1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

Similar documents
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

n ( (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

all.dvi


II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

数学Ⅱ演習(足助・09夏)


DVIOUT-HYOU

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C


.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ver Web

Chap9.dvi

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

入試の軌跡

直交座標系の回転

,2,4

SO(2)

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

A

linearal1.dvi


A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Part () () Γ Part ,

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

i


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

( )

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =

2000年度『数学展望 I』講義録

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a


(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

研修コーナー

パーキンソン病治療ガイドライン2002

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

70 : 20 : A B (20 ) (30 ) 50 1

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

newmain.dvi


2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

January 27, 2015

熊本県数学問題正解

meiji_resume_1.PDF

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4


(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z


function2.pdf


4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

本文/目次(裏白)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Transcription:

1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2 λ a nn λ n λ n 1

(λe n A)x = (λe n A) det(λe n A) = λe n A = λe n A = λ ( ) A λe n A = rank(λe n A) < n (λe n A)x = x ( II 4 ) x λ ( ) n n n ( ) n I 2 2 3 A = 1 1 1 1 3 1 ( ) Th9-1 λe n A = λ 2 2 3 λe 3 A = 1 λ 1 1 1 3 λ + 1 1, -2, 3 λ 3 2λ 2 5λ + 6 = λ 3 2λ 2 5λ + 6 = (λ 1)(λ + 2)(λ 3) λ = 1 (λe n A)x = λ = 1 1 2 3 1 1 x = 1 3 2 1 1 1 1 2

x = (x 1, x 2, x 3 ) T 1 1 x 1 1 1 x 2 = x 3 x = (1, 1, 1) T Ax = x ( ) x = (1/ 3, 1/ 3, 1/ 3) T λ = 2, 3 II( ) n ( ) 5 3 A = 3 1 λ 2 4λ + 4 = (λ 2) 2 = 2 1 ( ) (λe 2 A)x = ( ) 3 3 x = 3 3 x = ( ) 1/ 2 1/ 2 2 Th9-2 ( ) Ax = λx x T A T = λx T A A T = A x T A = λx T ( ) 3

n Th9-3 ( ) Th9-3 ( ) x y (x, y) (x, y) = x T y = x 1 y 1 + x 2 y 2 + + x n y n (x, y) = x T y = x 1y 1 + x 2y 2 + + x ny n (2) x i y i x, y z = a + bi z = a bi x x A A y, z x ( ) 1 (z ) = z 2 (y ± z) = y ± z 3 (yz) = y z 4 (y/z) = y /z 5 z z = z 6 z z = z 7 z z = zz 8 (zx) = z x 9 (x, x) x = 4

: (x, x) = x 1x 1 + x 2x 2 + + x nx n 7 Th9-3 λ x ( λ x ) x y (x, y) = x T y (Ax, y) = (λx, y) = λ (x, y) y = x (Ax, x) = λ (x, x) (3) (x, Ax) = (x, λx) = λ(x, x) (4) A A A = A A T = A (Ax, x) = (Ax) T x = x T A T x = x T Ax = (x, Ax) (3)(4) λ (x, x) = λ(x, x) x x (x, x) λ = λ 5 λ 5

A = ( 3 6 ) 6 2 λ 3 6 λe 2 A = 6 λ + 2 λ 2 λ 42 = 2 7,-6 λ = 7 (λe 2 A)x = (7E 2 A)x = ( ) 4 6 x = 6 9 ( ) 3 2 ( ) 1 3/2 x = λ = 6 ( ) 9 6 (λe 2 A)x = ( 6E 2 A)x = x = 6 4 ( ) 2 λ = 7 3 3 6

n A A T A T = A ( a ji = a ij) A A A n A A T A A T A = E n A A Th9-4 1 λ = 1 A Ax (Ax, Ax) = x T A T Ax = x T E n x = x T x = (x, x) A λ (Ax, Ax) = (λx, λx) = λ T x T λx = λ T λx T x = λ λ(x, x) (x, x) λ λ = λ 2 = 1 Th9-5 7

Th9-6 A n A λ 1, λ2 (λ 1 λ 2 ) x 1, x 2 A A T = A λ 1 = λ 1, λ 2 = λ 2 (Ax 1, x 2 ) = λ 1(x 1, x 2 ) = λ 1 (x 1, x 2 ) (Ax 1, x 2 ) = (x 1, A T x 2 ) = (x 1, Ax 2 ) = λ 2 (x 1, x 2 ) λ 1 (x 1, x 2 ) = λ 2 (x 1, x 2 ) (λ 1 λ 2 )(x 1, x 2 ) = λ 1 λ 2 (x 1, x 2 ) = 4 Th9-7 A k k 2 λ 1, λ 2,, λ k x 1, x 2,, x k x 1, x 2,, x k x 1, x 2,, x i 1 x 1, x 2,, x i i (2 i k) x i x 1, x 2, x i 1 x i = c 1 x 1 + c 2 x 2 + + c i 1 x i 1 (5) 8

