0.387 0.338 0.175 0.041 0.000 0.000 0.001 0.009 0.047 0.154 0.314 0.399 0.314 0.154 0.047 n n = 30, p = 0.7 10 1 14 16 18 0 4 6 8 30 0.000 0.001 0.011 0.058 0.188 0.355 0.377 0.08 0.05 0.005 0.000 0.000 0.001 0.008 0.055 0.195 0.369 0.369 0.195 0.055 0.008 0.001 m! = πmm m e m log(1 + x) = x x + O(x3 ) ( ) n npq p x q n x 1 u x π e pq pq x/n p = u, (n x)/n q = u n n, log log x/n p (n x)/n q ( ) q q = log 1 + u = u np np u q np ( ) p p = log 1 u = u nq nq u p nq n Pierr Simon Laplace(1749-187) ψ(t) = E(e itx ),n 36

1 (n) n 1 1 (Karl Friedrich Gauss), 1777-1855 d ϕ(x) = xϕ(x) dx log ϕ(x) = ( x)dx + const. = {x } = cx = 1 x n M i = z + v i, i = 1,, n n M 1 + M + + M n = z ϕ(v)dv n v i = M i z P = ϕ(v 1 )dv 1 ϕ(v )dv ϕ(v n )dv n P log P log ϕ(v 1 ) + log ϕ(v ) + + log ϕ(v n ) ϕ(v) z P z = 1 ϕ(v 1 ) + 1 ϕ(v ) + + 1 ϕ(v n ) = 0 ϕ(v 1 ) z 1 ϕ(v ) z ϕ(v n ) z n = ϕ (v) v z ϕ (v) = ψ(v) ϕ(v) ψ(v 1 ) v 1 z 1 + ψ(v ) v z + + ψ(v n ) v n z n = 0 i v i = M i z v i z i = 1 ψ(v 1 ) + ψ(v ) + + ψ(v n ) = 0 (a) v 1 + v + + v n = 0 (b) v 1 + v + + v n = (M 1 z) + (M z) + (M n z) = M 1 + M + + M n nz = 0 (a), (b) ψ(x) = cv c ϕ (v) ϕ(v) = cv log ϕ(v) = c v + c (c, c : const) c, c ϕ(v) ϕ(v) = ke h v (k, h : const) k = 1 π, h = 1 37

(Law of Large Numbers): p, 1 p X 1, X,, X n Σ i X i X p (Central Limit Theorem): X 1, X,, X n, µ, σ n X n = Σ n i=1 X i X n µ 0 X n µ σ /n X n n a, b ( lim P a X ) n µ b n σ /n b 1 exp( x a π ) dx a, b n(x n µ) ( N(0, σ ) N(µ, σ ) µ σ 1 (x µ) exp( πσ σ ) < x < 1 πσ 1 πσ x = µ x = µ ± σ p 38

X n, p np, np(1 p) Y Z ( (k 0.5) np P(X = k) P(k 0.5 < Y < k + 0.5) = P < Z < np(1 p) P(i X j) P(i 0.5 < Y < j + 0.5) = P ) (k + 0.5) np, np(1 p) ( ) (i 0.5) np (j + 0.5) np < Z < np(1 p) np(1 p) 3.6 0 1 Z x Φ(x) = P(Z x) P(Z x) = P(Z < x) x 0.000 1.00 1.8 1.645 1.960.00.41.36.576.807 3.00 Φ(x).5000.8413.9000.9500.9750.9775.98745.9900.9950.9980.99865 ϕ(x i ) = a i, i = 1, a 1 < α < a c = x x 1 a a 1 (α a 1 ) + x 1 (1)P(0 < Z < 1.) = P(0 < Z 1.) = P(0 Z < 1.) = P(0 Z 1.) 0.3849 ()P( 1. < Z < 0) = P(0 < Z < 1.) 0.3849 (3)P( 1. < Z < 1) = P(0 < Z < 1.) + P(0 < Z < 1) 0.3849 + 0.3413 = 0.76 (4)P(Z < 1.) = P(Z < 0) P( 1. < Z < 0) = 0.5 P(0 < Z < 1.) 0.5 0.3849 = 0.1151 3.9 X 10, 4 (1) P(X 13) () P(X > 11) (3) P(9 < X < 1) (4) P(X < c) = 0.1 c 3.10 0, 0.( 0. = 0.04)mm 0.5mm 39

