Similar documents
Mott散乱によるParity対称性の破れを検証


25 3 4

[ ] [ ] [ ] [ ] [ ] [ ] ADC

Muon Muon Muon lif


soturon.dvi

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

untitled

4‐E ) キュリー温度を利用した消磁:熱消磁

GJG160842_O.QXD

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.



( ) ,

( ) ( )

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

05Mar2001_tune.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

09_organal2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

CdTe γ 02cb059e :

Drift Chamber


cm H.11.3 P

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Microsoft Word - 11問題表紙(選択).docx

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

nsg02-13/ky045059301600033210

7

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

Note.tex 2008/09/19( )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

福大紀要 02730816/教育科学 太田 氏家

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ


Coulomb potential

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

201711grade1ouyou.pdf

all.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

chap9.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


Untitled

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

量子力学 問題

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

第1章 微分方程式と近似解法

構造と連続体の力学基礎

I II III 28 29

thesis.dvi

main.dvi

untitled


生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

Gmech08.dvi

untitled

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1. (1) 1/


Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

Exif Viewer, DPOF Editor 使用説明書

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

H8.6 P

TOP URL 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )


Transcription:

2004 A1 10 4

1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1....................... 6 2.3.2 µ + µ.................... 8 2.3.3......................................... 10 3 11 3.1.................................................. 11 3.1.1.............................................. 11 3.1.2......................................... 11 3.1.3.......................................... 11 3.2.......................................... 13 3.3.................................................... 14 3.4.................................................. 15 3.4.1..................................... 15 3.4.2..................................... 15 3.5............................................... 17 4 18 4.1.......................................... 18 4.2.................................................... 19 4.3.................................................. 19 5 20 5.1.................................................. 20 5.1.1.............................................. 20 5.1.2.......................................... 20 5.2.......................................... 21 5.3.................................................... 22 5.4.................................................. 22 6 23 6.1.................................................... 23 6.2.................................................... 23 6.3.................................................... 23 1

1 2

2 2.1 1900 T.H.Johnson [1][2][3] C.Stormer [4] G.Lemaitre M.S.Vallarta[5][6] [7] 20 M.Honda 1 [8] 1 (1) (2) 3

2.2 2.1 2.1: CNO flux [8] π + µ + + ν µ π µ + ν µ 2.2 flux 4

2.2: cosθ = 0.9 1 θ µ + + µ flux [8] 2.3 (1) (2) µ + µ i. (1) ii. (1) iii. µ + e + + ν e + ν µ µ e + ν e + ν µ Gev (2) 5

(1) (2) 2.3.1 (1) 2 dp dt = qv B (2.1) p q v B rigidity rigidity Stromer (2.1) Stormer Lemaitre Vallarta 3 10 8 10 (2.1) t t,q q ( 2.3) [9]: i. ii. iii. i ii iii (2.1) rigidity i ii iii rigidity cutoff [10] 2.4 µ rigidity cutoff 2 (2) µ + µ 6

2.3: (a) iii (b) i ii [15] 2.4: 15 Stormer Lemaitre [10] geomagnetic latitiude 22 N 7

2.5: 30 [10] rigidity cutoff ( 2.1) Honda [8] flux K.Nagashima [11] 2.3.2 µ + µ (1) (1) [12][13] 3 Y.Kamiya [11] 3 8

rigidity cutoff µ ± µ + µ ( 2.6) 2.6: meson [13] µ + µ 20 ( 2.7): 2.7: µ + µ µ + /µ [8] 9

: (2) (1) 2.3.3 (a) rigidity cutoff (b) µ + µ asymmetry [5][6][10][14] (1) rigidity cutoff 4 2.4 2.5 4 10

3 3.1 3.1.1 3.3 3.4 NaI Plastic NaI Plastic coincidence NaI NaI NaI coincidence TDC 25,000 NaI 4 4 200,000 3.1.2 3.1 Discriminator threshold) 12mV 100ns Coincidence Divider Divider 2 2 Dual Gate Generator Gate Gate Gate (delay) 10µs delay 0s Delay 105ns delay TDC Gate TDC TDC Gate TDC Gate 0 4096 1 5ns Gate 3.2 3.1.3 3.3 3.4 Plastic NaI 11