(5) A Ax i = c 1 Ax 1 + c 2 Ax 2 + + c i 1 Ax i 1 x i A λ i (5) λ i (6), (7) λ i x i = c 1 λ 1 x 1 + c 2 λ 2 x 2 + + c i 1 λ i 1 x i 1 (6) λ i x i = c 1 λ i x 1 + c 2 λ i x 2 + + c i 1 λ i x i 1 (7) = c 1 (λ 1 λ i )x 1 + c 2 (λ 2 λ i )x 2 + + c i 1 (λ 2 λ i )x i 1 (8) x 1, x 2,, x i 1 (8) c j (λ j λ i ) = (j = 1,, i 1) (λ j λ i ) c j = (j = 1,, i 1) (5) x i = x i ( ) n A S S 1 AS Th9-8 A = S 1 AS (9) S 1 Ax = λx (9) S 1 Ax = λs 1 x x = Sy S 1 ASy = λs 1 Sy A y = λy (1) x A y = S 1 x A λ 9

Th6-8 Th9-9 n A P P 1 AP (A P ) n ( ) P 1 AP λ 1 λ 2 P 1 AP = Λ = λ n A = P ΛP 1 P 1 P 1 A = ΛP 1 (11) Λ Λ λ i e i Λe i = λ i e i x i = P e i e i = P 1 x i Λe i = λ i e i (11) ΛP 1 = P 1 A P ΛP 1 x i = λ i P 1 x i P 1 Ax i = λ i P 1 x i = P 1 (λ i x i ) Ax i = λ i x i x i = P e i A Λ λ i A e 1, e n P e 1,, P e n n ( {a 1,, a n } P {P a 1,, P a n } c 1 P a 1 + + c n P a n = P (c 1 a 1 + + c n a n ) = P 1 c 1 a 1 + + c n a n = {a 1,, a n } c 1 = = c n = ) 1

Th9-1 n A n x 1, x 2,, x n ( x 1 x 2 x n ) P P 1 AP x j λ j P 1 AP = P 1 A ( x 1 x 2 x n ) = ( P 1 Ax 1 P 1 Ax 2 P 1 Ax n ) = ( λ 1 P 1 x 1 λ 2 P 1 x 2 λ n P 1 x n ) P 1 x j P 1 P j P 1 x j = e j ( ) P 1 AP = ( λ 1 e 1 λ 2 e 2 λ n e n ) = λ 1 λ j λ n 5 51 n A P P 1 AP = c 1 Th9-7, Th9-1 A n P P 1 AP n n A A 11 c n

( n ) λe 3 A = 2 1 A = 2 4 1 2 2 1 λ 2 1 2 λ 4 1 2 2 λ 1 A 1,2 2 = (λ 1)(λ 2) 2 = λ = 2 x = (x 1, x 2, x 3 ) T 2 2 1 x 1 2 2 1 x 2 = 2 2 1 x 3 2 2 1 2 2 1 2 2 1 2 2 1 2x 1 2x 2 x 3 = x 3 = 2x 1 2x 2 x 1 1 x 2 = x 1 + x 2 1 x 3 2 2 2 1 x 1 =, x 2 = 2 1 2 12

λ = 1 x = (x 1, x 2, x 3 ) T 1 2 1 x 1 2 3 1 x 2 = 2 2 x 3 1 2 1 1 2 1 1 1 2 3 1 1 1 1 1 2 2 A 1 1 x 1 1 1 x 2 = x 3 x 1 1 x 2 = x 3 1 x 3 1 1 1 P = 1 1 1 2 2 2 2 1 2 1 1 1 1 P 1 AP = 1 2 1 2 4 1 1 1 = 2 2 3 1 2 2 1 1 2 2 2 x 1, x 2 a 1 x 1 + a 2 x 2 A(a 1 x 1 + a 2 x 2 ) = λ(a 1 x 1 + a 2 x 2 ) Gram-Shmidt 4 1 A = 1 2 2 1 2 13

λe 3 A = λ 4 1 1 λ 2 2 1 λ 2 = (λ 2)(λ 3) 2 = A 2,3 3 λ = 3 x = (x 1, x 2, x 3 ) T 1 1 x 1 1 1 x 2 = 2 1 1 x 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 x 1 1 1 x 2 = x 3 x 1 1 x 2 = x 3 1 x 3 1 x 1 1/ 3 x 2 = 1/ 3 x 3 1/ 3 ( ) 1 52 Schur n n Th9-11 n A Q Q 1 AQ = Q T AQ 14