3.11 P(X = k + 1) P(X = k) (k = 0, 1,, ) 3.1 400 180 10 3.13 40

0 面体のサイコロでこれを乱数サイとよんでいます 3 個をころがして その結果を記録するのですが い まはコンピュータのシュミレーションがふつうに行われます 41

4 4.1 : 10 1 3 4 5 6 7 8 9 10 kg 60.3 57.9 65.4 56.1 53.6 6.7 65.3 55.8 67.1 63.1 1 6.5kg ±1.5kg 3.0kg 5.0 55.0 55.0 58.0 58.0 61.0 61.0 64.0 64.0 67.0 67.0 70.0 53.5 56.5 59.5 6.5 65.5 68.5 1 3 1 1 10 0.1 0.3 0.1 0. 0. 0.1 1.0 0.1 0.4 0.5 0.7 0.9 1.0 - : : 1 : 0 4

4. 1 4..1 ( )Average 1 n {x 1, x,, x n } x r i (i = 1,,, r) a i f i n n = f 1 + f + + f r a a 1 a a r x 1 + x + + x n = a 1 f 1 + a f + + a r f r = i a i f i x f f 1 f f r n (I) (II) X = 1 n n k=1 x k X = 1 n i a i f i c x i c x i y i = x i c c 4.1 X Y 4.. (, ) Median {x 1, x,, x n }, {x (1) x () x (n) } Me n n/ (n + 1)/ Me = x ( n ) + x ( n+1 ) Me = x ( n+1 ) 50% 50% 4..3 ( ) Mode Mo 43

L Mo Me X L Box Whisker Chart) 1 (1) (min), () 5% ( :Q 1 ), (3) (average), (4) 50% ( ;Me = Q ), (5) 75% ( :Q 3 ),(6) (max) 4.3 3 4.3.1 Range R = max i x i min i x i 5% 50% 5% (box chart) 4.3. Mean Deviation x x i, i = 1,,, n n x i X (MD:mean deviation) X = 61. 1 3 4 5 6 7 8 9 10 60.3 57.9 65.4 56.1 53.6 6.7 70.0 55.8 67.1 63.1 - -0.9-3.3 4. -5.1-7.6 1.5 8.8-5.4 5.9 1.9 0.0 0.9 3.3 4. 5.1 7.6 1.5 8.8 5.4 5.9 1.9 44.6 MD = 44.6 10 = 4.46 0 i (x i X) = 0 44

4.3.3 Variance Standard Deviation [ ]: (x i X), i = 1,,, n (variance) s s = 1 n i = 1 n i x i X = n i x i ( i x i ) n, x 1 + x + + x n = a 1 f 1 + a f + + a r f r = i a i f i s = 1 n i (a i X) f i = 1 n i a i f i X n i (x i X) = 0 n n 1 (unbiased variance) u = 1 n 1 i (x i X) = 1 ( n ) (x i x i ) i<j 1 i<j n {(i, j) ; 1 i < j n} ( n ) (x i x i ), i, j = 1,,, n cm cm u u = u u x (standard deviation) [ ]: u = 1 n 1 n i=1 x i n n 1 X u = u n xi ( x i ) = n(n 1) X AVERAGE( ) :{x 1, x,, x n } ( )Me ( )Mo MEDIAN( ) MODE( ) Q QUARTILE( ) 0: 1: 1 (5%), : (50%)= 3: 3 (75%) 4: u STDEV( ) ( - ) = (n-1) s STDEVP( ) n u VAR( ) (n-1) s VARP( ) n 45