NaI 1 NaI 2 Plastic 0 1 14 Discriminator 0 1 14 in out 1-A 1-B 2-A 2-B 3-A in in 1 2 14 Coincidence Delay 105ns 1 2 3 out out 1 2 14 Divider start Dual Gate Generator out Gate 2 3 1 TDC 3.1: NaI1 or Nal2 Plastic 100ns Gate 100ns 8 s 3.2: Gate 12

NaI NaI NaI 75cm 179.8cm 33cm 48.4cm Plastic 5.5cm NaI 41cm plastic 8.3cm 48.4cm 5.3cm 7.8cm 3.3: 98.5cm 149.8cm 3.4: 3.2 events Asymmetry 3.1: Channel1 Channel2 1 10745 12749 2 11056 12935 3 11019 12809 ( ) 10940 12831 4 12213 14214 5 11964 13863 6 12124 13905 ( ) 12100.33 13994 Asymmetry(%) 5.0361( ) 4.3355( ) 13

3.2: - Channel1 Channel2 1 11095 12871 2 11067 12759 ( ) 11081 12815 3 12086 13833 4 12164 13883 ( ) 12125 13858 Asymmetry(%) 4.4988( ) 3.9103( ) 3.3: Channel1 Channel2 1 11793 13696 2 11765 13614 3 11730 13711 4 11868 13530 ( ) 11789 13637.75 5 11222 13156 6 11338 13199 7 11221 13210 8 11428 13082 ( ) 11302.25 13161.75 Asymmetry(%) 2.1100( ) 1.7762( ) 3.4: - Channel1 Channel2 1 11338 13180 11338 13180 2 11763 13598 11763 13598 Asymmetry(%) 1.8398( ) 1.5610( ) 3.3 14

3.4 3.4.1 NaI Plastic Plastic NaI NaI NaI 3.4.2 Poisson x x NaI Plastic Poisson Poisson x y Asymmetry u x y = η x + y = ξ u = η 100 (3.1) ξ η ξ u δη δξ δu δu u = ( δη η )2 + ( δξ ξ )2 (3.2) δη = x + y (3.3) δξ = x + y (3.4) δu x + y x + y u = ( x y )2 + ( x + y )2 (3.5) 3.3 Channel1 3.3 x = 11789 y = 11302.25 (3.5) ( ) u = 2.1100 δu = 6.6000 10 1 95% 3.5 95% Asymmetry 2δu 15

3.5: Poisson δu 31.73% % 31.73 δu 4.55 2 δu 0.27 3 δu 6.3 10 3 4 δu 5.7 10 5 5 δu 2.0 10 7 6 δu 0.1 Asymmetry 1 3.6 3.7 Asymmetry(%) - 3.6: Channel1 (%) 95% % 5.0( ) 0.66 3.7-6.3-4.5( ) 0.66 3.2-5.8-2.1( ) 0.66 0.8-3.4-1.8( ) 0.66 0.5-3.1 Asymmetry(%) - 3.7: Channel2 (%) 95% % 4.3( ) 0.61 3.1-5.5-3.9( ) 0.61 2.7-5.1-1.8( ) 0.61 0.6-3.0-1.6( ) 0.61 0.4-2.8 16

3.5 1 asymmetry asymmetry (1) Plastic Plastic Asymmetry (2) Asymmetry 1 360 2 17

4 Plastic Asymmetry 180 4.1 4.2 4.1 events Asymmetry 4.1: Channel1 Channel2 4422 5162 4814 5564 Asymmetry(%) 4.2442( ) 3.7479( ) 4.2: Channel1 Channel2 4527 5302 4664 5469 Asymmetry(%) 1.4906( ) 1.5505( ) 18