Q λ 1 Q 1 AQ = Q T AQ = = R λ n R A Schur 1 A λ 1 u 1 Au 1 = λ 1 u 1, u 1 = 1 u 1 {q 1,, q n } q 1 = u 1 u 1 Gram-Schmidt q 1,, q n n Q (1) = ( q 1 q 2 q n ) Q (1) Q (1) Q (1) T = Q (1) 1 q 1 = u 1 Aq 1 = λ 1 q 1 AQ (1) = ( Aq 1 Aq 2 Aq n ) = ( λ 1 q 1 q 2 q n ) = Q (1) ( λ1 A (1) ) Q (1) T Q (1) T = Q (1) 1 Q (1) T AQ (1) = ( λ1 A (1) ) (12) 2 A (1) A (1) λ 2 u 2 u 2 n-1 15

u 2 q 1 = u 2 {q 1,, q n 1} q 1,, q n 1 n-1 Q = ( q 1 q n 1 ) Q Q T A (1) Q = ( λ2 A (1) ) n Q (2) Q (2) = 1 Q ( )Q (2) n (12) Q (2) Q (1) T AQ (1) Q (2) = λ 1 A (1) 1 Q = λ 1 A (1) Q Q (2) T Q (2) T Q (1) T AQ (1) Q (2) = = 1 λ 1 Q T Q T A (1) Q λ 1 A (1) Q 16

= λ 1 λ 2 A (2) (13) 1 Q (1) Q (2) Q = Q (1) Q (2) Q 1 = Q T (13) Q T AQ = Q 1 AQ Q 2 λ 2 A (1) A A (13) λ 1 λ 2 A (2) B λ λ 1 λ λ 2 λe n B = λe n 2 A (2) = (λ λ 1 )(λ λ 2 ) λe n 2 A (2) = (14) λ 2 B A A (1) λ 2 A A (1) u 2 A λ 2 3 1,2 Q = Q (1) Q (2) Q (n 1) Q 1 AQ = Q T AQ = λ 1 λ n 17

A n Q 1 AQ = det Q 1 AQ = det A = λ 1 λ n λ 1 λ n = Π n i=1λ i trace ( n A (i,j) a ij tracea = n i=1 a ii )trace traceab = traceba traceq 1 AQ = tracea = trace λ 1 λ n n = λ i i=1 53 Th9-3 A Th9-11 Q (1) A (1) Th9-11 A Q Q 1 AQ = Q T AQ = λ 1 λ n A A T = A (Q T AQ) T = Q T A T Q = Q T AQ 18

Q T AQ Q T AQ Q T AQ Th9-12 A Q Q 1 AQ = Q T AQ n n Th9-6 λe 3 A = 2 1 1 A = 1 2 1 1 1 2 λ 2 1 1 1 λ 2 1 1 1 λ 2 λ = 4 x = (x 1, x 2, x 3 ) T 2 1 1 1 2 1 x = 1 1 2 1 1 1 1 x = = (λ 1) 2 (λ 4) 19

x 1 = x 3, x 2 = x 3 1/ 3 1/ 3 1/ 3 λ = 1 x = (x 1, x 2, x 3 ) T 1 1 1 1 1 1 x = 1 1 1 1 1 1 x = x 3 = x 1 x 2 λ = 1 x 1 1 x 2 = x 1 x 3 1 + x 2 1 1 λ = 1 1 1, 1 1 Gram- Schmidt λ = 1 1/ 2 1/ 6 1/, 2/ 6 2 1/ 6 1/ 3 1/ 2 1/ 6 Q = 1/ 3 2/ 6 1/ 3 1/ 2 1/ 6 2

A n A k A k n A P P 1 AP = diag[λ 1,, λ n ] λ i (i = 1,, n) A P 1 AP P 1 AP = P 1 A 2 P = diag[λ 2 1,, λ 2 n] P 1 A k P = diag[λ k 1,, λ k n] A k A k = P diag[λ k 1,, λ k n]p 1 Fibonacci Fibonacci Fibonacci F =, F 1 = 1,, F n+1 = F n + F n 1 F n F n+1 /F n (1 + 5)/2 u i = u i = ( ) Fi+1 F i ( ) Fi+1 F i, u = ( ) Fi + F i 1 = = F i ( ) F1 F = ( ) 1 ( ) ( ) 1 1 Fi = Au i 1 1 F i 1 u n = A n u ( ) 1 1 A = 1 λ 1 det(λe 2 A) = 1 A 1 λ = λ2 λ 1 λ 1 = 1 + 5, λ 2 = 1 5 2 2 21