4.1 ; 60.3 57.9 65.4 56.1 53.6 6.7 70.0 55.8 67.1 63.1 X 61.0 s 6.04 (SD) u 5.38 u 8.93 (Me) 61.50 (Mo) Non available 4 (Q 0 ) 53.60 (Q 1 ) 56.55 (Q ) 61.50 (Q 3 ) 64.83 (Q 4 ) 70.00 4.3.4 Score {x 1, x,, x n } x i z i x a, b y = ax + b b = 0 y i = x i X, i = 1,,, n, : a = 1 u u, b = X u (4.1) z i = 10y i + 50 10 50 5% (quantile) 10% 10 (decitile) 100 (percentile) (range) (quantile range) 3/4(75%) 1/4(5%),skewness) (,kurtosis) 4.4 1 4.4.1 1 3 4 5 6 7 8 9 10 kg 60.3 57.9 65.4 56.1 53.6 6.7 70.0 55.8 67.1 63.1 cm 161. 154.3 16.8 160.4 155.7 163.5 17.5 166.4 173. 164.0 7 x kg y cm 46

7 4.4. x, y n {(x i, y i ); i = 1,,, n} x X, y Y x s x = 1 n n i=1 (x i X) = 1 n n i=1 x i X y s y = 1 n n i=1 (y i Y) = 1 n n i=1 y i Y s xy = 1 n n i=1 (x i X)(y i Y) = 1 n n i=1 x iy i XY x y (x i X) (y i Y) x y x y (x, y) x, y ( ) s x,s y x i X, y i Y, i = 1,,, n s X s Y x, y r 4.1 x y r r = s XY s X s Y (4.) r r 1 r 1 r 1 r 0 ( 10 1 3 4 5 6 7 8 9 10 kg 60.3 57.9 65.4 56.1 53.6 6.7 70.0 55.8 67.1 63.1 48.4 43.53 58.3 40.01 35.11 5.94 67.5 39.4 61.56 53.7 cm 161. 154.3 16.8 160.4 155.7 163.5 17.5 166.4 173. 164.0 46.5 34.50 48.98 44.89 36.88 50.17 65.50 55.11 66.70 51.0 r = CORREL(, ) = CORREL(, ) = CORREL(, ) = 0.756 10 47

175 70 170 60 165 160 30 40 60 70 155 40 150 50 55 60 65 70 75 30 4 5 4.5 Corrado Gini 0 1 0 1 Wikipedia (Gini coefficient) 100 Gini Index http://www.sustainablemiddleclass.com/gini-coefficient.html Japan 4.9 United Kingdom 36.0 Sweden 5.0 Iran 43.0 Germany 8.3 United States 46.6 France 3.7 Argentina 5. Pakistan 33.0 Mexico 54.6 Canada 33.1 South Africa 57.8 Switzerland 33.1 Namibia 70.7 ( 0.4 0.36 0.4 0.56 0.66 Bob Sutcliffe (007), Postscript to the article World inequality and globalization (Oxford Review of Economic Policy, Spring 004), http://siteresources.worldbank.org/intdecineq/resources/psbsutcliffe.pdf. Retrieved on 007-1-13. http://data.worldbank.org/ The World BANK : Working for a World Free of Poverty Jonhson Kots Balakrishnan, Continuous Univariate Distribution,Vol.1 48

