No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Similar documents
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

D 24 D D D

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

Morse ( ) 2014

パーキンソン病治療ガイドライン2002

研修コーナー

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

untitled

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d


201711grade1ouyou.pdf

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

第10章 アイソパラメトリック要素


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

phs.dvi

TOP URL 1

DVIOUT


2000年度『数学展望 I』講義録

プリント

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

I


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Note.tex 2008/09/19( )


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

(time series) ( 225 ) / / p.2/66

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


Untitled


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

数学Ⅱ演習(足助・09夏)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

7-12.dvi

TOP URL 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

本文/目次(裏白)

数学概論I

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

2011de.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

newmain.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

: , 2.0, 3.0, 2.0, (%) ( 2.

Part () () Γ Part ,

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

arxiv: v1(astro-ph.co)

ohpmain.dvi

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ユニセフ表紙_CS6_三.indd

³ÎΨÏÀ


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

all.dvi

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Chap9.dvi

『共形場理論』

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


Transcription:

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3 X A X A X r t : X X r 0 = id, r 1 = A, r t A = id 1.4 X A X A X A X (3)CW D n = {(x 1,, x n ) R n x 2 1 + + x 2 n 1} 2

1.5 X e n X e n ϕ : D n X ϕ intd n : intd n e n e n X n ϕ e n 0 X 1.6 X X {e λ ; λ Λ} X (X ) X = λ Λ (1) X = λ Λ e λ (2) λ µ e λ e µ = (3) e n ϕ : D n X ϕ( D n ) X n 1 = k<n 1 CW e k 1.7 X = λ Λ e λ Λ Λ A = λ Λ e λ A X 1.8 X = λ Λ e λ X CW (1) X e e X (2) X F F X X e F ē ē (0) X = D 1 X = e 0 e 1 (1) X = D 2 X = e 0 e 1 e 2 (2) X = D 3 X = e 0 e 2 3

2 M, f, M a p q r s M : R 3 V f : M R, f(x) = d(x, V ) : d x V M a = {x M f(x) a } (1) a < f(q) = M a. (2) f(p) < a < f(q) = M a e 2. (3) f(q) < a < f(r) = M a (4) f(r) < a < f(s) = M a 1 (5) f(s) < a = M a = M. (1) (2) = 0 (2) (3) = 1 (3) (4) = 1 4

(4) (5) = 2 M CW (M e 0 e 1 e 1 e 2 ) 5

3 M m f : M R 3.1 (f ) M p 0 f : M R p 0 (x 1,, x m ) f x 1 (p 0 ) = 0,, f x m (p 0 ) = 0 3.2 (Hesse ) 2 f p 0 f : M R m m H f (p 0 ) = ( ) x i x j p 0 f Hesse 3.3 ( ) deth f (p 0 ) 0 p 0 deth f (p 0 ) = 0 p 0 3.4 p 0 (x 1,, x m ), (y 1,, y m ) f : M R Hesse H f (p 0 ), H f (p 0) H f (p 0 ) = t J(p 0 )H f (p 0 )J(p 0 ) J(p 0 ) (y 1,, y m ) (x 1,, x m ) Jacobi p 0 3.5 f : M R p 0 p 0 6

3.6 ( ) f : M R f 3.7 f f(0) = 0 R n 0 V C f(x 1,, x n ) = Σ n i=1x i g i (x 1,, x n ) g i g i (0) = f x i (0) V C 3.8 M f : V R p 0 M f(p 0 ) = 0 p 0 (U, ϕ; x 1,, x n ) U V x 1 (p 0 ) = = x n (p 0 ) = 0 ɛ > 0 p 0 W W = {(x 1,, x n ) R n x i < ɛ, i = 1, n} ϕ(u), W = ϕ 1 (W ) f = f W : W R g i : W R f(x 1,, x n ) = Σ n i=1 x ig i (x 1,, x n ) g i (p 0 ) = f x i (p 0 ) 3.9 ( ) p 0 f : M R p 0 (X 1,, X m ) f f = X1 2 Xλ 2 + Xλ+1 2 + + Xm 2 + f(p 0 ) X 1 (p 0 ) = = X m (p 0 ) = 0 7

3.10 λ p 0 3.11 3.12 f : M R Morse f 8

4 Morse 4.1 M p 0 M M f : M R C (M) R L : C (M) R L(f + g) = L(f) + L(g) L(af) = al(f) L(f g) = f(p 0 )L(g) + L(f)g(p 0 ) L p 0 p 0 T p0 (M) = {L L p 0 } L 1 + L 2 al (L 1 + L 2 )(f) = L 1 (f) + L 2 (f) (al)(f) = al(f) a R R T p0 (M) p 0 4.2 M O M X O X O p p M X p T p (M) X : O T p (M) p O U p (U; x i,, x n ) X(p) = Σ n i=1ξ i (p)( x i ) p ξ i : U R, i = 1,, n 9

4.3 M X M f : M R Xf : M R (Xf)(p) = X p (f) X : C (M) C (M) X X(f + g) = X(f) + X(g) X(af) = ax(f) X(f g) = f(p 0 )X(g) + X(f)g(p 0 ) X : C (M) C (M) X p (f) = (Xf)(p) M 4.4 M X M f : M R (fx) p = f(p)x p fx M 4.5 f : R n R grad f = ( f x 1,, f x n ) R (grad f) p = Σ n f i=1 (p)( ) p x i x i, p U f 4.6 M X M c : (α, β) M X dc dt (t) = X c(t), t (α, β) 10

4.7 M X M c, c 0 J, J X c(0) = c(0) c, c M φ : R M M (1) φ(0, p) = p p M (2) φ(s, φ(t, p)) = φ(s + t, p) s, t R, p M φ 1 φ : R M M φ(t, p) φ t (p) t R φ t : M M (1),(2) (1) φ 0 = 1 (2) φ s φ t = φ s+t s, t R φ t φ t φ t 4.8 p 0 c : R M, c(t) = φ t (p 0 ) t = 0 p 0 φ p 0 4.9 M φr M M M X X p (f) = lim t 0 f(φ t (p)) f(p) t = df(φ t(p)) dt t=0 f C (M) 11

X φ X φ 4.10 M φ : R M M X φ M p 0 M c : R M, c(t) = φ t (p 0 ) t = 0 p 0 X : dc dt (t) = X c(t) t R 4.11 M φ, φ X φ φ 4.12 M M X φ : R M M 12