λ 1, λ 2 v 1, v 2 ( ) ( ) λ1 λ2 v 1 =, v 2 = 1 1 p8, Th9-6 u u T v 1 = λ 1, u T v 2 = λ 2 u v 1, v 2 u = αv 1 + βv 2 u T v 1 = α(1 + λ 2 1), u T v 2 = β(1 + λ 2 2) α = λ 1, β = λ 2 1 + λ 2 1 1 + λ 2 2 1 = λ 1 λ 2 α = λ 1 1 + λ 2 1 = λ 1 λ 2 1 λ 1 λ 2 = 1 = 1 λ 1 λ 2 5 β = 1 λ 1 λ 2 = 1 5 u = 1 5 (v 1 v 2 ) v i A ( ) Fn+1 u n = = A n u = 1 (λ n 1 5 F n ( ) λ1 λ n 2 1 ( ) λ2 ) 1 F n = 1 {( 1 + 5 ) n ( 1 5 ) n } 5 2 2 F n+1 F n = λn+1 1 λ n+1 2 λ 2 1 λ n 2 = λ 1 ( λ 2 λ 1 ) n λ 2 1 ( λ 1 + 5 2 λ 1 ) n 2 ( ) A n F n 22

6 Cayley-Hamilton f(x) = a m x m + + a 1 x + a n A f(a) = a m A m + + a 1 A + a E n A λ x Ax = λx, A 2 x = A(Ax) = A(λx) = λ 2 x, A m x = λ m x f(a) = (a m λ m + + a 1 λ + a )x = f(λ)x x n f(a) f(λ) f(x) A φ A (x) = det(xe n A) Th9-13(Cayley-Hamilton ) φ A (A) = O n ( ) A λ i φ A (λ i ) = (i = 1,, n) A Q Q 1 AQ = diag(λ 1,, λ n ) Q 1 AQQ 1 AQ = Q 1 A 2 Q = diag(λ 2 1,, λ 2 n) Q 1 A m Q = diag(λ m 1,, λ m n ) Q 1 φ A (A)Q = diag(φ A (λ 1 ),, φ A (λ n )) = O n φ A (A) = Q n Q 1 = O n Cayley-Hamilton xe n A G(x) = adj(xe n A) G(x) (j,i) xe n A i j n-1 (xe n A)G(x) = det(xe n A)E n = φ A (x)e n (15) p G(x) xe n A n-1 x at most n-1 G(x) x G(x) = C n 1 x n 1 + C n 2 x n 2 + + C 1 x + C (16) C i (i =,, n 1) n φ A (x) = det(xe n A) n n φ A (x) = x n + b n 1 x n 1 + + b 1 x + b (17) 23

(16) (15) (xe n A)G(x) = (xe n A)(C n 1 x n 1 + C n 2 x n 2 + + C 1 x + C ) = C n 1 x n + C n 2 x n 1 + + C 1 x 2 + C x AC n 1 x n 1 AC 2 x 2 AC 1 x AC = C n 1 x n + (C n 2 AC n 1 )x n 1 + + (C AC 1 )x AC (18) (15) (17) (x n + b n 1 x n 1 + + b 1 x + b )E n = E n x n + b n 1 E n x n 1 + + b 1 E n x + b E n (19) x k b E n = AC b 1 E n = C AC 1 b 2 E n = C 1 AC 2 b n 1 E n = C n 2 AC n 1 E n = C n 1 E n, A, A 2,, A n b E n = AC b 1 A = AC A 2 C 1 b 2 A 2 = A 2 C 1 A 3 C 2 b n 1 A n 1 = A n 1 C n 2 A n C n 1 A n = A n C n 1 = A n + b n 1 A n 1 + + b 1 A + b E n = φ A (A) O n φ A (A) = O n 24

7 1 (1) ( ) 2 1 1 2 (2) ( cos θ ) sin θ sin θ cos θ (3) 1 2 1 3 2 1 2 1 (4) 1 1 1 1 (5) 1 1 1 (6) 5 1 2 2 1 1 1 4 12 1 (7) ( e n e 1 e 2 e n 1 ) 2 3 A 4 A n n (a) A u 1,, u n A n n x A x 2 = (x, x) = 1 x x = a 1 u 1 + + a n u n 2 i a i = (u i, x) ii n i=1 a 2 i = 1 (b) A n µ i (i = 1,, n) µ max 1 n x 2 = (x, x) = 1 n x x T Ax µ max 5 A (3,3) A,1,2 (a) det(a T A) (b) E 3 + A E 3 E 3 + A 25

(c) B B = c 1 A + c 2 E 3 c 1 c 2 c 2 1 + c 2 2 = 1 B (c 1, c 2 ) 6 A n A λ i (i = 1,, n) u i (i = 1,, n) λ n λ n 1 λ 2 λ 1 x (u 1, x ) x k, y k x 1 = Ax, y 1 = x 1 / x 1 x 2 = Ax 1, y 2 = x 2 / x 2 x k = Ax k 1, y k = x k / x k y k k u 1 26