4. X, X 1, X F X (t) = P(X t) p X (t) FX 1(t) = inf x{x; F X (x) t} 1. (Gini mean difference); γ(x) = E[ X 1 X ]. (Lorenz curve); L(p) = 1 p F 1 E(X) X 3. (Gini concentration index); C(X) = 0 (t)dt 1 0 1 {p L(p)}dp = 1 {L(p)}dp 0 4.1 ( ) n 1 (1) g = X i X j γ(x) (i < j ) i<j () L(F X (x)) = E[X X x] F X(x) F E[X] X (x) (3) L(p) p, (0 p 1), L(0) = 0, L(1) = 1. (4) C(X) = 1 E[X 1 X 1 X ] = 1 γ(x) E[X] E[X] (5) γ(x) = E[X 1 X 1 X ] E[X 1 X 1 X ] ( ) E[X X x]f X (x) = E[X ; X x], P(X 1 X ) = P(X 1 X ) = 1 E[X] = E[X X 1 X ]P(X 1 X ) + E[X X 1 X ]P(X 1 X ) = 1 {E[X X 1 X ] + E[X X 1 X ]} γ(x) = E[ X 1 X ] = E[X 1 X X 1 X ]P(X 1 X ) + E[ (X 1 X ) X 1 X ]P(X 1 X ) = 1 E[X 1 X 1 X ] + 1 E[X X 1 X ] 1 E[X 1 X 1 X ] 1 E[X X 1 X ] = E[X 1 X 1 X ] E[X 1 X 1 X ] x = F 1 X 1 0 L(p) dp = 1 1 p dp E(X) X 0 0 = 1 p X (y) dy E(X) = 1 E[X] (t), p X(x)dx = dt, y = FX 1(p), p = F X(y), dp = p X (y)dy 0 0 F 1 y 0 1 (t) dt = E(X) 0 x p X (x) dx = 1 E[X] FX (y) p X (y) dy E[X X y] F X (y) df X (y) = 1 E[X] = 1 E[X] E[X 1 X 1 X ] P(X 1 X ) 0 0 FX 1 (t) dt E[X ; X y] df X (y) { x } t p X (t) dt p X (x)dx (4) E[X 1 X 1 X ] = E[X] 1 γ(x) 0 0 1 G = 1 0 L(x) L(x)dx = 1/ 1 0 L(x)dx 1/ or = 1 L(x i ) (i.e.l(x) ) i 49

y G y = x 45 1 0 L(x)dx y = L(x) (1) i = 1,,, n 0 1 x x i x 1 x x n p i = f (x i ) p 1 p p n F i F 1 = p 1 F = p + F 1 F n = p n + F n 1 = 1 L i = i j=1 x j f (x j ) / L L = i+1 + L i i (F i+1 F i ) L = n j=1 x j f (x j ) (i = 1,,, n) L 0 = 0 L 1 L L n 1 L n = 1 0 1 () < x < x f (x) F(x) = x f (t)dt L(x) = x / t f (t)dt L (0 x 1) L = t f (t)dt (i) L(0) = 0 L(x) L(y) L(1) = 1, 0 < x < y < 1 (ii) 0 < L(x) x, 0 < x < 1 10 50 100 00 4 4 10 n = 3 i = 1 i = i = 3 50 4 = 00 100 4=400 00 =400 1000 (L i ) 00/1000 = 0. 400/1000 = 0.4 400/1000 =0.4 0. 0.+0.4= 0.6 0.+0.4+0.4 =1.0 4 4 10 (F i ) 4/10=0.4 0.4 + 4/10 =0.8 0.8+ /10=1.0 50

(F i, L i )i = 0, 1,,, n (F 0, L 0 ) = (0, 0), (F n, L n ) = (1, 1) (F i ) (L i ) L(F i ) F i = i n 1 i=0 L i+1 + L i (F i+1 F i ) L (1, 1) (0.8, 0.6) (0.4, 0.) (0, 0) F 0. + 0.0 0.6 + 0. 1.0 + 0.6 i L(F i ) F i = (0.4 0.0) + (0.8 0.4) + (1.0 0.8) = 0.04 + 0.16 + 0.16 = 0.36 G = 1 i L(F i ) F i = 1 0.36 = 0.8 ( ) Frank Cowell, Gini,Deprivation and Complaints 005, Discussion Paper. (aggregation) http://sticerd.lse.ac.uk/darp/ (Gini coefficient, Gini s coefficient) 1936 0 1 0 1 0 41 4 p.131-135 18 7 1 10 99 1 1 100 0.91 10 51

5 10 ( ) http://wkp.fresheye.com/wikipedia/ 17 1993-005 0.1 0. OECD 4.5.1 ( regression analysis) 1 y ax b Y X (regression line of Y on X) y = ax + b x: y: X X Y 5

