1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Similar documents
ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)



さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

A

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

newmain.dvi

2000年度『数学展望 I』講義録

熊本県数学問題正解

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

, = = 7 6 = 42, =

,2,4

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

i

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


untitled

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R


1 I

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

III 2017

_TZ_4797-haus-local

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

?

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

II

meiji_resume_1.PDF

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

koji07-01.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx


6. Euler x

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

) Binary Cubic Forms / 25

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

高校生の就職への数学II

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

04年度LS民法Ⅰ教材改訂版.PDF


17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

mugensho.dvi

O E ( ) A a A A(a) O ( ) (1) O O () 467

2012 A, N, Z, Q, R, C

n ( (

数学Ⅱ演習(足助・09夏)

量子力学 問題


A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2011de.dvi

( )

Part () () Γ Part ,

function2.pdf

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

untitled

行列代数2010A

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

Dynkin Serre Weyl

/02/18

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

201711grade1ouyou.pdf

Transcription:

1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () ()

(015 8 1 ) 1. D = b 4ac 4 1 0 () 4 x 1,..., x n d i c i1...inx 1 1... x i n n i 1 + +in=d i 1,...,in N 0 b 4ac a, b, c (1) α, β ax + bx + c = a(x α)(x β) = a(x (α + β)x + αβ) α + β = b a, αβ = c a = α β 1 a =(α β) = α + β αβ = (α + β) 4αβ ( ) b = 4 c a a = b 4ac a D = a = a (α β) = b 4ac () 4 D () (i) D > 0 (ii) D = 0 (iii) D < 0 ((i)(iii) = (ii) (i)(iii) = α α )

(015 8 1 ) 1. 1 f(x) f(x) = 0 { f(x) = 0 f (x) = 0 f(x) = 0 α g(x) f(x) = (x α) g(x) f (x) = (x α)g(x) + (x α) g (x) f (α) = 0 f(α) = 0, f (α) = 0 h(x) f(x) = (x α)h(x) f (α) = 0 f (x) = h(x) + (x α)h (x) h(α) = 0 k(x) h(x) = (x α)k(x) f(x) = (x α) k(x) α f(x) (1) ax + bx + c = 0 (4) ax + b = 0 (5) (4) x (5) b (5) a (6) bx + c = 0 (6) b 4ac = 0 (7) (7) 1 a (6) b (5) (7)

(015 8 1 ) 4.1 ax + bx + cx + d = 0 (a 0) (8) y = x + b a () x = y b/(a) (8) ) ( ay + ( b b a + c y + 7a bc ) a + d = 0 a p = b a + c a = b + ac a y = u + v (9) q = b 7a bc a + d a = b 9abc + 7a d 7a y + py + q = 0 (9) u + v + (uv + p)(u + v) + q = 0 { u + v + q = 0 uv + p = 0 u, v y = u + v (9) u, v u + v = q, ( p u v = ) ( p ) t + qt = 0 ( ) t = q ± ( q ) + ( p ) u, v t u uv = p v ( q ) ( p R = + )

(015 8 1 ) 5 q + R q ( q ) ( R = p ) p R = = ω = ( 1 + i)/ (9) q y 1 = + q R + R q y =ω + q R + ω R q y =ω + q R + ω R ( []) ( q ) ( p b R = + = ) c + 7a d 18abcd + 4b d + 4ac 108a 4 D = 108a 4 R = b c 7a d + 18abcd 4b d 4ac (10) D = 7a q = b + 9abc 7a d (11) q + R = D 7a + D a 4 = 1 a D + a 7D (8) α 1 = 1 a α = 1 a α = 1 a ( b + D + a ) D 7D + a 7D ( b + ω D + a ) 7D + ω D a 7D ( b + ω D + a ) D 7D + ω a 7D (8) D, D (10)(11) (i) (ii) (iii) (iv) D > 0 D = 0, D 0 1 D = D = 0 D < 0 1 (i) D > 0 D + a D 7D, a 7D