4.2 Asymmetry Plastic Asymmetry Asymmetry 4.3 4.4 4.3 4.4 Asymmetry Plastic Asymmetry 4.3: Asymmetry Channel1 Channel2 Asymmetry % 5.0(0.66) 4.3(0.61) Asymmetry % 4.2(1.0) 3.7(0.97) % 0.8(1.2) 0.6(1.1) 4.4: Asymmetry Channel1 Channel2 Asymmetry % 2.1(0.66) 1.8(0.61) Asymmetry % 1.5(1.0) 1.6(0.96) % 0.6(1.2) 0.2(1.1) 4.3 Asymmetry Asymmetry Asymmetry u 1 Asymmetry u 2 D D = u 1 u 2 (4.1) u 1 u 2 D δu 1 δu 2 δd δd = (δu 1 ) 2 + (δu 2 ) 2 (4.2) Asymmetry 4.3 4.4 19

5 5.1 5.1.1 NaI Plastic 5.1 5.2 NaI Plastic 23.9 - - - - 5.1.2 23.9 NaI Ch1 NaI Ch2 74cm 33cm 48.4cm Plastic PMT 41cm 5.1: 1 20

NaI 48.3cm 75cm 179.8cm 5.5cm NaI plastic 8.3cm 48.4cm 5.3cm 98.5cm 149.8cm 5.2: 2 5.2 events Asymmetry 5.1: Channel1 Channel2 9375 10394 9582 10608 Asymmetry(%) 1.0919( ) 1.0190( ) 5.2: Channel1 Channel2 8972 10235 9751 11012 Asymmetry(%) 4.1607( ) 3.6570( ) 5.3: - Channel1 Channel2 9229 10374 9615 10750 Asymmetry(%) 2.0484( ) 1.7800( ) 21

5.4: - Channel1 Channel2 9576 10631 9350 10397 Asymmetry(%) 2.1250( ) 1.1128( ) 5.3 5.1 5.4 Asymmetry 1% 0.7 5.4 5.5 5.6 Asymmetry(%) - 5.5: Channel1 (%) 95% % 1.1( ) 0.73 0.4-1.8-2.0( ) 0.73 1.3-2.7-4.2( ) 0.73 3.5-4.9-2.1( ) 0.72 1.4-2.8 Asymmetry(%) - 5.6: Channel2 (%) 95% % 1.0( ) 0.69 0.3-1.7-1.8( ) 0.69 1.1-2.5-3.7( ) 0.69 3.0-4.4-1.1( ) 0.69 0.4-1.8 22

6 6.1 asymmetry asymmetry 6.2 NaI 2 6.3 23

NaI - i.ch1 Ch2 913min ii.ch1 Ch2 906min i. ii. 7 7 Ch1 74count Ch2 78count Ch1 Asymmetry 3.7803 Ch2 4.0389 24

A1 25

[1] T.H.Johnson and J.C.Street Phys.Rev. 41, 690(1932) [2] T.H.Johnson Phys.Rev. 43, 307,381(1933) [3] T.H.Johnson Phys.Rev.48, 287(1935) [4] C.Stormer Astrophys. 1, 237(1930) [5] G.Lemaitre and M.S.Vallarta Phys.Rev.49,719(1936) [6] G.Lemaitre and M.S.Vallarta Phys.Rev.50,493(1936) [7] The Super-kamiokande Collaboration, T.Futagami et al Phys.Rev.Lett. 82,5194(1999) or astro-ph/9901139 [8] M.Honda et al hep-ph/9503439 [9] P.Lipari hep-ph/0003013 [10] R.A.Alpher jour. Geophys. Res. 55, 437(1950) [11] K.Nagashima et al, Nuovo Cimento 12C, 173(1989) [12] L.I.Dorman Cosmic rays. (1974) North-Holland pub. [13] Y.Kamiya Jour. of Geomagn. and Geoelec. 14, No.4,191(1963) [14] T.H.Johnson Phys.Rev. 47, 91(1935) [15] B.Rossi Cosmic Rays McGraw Hill(1964) [16] G.F.Knoll (2002) 931p 26