1877 7 (1) () coefficient of reversion coefficient of regression 1888 co-relation r (x) (y) (x) (y) a b (x 1 ) (y 1 ) y = ax + b a b ( ) Fitting the Regression Line n (x i, y i ) : i = 1,,, n (x i, y) : y = ax i + b d i = y i y = y i (ax i + b) : i = 1,,, n i d i 0 1 1 1 Galton, F. (1886) x, y 53

y = ax + b y (x n, y n ) y = ax + b a n d i (x i, y i ) (x i, ax i + b) (x 3, y 3 ) (x, y ) i (x 1, y 1 ) x (x 1, y 1 ), (x, y ), (x i, y i ),, (x n, y n ) ( ) y = ax + b ( ) a b x y y i (ax i + b) = δ i, i = 1,, δi = (y i ax i b) i δ i δ i i δ i a b a b i δ i 0 a b 0 a (y i ax i b) = ( ) (y i ax i b)x i = 0 b (y i ax i b) = ( ) (y i ax i b) = 0 a b { ( x i )a + ( x i )b = x i y i ( x i )a + nb = y i (4.3) a b a b = n x iy i x i y i n x i ( x i ) = x i y i x i x i y i n x i ( x i ) = σ xy σ x = (σ x + x ) y x (σ xy + xy) σ x = y x σ xy σ x (4.4) y x y y = σ xy (x x) σ x a b x i y i δ i δ i = (y i ax i b) = y i b y i + nb + a x i + ab x i a x i y i 54

a b σ a σ b σa = n/(n xi ( x i ) ) δi /(n ) (4.5) σb = x i /(n x i ( x i ) ) δi /(n ) r a r b σ a σ b 0.6745 y x y = y i n x = x i y = ax + b y = ax + b n y σ y = 1 n (y i y) ax + b ŷ i = ax i + b, i = 1,,, n ax + b σ ŷ = 1 n (ŷ i y) = 1 n (ax i + b ax b) = a n (x i x) = a σ x a (x i x) (y i y) a = n x iy i x i y i n x i ( x i ) a (x i x) (y i y) = a n ( ) x i ( x i ) n y i ( y i) = n x i y i x i y i n x i ( x i ) n xi ( x i ) n y i ( y i) = (n x i y i x i y i ) { n x i ( x i ) } { n y i ( y i) } = r r = n x i y i x i y i n x i ( x i ) n y i ( y i) = σ xy σxx σyy = σ xy σ x σ y r r r a r a = σ y σ x r (http://www.econ.uiuc.edu/~roger/research/galton/galton.pdf ) 55

5 Microsoft Excel, OpenOffice calc 5.1 1,,3, A,B,C, C 3 C3 A B C D E 1 30 0 4 3 40 6 4 35 5 5 5.1 A B3 35, [ ] ; SUM [ ] ; {+,-,*,/,%,^} = X1 Y1 =X1+Y1 X1 Y1 =X1-Y1 X1 Y1 =X1*Y1 X1 Y1 =X1/Y1 X1 Y1 =X1%Y1 X1 Y1 =X1^Y1 5. x y 1 X1 X1 56

X1 =SQRT(X1) X1 =ABS(X1) X1 =INT(X1) X1 =ROUND(X1) X1 =ROUNDUP(X1) X1 =ROUNDDOWN(X1) X1 X X3 Xn X1 X X3 Xn Y1 Y Y3 Yn (X1:Yn) (X1;Yn) : Excel Openoffice =SUM(X1:Xn) =AVERAGE(X1:Xn) =MEDIANE(X1:Xn) =MODE(X1:Xn) 5.3 =if(, 1, ) =and( 1,,...) =or( 1,,...) =countif(, ) (true) 1 ; =IF(X1>Y1," ","OK") X1 Y1 ( ) (OK) 1 =if(and( 1,,...), 1, ) 1 =if(or( 1,,...), 1, ) =IF(X1>=100,SUM(Y1:Yn),""), X1 100 Y1:Yn ( ) =COUNTIF(X1:Xn," ") COUNTIFS 1 3 (Histgram) (count) (frequency) countif Frequency Ctrl Shift Enter 57