(015 8 1 ) 6 α 1 ω D + a 7D = ω D a 7D α, α (ii) D = 0, D 0 α 1 α = α (iii) D = D = 0 (iv) D < 0 α 1 α, α (8) D = b c 7a d + 18abcd 4b d 4ac 1 x 7x 6 = (x )(x + 1)(x + ) = 0 p = 7, q = 6 ( q ) ( p R = + ) ( ) 6 = + ( ) 7 = 9 4 7 = 100 7 = 10 9 < 0 6 + 10 1 i = 81 + 0 i 9 81 + 0 i = (a + b i) a, b ( ) { a 9ab = 81 a b b = 10 b = ±, ±5 a =, b = x 7x 6 = 0 ( α 1 = 1 + ) i + ( α =ω 1 + ) i 1 81 ± 0 i = 1 ± i ( α =ω 1 + ) i + ω ( 1 ) i = ( ) + ω i 1 ( 1 ) i = = 1 ()

(015 8 1 ) 7 (00) x + px + q = 0( p, q ) p < q < p ( () 00 ) < 0. (8) α, β, γ ax + bx + cx + d = a(x α)(x β)(x γ) =a(x (α + β + γ)x + (αβ + βγ + γα)x αβγ) α + β + γ = b a, αβ + βγ + γα = c a, αβγ = d a =(α β) (α γ) (β γ) =(αβ + βγ + γα) (α + β + γ) 7α β γ + 18αβγ(α + β + γ)(αβ + βγ + γα) 4(αβ + βγ + γα) 4αβγ(α + β + γ) Maple α, β, γ a,b,c A := a*b*c; a b c B := a*b+a*c+b*c; a b + a c + b c C := a+b+c; a + b + c DD := B^*C^-7*A^+18*A*B*C-4*B^-4*A*C^; (a b + a c + b c) (a + b + c) - 7 a b c + 18 a b c (a b + a c + b c) (a + b + c) - 4 (a b + a c + b c) -4 (a + b + c) a b c

(015 8 1 ) 8 ( ) DD := expand(dd); 4 4 4 a b - a b c + a c - a b + a b c + a b c 4 4 - a c + a b + a b c - 6 a b c + a b c + a c 4 4 4 - a b c + a b c + a b c - a b c + b c 4 - b c + b c DD := factor(dd); (b - c) (a - c) (a - b) = 1 ( b a 4 c 7a d + 18abcd 4b d 4ac ) a 4 D = a 4 = b c 7a d + 18abcd 4b d 4ac (1) 1. 1 4.1 x 1,..., x n f(x 1,..., x n ) x 1,..., x n x i, x j f f s 1 = n n n x i, s = x i x j, s = x i x j x k,, s n = 1 i<j n 1 i<j<k n n x i x 1,..., x n f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 a i a n = ( 1) n i s n i, i = 0,..., n 1

(015 8 1 ) 9 (p.140, p.9 ). (1) f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 α 1,..., α n = (α 1,..., α n ) = f(x) (discriminant) D = D(f) = a n n = an n 1 i<j n (α i α j ) 1 i<j n (α i α j ) (1) 1. 1 (1) α 1,..., α n (n ) 5 6 4 a n n a n n () ( 1) ax + bx + c (α i α j ) a (α 1 α ) = a n n 1 i<j n b 4ac (α i α j ) b 4ac 1 i<j n a 4. f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 = a n g(x) = b n x n + b n 1 x n 1 + + b 1 x + b 0 = b m n m j=1 (x α i ) (x β j )