(cross tabulation) 3 1 ( ) 1 countifs MS pivot Microsoft Office Excel [ ] [ ] / Microsoft Office Excel 007 [ ] [ ] [ ] [ ] [ ] Tally mark 100 10 5 ; ***** 11 140 3 ::: *** 141 160 16 ; ; ; *************** 161 180 14 ; ; :::: ************** 181 00 8 ; ::: ******** 01 0 11 ; ; :: ************ 1 40 3 ::: *** 60 1 3 93 79 119 91 (%) 31.9 7.1 40.9 100 1: / 1 3 45 4 55 14 48 37 64 149 93 79 119 91 : 1 3 1 3 3 0 7 8 14 3 4 7 5 13 37 149 46 44 54 47 35 65 91 [ ] A1:A10 9 ;{ 150, 00, 50, 30, 330, 360, 380, 40, 480} (1) (4) 58

A 1 150 3 00.. 9 40 10 480 : (1) 00 () 00 300 (3) 300 400 (4) 400 500 / < 00 1 00-99 300-399 4 400-500 9 [ ] 1. (A1:A10). [ ]-[ ] 3. [Excel ] [ ] [ ] 4. [ ] $A$1:$A$10 [ ] 5. [ ] 6. [ ] [ ] 7. [ ] 8. [ ] 9. [OK] 10. [ ] D1 11. [ ] 1. D -[ ] 13. [ ] 00 14. [ ] 500 15. [ ] 100 [OK] frequency [ ] (1) =max{ } =min{ } () =count{ } (3) (4) D13 D17 [ ] (5) ( E13 E17 (6) =frequecy (7) FREQUENCY(, ) help (8) A A10 (9) D13 D17 (10) OK CTRL+SHITFT OK 5.4 [ ][ ] 5.0kg 55.0kg 5.0-55.0 59

(1) ( ) () D, (3) 1,,3, (4) 1,,3,, OK (5) (6) (0%) OK JPEG A B C 1 5.0-55.0 53.5 1 3 55.0-58.0 56.5 3 4 58.0-61.0 59.5 1 5 61.0-64.0 6.5 6 64.0-67.0 65.5 1 7 67.0-70.0 68.5 1 8 70.0-73.0 71.5 1 5. 0 50.5 8 74.5 0 1 D D B C = B * C 3 B11 SUM 60

3 E E B B11 = B - B11 4 F G9 F = (B - $B$11)^ * C F3 F8 $ $ 5 6 B1 B13 A B C D E F G 1 5.0-55.0 53.5 1 53.5-7.8 60.84 60.84 3 55.0-58.0 56.5 3 169.5-4.8 3.04 69.1 4 58.0-61.0 59.5 1 59.5-1.8 3.4 3.4 5 61.0-64.0 6.5 15.0 1. 1.44.88 6 64.0-67.0 65.5 1 65.5 4. 17.64 17.64 7 67.0-70.0 68.5 1 68.5 7. 51.84 51.84 8 70.0-73.0 71.5 1 71.5 10. 104.04 104.04 9 10 309.6 10 11 61.3 1 30.96 13 5.564 4 7 13 A1 A A1 A A1 A 4 A B C D E F G 1 3 1 60.3 161. 4 57.9 154.3 5 3 65.4 16.8 6 4 56.1 160.4 7 5 53.6 155.7 8 6 6.7 163.5 9 7 70.0 17.5 10 8 55.8 166.4 11 9 67.1 173. 1 10 63.1 164.0 13 14 4 A B C D E F G 1 3 1 60.3-0.9 0.81 161. -. 4.84 4 57.9-3.3 10.89 154.3-9.1 8.81 5 3 65.4 4. 17.64 16.8-0.6 0.36 6 4 56.1-5.1 6.01 160.4-3 9 7 5 53.6-7.6 57.76 155.7-7.7 59.9 8 6 6.7 1.5.5 163.5 0.1 0.01 9 7 70.0 8.8 77.44 17.5 9.1 8.81 10 8 55.8-5.4 9.16 166.4 3 9 11 9 67.1 5.9 34.81 173. 9.8 96.04 1 10 63.1 1.9 3.61 164.0 0.6 0.36 13 14 0.755568 61

5.5 pseudorandom numbers (Mersenne twister) 19937 1 1 1 1 5.1 [0, 1] U i, i = 1,,, 1 X = i=1 U i 6 X N(0, 1) = rand() 1 1 6 6

6 6.1 [ ] ; 00 30 [ ] ; Garbage in, garbage out 6. 63

6.1 µ σ σ n X i Z = c 1 X 1 + c X + + c n X n? {c i } 1. E(Z) = (c 1 + c + + c n )µ. V(Z) = (c 1 + c + + c n)σ [ ] ; 6. [ ]: X ; 1. E(X) = µ. V(X) = σ n µ σ n X n Z = X µ σ/ n Z N(0, 1) n 6.1 µ = 10 σ = 16 n = 5 X (1) P(X < 10 + 3 5 ), () P( X 10 > 3 5 ) 6. (i) X, Y N(0, σ ) X + Y X Y X (ii) X = i +X j i<j, u = ( n ) 1 (X i X j ) i<j (iii) X i, i = 1,,, n 6.3 m m σ( σ ) ( ) n {X 1, X,, X n } X = 1 n i X i n X N(m, σ n ) Z = X m σ/ n N(0, 1) P( Z c) = P( c Z c) = 0.9500 c 64

1.96 { Z c } = { X m c σ } { = X c n m σ n m X + c [ X c σ } n σ n m X + c σ n ] 95% c = 1.96 c.58 95% 99% 1.96.58 6.3 [ ]: σ n X m 95% X 1.96 σ n m X + 1.96 σ n 99% p.58 σ n p p +.58 σ n σ σ s = 1 n i X i X s = s n > 30 6.3 1 1600 164cm 6cm 1 m 95% : A p n A X X X m = np σ = np(1 p) n p = X n Z = { Z c } = X np np(1 p) = p p p(1 p)/n N(0, 1) { } { } X np c np(1 p) = p c p(1 p)/n p p + c p(1 p)/n p 1/n [ ] p(1 p) p(1 p) p c p p + c n n 6.4 ( ) n p p 95% 99% p 1.96 p.58 p(1 p) n p(1 p) n p p + 1.96 p p +.58 65 p(1 p) n p(1 p) n

6.4 50 110 A A 95% 6.4 H 0 H 1 1 ( 1 1 (1) () (3) (4) (5) 1. N(µ, σ ) σ = 15 = 5 100 x = 38.0 H 0 : µ = 40 H 0 : µ = 40 α = 0.05 66

σ = 15 = 5 z = x µ 0 σ /n = x 40 = 1.33, α = 0.05 5/100 α/ = 0.05 =.5%, z α/ = z 0.005 = 1.960 z > 1.960 z = 1.33 100 x = 38.0 N(40, 5) 9 o C 1475 140 1433 145 1441 1466 143 1453 1414 1455 o C 5% H 0 : µ = 1455 H 1 : µ = 1455 x 1, x,, x 9 n = 9, i x i = 1986, i = 18740684 ( 1400 α = 0.05, ν = 9 1 t 0.05 (8) =.306 t >.306 (.306 < t <.306) t = x µ 0 144.9 1455 = = 1.78 u /n 416.1/9 H 0 ( 36 64.5Kg, 3.Kg 6.8Kg,.5Kg ( 5% 1% µ 1 µ H 0 : µ 1 µ = 0 H 1 : µ 1 µ > 0 n 1 = n = 36 z = x 1 x s 1 + s n 1 n = 64.5 6.8 3. 36 +.5 36 67 =.51