(015 8 1 ) 10 (resultant) n m R(f, g) = a m n b n m (α i β j ) j=1 4 f(x), g(x) ( ) R(f, g) = 0 1 n R(f, g) = a m n g(α i ) = ( 1) mn b n m n m n R(f, g) = a m n b m (α i β j ) = a m n g(α i ) j=1 ( m R(f, g) = b n m a m n ( 1) n n m f(β j ) j=1 ) m (β j α i ) = ( 1) mn b n m f(β j ) j=1 j=1 5 f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 f(x) α 1,..., α n 1 R(f, f ) = a n 1 n f (x) = a n n n D(f) = ( 1) n(n 1)/ 1 a n R(f, f ) f(x) = a n n (x α i ) (x α 1 ) (x α i 1 )(x α i+1 ) (x α n ) f (α i ) = a n 1 n a n n = ( 1) n(n 1)/ a n a n n n 1 i<j n n (α i α j ) j=1 j i (α i α j ) = ( 1) n(n 1)/ a n D(f)

(015 8 1 ) 11 6 ( [6]) (n + m) R(f, g) = a n a n 1 a 1 a 0 0 0 0 a n a n 1 a 0 0 0 0 a n a n 1 a 0 b m b m 1 b 1 b 0 0 0 0 b m b m 1 b 1 b 0 0 0 0 0 b m b m 1 b 0 Sylvester R Sylvester (f, g) (pp.70-7 10 ) 7 a 0 a 1 a n 1 a n 0 0 0 a 0 a 1 a n 0 R Seki (f, g) = 0 0 a 0 a 1 a n b 0 b 1 b m 1 b m 0 0 0 b 0 b 1 b m 1 b m 0 0 0 0 b 0 b 1 b m =( 1) mn R Sylvester (f, g) m = n 1 nm 0 (mod ) R Seki (f, g) = R Sylvester (f, g) 4 (...) () (...) 4.1 1801 [] ax + bxy + cy, a, b, c Z

(015 8 1 ) 1 (a, b, c) (a, b, c) (substitutiones) x = αx + βy, y = γx + δy (a, b, c ) a x + b x y + c y =a(αx + βy ) + b(αx + βy )(γx + δy ) + c(γx + δy ) =(aα + bαγ + cγ )x + (aαβ + b(αδ + βγ) + cγδ)x y + (aβ + bβδ + cδ )y a =aα + bαγ + cγ b =aαβ + b(αδ + βγ) + cγδ c =aβ + bβδ + cδ b a c =(aαβ + b(αδ + βγ) + cγδ) (aα + bαγ + cγ )(aβ + bβδ + cδ ) =(b ac)α δ (b ac)αβγδ + (b ac)β γ =(b ac)(αδ βγ) b ac (αδ βγ) = 1 (a, b, c) bb ac (a, b, c) (determinantem) [4, p.17] (, ) {( α β GL (Z) = γ δ ) } αδ βγ = ±1; α, β, γ, δ Z GL (Z) (unimodular matrix) {( α β SL (Z) = γ δ GL (Z) ) } αδ βγ = 1; α, β, γ, δ Z GL (Z) 19

(015 8 1 ) 1 4. t C t : f(x, y, t) = 0 (14) E (14) E {C t } E C t (ϕ(t), ψ(t)) E x = ϕ(t), y = ψ(t) (15) (14) E (ϕ(t), ψ(t)) C t E f x (ϕ(t), ψ(t), t)ϕ (t) + f y (ϕ(t), ψ(t), t)ψ (t) = 0 f(ϕ(t), ψ(t), t) = 0 (16) t f x (ϕ(t), ψ(t), t)ϕ (t) + f y (ϕ(t), ψ(t), t)ψ (t) + f t (ϕ(t), ψ(t), t) = 0 f t (ϕ(t), ψ(t), t) = 0 (17) E {C t } (16) (17) (16) (17) t R(f, f t ) = 0 f(x, y, t) = 0 8 C t E E R(f, f t ) = 0 R(f, f t ) = 0 E C t f x (x, y, t) = f y (x, y, t) = 0 D R f : D R f(x, y) (a, b) U y f y (x, y) f(x, y) f(a, b) = 0, f y (a, b) 0 x = a V V y = g(x) b = g(a), f(x, g(x)) 0