α = 0.05 ( z 0.05 = 1.645 {z : z > 1.645} z =.51 > 1.645 ( 68

7, 69

1. (i) H 0 : µ = µ 0 H 1 : µ = µ 0 (ii) H 0 : µ = µ 0 H 1 : µ > µ 0 (iii) H 0 : µ = µ 0 N(µ, σ ), σ z = x µ 0 σ/ n (n 30), σ u ( α = 0.05, 0.01 ) N(0, 1) (i) z > z α/ (ii) z > z α/ (iii) z < z α/ H 1 : µ < µ 0 z = x µ 0 u/ n. ( ) (i) H 0 : µ = µ 0 H 1 : µ = µ 0 (ii) H 0 : µ = µ 0 H 1 : µ > µ 0 (iii) H 0 : µ = µ 0 N(µ, σ ), σ t = x µ 0 u/ n t ( ν = n 1 ) (i) t > t α (ν) (ii) t > t α (ν) (iii) t < t α (ν) H 1 : µ < µ 0 3. (i) H 0 : σ = σ0 H 1 : σ = σ0 (ii) H 0 : σ = σ0 H 1 : σ > σ0 N(µ, σ ) ν = n 1 χ = u σ /ν = s σ /n ( ν = n 1 ) (i) χ < χ 1 α (ν), χ > χ α (ν) (ii) χ > χ α(ν) 4. ( (i) H 0 : p = p 0 H 1 : p = p 0 (ii) H 0 : p = p 0 H 1 : p > p 0 B(p), (n > 30) (iii) H 0 : p = p 0 H 1 : p < p 0 np, n(1 p) > 5 z = p p 0 p 0 (1 p 0 ) n p N(0, 1) (i) z > z α/ (ii) z > z α/ (iii) z < z α/ 5. ( ) (i) H 0 : µ 1 = µ H 1 : µ 1 = µ (ii) H 0 : µ 1 = µ N(µ 1, σ1 ), H 1 : µ 1 > µ N(µ, σ ), (iii) H 0 : µ 1 = µ n 1, n H 1 : µ 1 < µ σ1, σ z = x 1 x u u = σ 1 /n 1 + σ /n N(0, 1) (i) z > z α (ii) z > z α (iii) z < z α 70

7.1 F Excel ; Uni f [0, 1] ; Binom(n, p) ; N(µ, σ ) ; N(0, 1) ; χ ( f ) ; F( f 1, f ) RAND() 0 1, [a, b], RAND() (b a) + a BINOMDIST(k, n, p, T/F) k:, n:, p:, T/F:TRUE, FALSE NORMDIST(x, µ, σ, T/F) x:, µ:, σ:, T/F: TRUE FALSE NORMINV(p,µ,σ) NORMDIST, p:,µ:,σ:, NORMDIST(x,µ, σ, TRUE) = p x NORMSDIST(z) z:, P(Z z) Z N(0, 1), NORMSINV(p) p:, NORMSDIST CHIDIST(x, f ) x;, f :, ( ) :CHIDIST= P(X > x) CHIINV(p, f ) p:, f :, CHIDIST, p =CHIDIST(x, f ), CHIINV(p, f ) = x FDIST(x, f 1, f ), x:, ( f 1, f ): FINV(p, f 1, f ) FDIST, FDIST(x, f 1, f ) = p, FINV(p, f 1, f ) = x, p:, ( f 1, f ): t ; t( f ) TDIST(x, f, B) x:, f :, B:, 1 TDIST(x, f, 1) = P(X > x) TDIST(x, f, ) = P( X > x) = P(X > x or X < x) x < 0, TDIST( x, f, 1) = 1 TDIST(x, f, 1) = P(X > x) TDIST( x, f, ) =TDIST(x, f, ) = P( X > x) t TINV(p, f ) TDIST, p:, f :, TINV P( X > t) = p t, P( X > t) = P(X < torx > t) t p p = 0.05 f = 10 TINV(0.05, 10) =.8139 TINV( 0.05, 10) = 1.8146 71