(015 8 1 ) 14 f(x, y) U C 1 g(x) C 1 ([10] ) g (x) = f x(x, y) f y (x, y)) I, U R, R Φ : I R, f : U R f(i) U Φ(t) t f(x, y) Φ(t) = (ϕ(t), ψ(t), χ(t)) g(t) = f(φ(t)) = f(ϕ(t), ψ(t), χ(t)) t g (t) = f x (ϕ(t), ψ(t), χ(t))ϕ (t) + f y (ϕ(t), ψ(t), χ(t))ψ (t) + f z (ϕ(t), ψ(t), χ(t))χ (t) (015) a C : y = ax + 1 4a 4a a C y = ax + 1 4a 4a = (x 1)a + 1 4a x > 1 y = (x 1)a + 1 4a (x 1)a 1 4a = x 1 y = x 1 x = ±1 y = 1 4a y > 0 x < 1 lim y = +, a +0 C lim y = a {(x, y) y x 1 x > 1} { (x, y) x < 1 } { (x, y) x = ±1 y > 0 } y > 0 y 0 ( Mac Grapher )

(015 8 1 ) 15 1-5 -4 - - -1 0 1 4 5-1 - - f(x, y, a) = ax + 1 4a 4a y a f(x, y, a) = 0 : (x 1)a + 1 4a y = 0 f a (x, y, a) = 0 : x 1 4a 1 = 0 y = x 1 C () y 5 19 (168) { f(x) = a0 + a 1 x + a x + + a n x n = 0 g(x) = b 0 + b 1 x + b x + + b m x m = 0 R Seki (f, g) = ( 1) mn R Sylvester (f, g) = ( 1) mn R(f, g) x a 0,, a n, b 0., b m R Seki (f, g) = 0 ([5]1685) f(x) = a 0 + a 1 x + a x + + a n x n = 0

(015 8 1 ) 16 ( ) 1 n n a n R Seki (nf xf, f ) = ( 1) n(n 1)/ D(f) f(x) = a 0 + a 1 x + a x + a x = 0 D = 0 R Seki (f, 1! x f ) = 1 8a R Seki (f, f ) = 0 [14] 19 1801 [] [1] 1841 Q = Ax + Bx y + Cxy + Dy x, y Q x = 0, Q y = 0 θ(q) =(ad bc) 4(b ac)(c bd) =a d b c + 4ac + 4b d 6abcd [7] 1851 s 0 x + s 1 x y + s xy + s y I = 1ϵ(s 1s 7s 0s + 18s 0 s 1 s s 4s 1s 4s 0 s ) = 1ϵD I (discriminant) 164 166 [1] George Boole, Exposition of a general theory of linear transformations, Part I., The Cambridge mathematical Journal Vol. III. No.XIII (1841), 1-0.

(015 8 1 ) 17 [] Gerolamo Cardano, Ars Magna, English translation The Rules of Algebra: (Ars Magna) (Dover Books on Mathematics) [] Friderico Gauss, Disquisitiones Arithmeticae, 1801, in Carl Friedrich Gauss Werke, Erster Band, 186. [4] 1995 [5] 16-8 [6] J.J. Sylvester, A method of determining by mere inspection the derivatives from two equations of any degree, Philosophical Magazine, XVI. (1840), 1-15, in The Collected Mathematical Papers of James Joseph Sylvester, vol. I, 54-57 [7] J.J. Sylvester, On a remarkable discovery in the theory of canonical forms and of hyperdeterminants, Philosophical Magazine, II. (1851), 91-410, in The Collected Mathematical Papers of James Joseph Sylvester, vol. I, 65-8 [8] J. 1700-1900 I 1985 [9] 198( 198) [10] ( ) 198 [11] Victor J. Katz, A History of Mathematics, rd ed., Addison-Wesley, 009. [1] ([11] ) 005 [1] http://sci-tech.ksc.kwansei.ac.jp/mathc/achievement/masumiya.pdf [14] 015 8 5 [15] 1974 [16] 1965