p-sylow :

Similar documents
( ) ( ) 1729 (, 2016:17) = = (1) 1 1

II Time-stamp: <05/09/30 17:14:06 waki> ii

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Armstrong culture Web

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

10 4 2

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

FX ) 2

FX自己アフリエイトマニュアル

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

°ÌÁê¿ô³ØII

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

II

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

Collatzの問題 (数学/数理科学セレクト1)

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

koji07-01.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

untitled


2012 A, N, Z, Q, R, C

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Maxwell

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

ありがとうございました

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

公務員人件費のシミュレーション分析


橡hashik-f.PDF

198


1

新婚世帯家賃あらまし

05[ ]戸田(責)村.indd

untitled

ネットショップ・オーナー2 ユーザーマニュアル

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

中期経営計画 「NEXTAGE‐05」説明会

1

, = = 7 6 = 42, =


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

1

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

i

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

,2,4

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

I

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

- II

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P


1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

body.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

untitled

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

lecture

) 9 81

function2.pdf

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

Transcription:

p-sylow :15114075 30 2 20

1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................ 5 2.3...................... 6 2.4......................... 7 2.5................................... 8 3 T n p-sylow 9 3.1 p-sylow................................. 9 3.2 T 4.................................... 10 3.2.1 3-Sylow............................. 10 3.2.2 2-Sylow............................. 11 3.3 T 6, T 8................................... 12 3.3.1 2-Sylow............................. 13 4 15 4.1................................ 15 4.2................................... 15 1

1 1.1. [3].. (p-sylow ). 1.2.... 5 4 6 8 12 20. T n (n = 4, 6, 8, 12, 20) G n. p n p p m. G p m G p-sylow.. T n p-sylow 1. T 4 p-sylow p = 2 : 2-Sylow : ( 4 ). 2-Sylow : ( 4 ). 2-Sylow 3. P = 3 : 3-Sylow : 6 ( 1, 2 ). 3-Sylow : 6 ( 3 ). 2. T 6, T 8 p-sylow p = 2 : 2-Sylow : ( 6 ). 2

2-Sylow : ( 6 ). 2-Sylow 3. 2-Sylow T 4 3-Sylow 6 3-Sylow 6. T n p-sylow. p-sylow,. 1.3 2.. 3 p-sylow. p-sylow. T 4 T 6, T 8 p-sylow. 4. 2 2.1. 1 ( ). G (G ). ( ) G a, b, c a (b c) = (a b) c (1). ( ) G e G a. e G. a e = e a (2) 3

( ) G a G b a b = b a = e (3). G a 1 b = a 1. a b ab. 2 ( ).. G G. 3 ( ).. G. G = g = {g n n Z} (4) 4 ( ). X X X. X S(X). S(X). X n = {1, 2,, n} S(X) n S(X) S n. S n := {f : X n X n f } (5). S n n A n. A n := {f S n f } (6). f ( ) 1 2 n f = f(1) f(2) f(n) (7). 5 (3 S 3 ). S 3 6. ( ) ( ) = e = (12) 2 1 3 ( ) ( ) = (23) = (13) 1 3 2 3 2 1 ( ) = (123) 2 3 1 ( ) = (132) 3 1 2 (12) (123) 3. 6 (3 A 3 ). A 3 3 ( ) ( ) = e = (12) 2 3 1 ( ) = (132) 3 2 1 4

7 ( ). G H G. G x H h G. xh := {xh h H} (8). xh x. Hx. 8. G H G/H (G H) H G. (G H) = G/H (9).. G/H = G H (10) 9 (Lagrange ). G H G. H H G G. [2 (11.1) ]. 10 ( ). 2 G G φ : G G (11) φ(ab) = φ(a)φ(b) (a, b G) (12) φ G G. φ ( ) φ ( ) φ φ. 2 G G G G. G = G (13) 2.2. 11 ( )... 5

.. 5 4 6 8 12 20. T n (n = 4, 6, 8, 12, 20) 12 ( ). n E n E n f. f E n x, y x y f(x) f(y). d(x, y) = (f(x) f(y)) (x, y E n ) (14). 13 ( ). T n (n = 4, 6, 8, 12, 20) T n T n Q(n). T n P (n). 2. 2.3. 14. O 1. O 2. O 3. O 3.. (. 3 1, 2, 3.) ( ).. O O. O. O 2 ( ). 2 1 a. a. a O. 6

a b b. a. a b b b (b ). b ( ) ( ). O. a O. 15. O 1. O 2. O 2. ( ).. O O. O. O...... ( ) ( ).. (1) (2). (1) O. (2). O. O. 2 O. 14 1 2. 2.4. 16. P (4) = A 4 (4 ) ( ). 4 1, 2, 3, 4. 4 (P (n) ). 4 1, 2, 3, 4. 13 3.. 1. O (O ) 2 3 π, 4 3 π 7

2. O π 4 O O. 1 4. 8. 2 3. 3. e P (n) 12.. S 4. P (n) ( ) A 4 ( ). A 4. P (4) = A 4. 17. Q(4) = S 4 ( ). 4 1, 2, 3, 4. 4 (Q(n) ). 4 1, 2, 3, 4. Q(4) ( ) S 4 ( ) 2. Q(n) 1. Q(n). Q(4) = S 4. P (n), Q(n) [2, p. 50,63]. n 4 6 8 12 20 P (n) A 4 S 4 S 4 A 5 A 5 Q(n) S 4 S 4 Z 2 S 4 Z 2 S 5 S 5 : P (n),q(n) 2.5.. 18 ( ).... 4 4 ( ) 6 8 8

12 20.. 19.. { P (6) = P (8) Q(6) = Q(8) { P (12) = P (20) Q(12) = Q(20) (15)... 3 T n p-sylow T n p-sylow p-sylow. p-sylow. T 4 T 6, T 8. 3.1 p-sylow 20 (p-sylow ). G H G. p p m G G H H = p m H p-sylow. 21 ( ). G H G. H. N G (H) = {g G ghg 1 = H} (16) 22 (Sylow ([2] (20.3) )). n p G p-sylow. n p = G : N G (H) = G (17) N G (H) n p 1 (mod p) (18) p-sylow [5]. 9

23 ( ). x X x G x (stabilizer) Stab G (x).. Stab G (x) = {g G gx = x} (19) 3.2 T 4 T 4 1. Q(4) = S 4 G. G = 2 3 3 G 2-Sylow 3-Sylow. T 4 1, 2, 3, 4. Q(4) S 4. 3.2.1 3-Sylow x, y 0 < x, 0 < y, 0 < x + y < 1 (20). U 3 3-Sylow. U 3 = 3. 3. O 3. U 3 A(x y ). A T 4 6. A Stab G (A) = {e, (123), (132)} = U 3 (21) 1: 2: 3-Sylow U 3 N G (U 3 ) = {e, (12), (13), (23), (123), (132)} (22) 10

. (12), (13), (23) 3 4 O 2 4 O 1 4 O. B(A x, y x = y ). B T 4 6. 3: A B. x y 6 x = y 6. U 3 6 N G (U 3 ) 6. 3-Sylow n 3 N G (U 3 ) = 6 n 3 = G N G (U 3 ) = 4 (23) B 1 4. 3.2.2 2-Sylow U 2 G 2-Sylow., U 2 = 8. 4 C. C T 4 1 2 2 3 3 4 4 1 11

. C Stab G (C) = {e, (13), (24), (13)(24), (12)(34), (23)(14), (1234), (1432)} = U 2 (24). 4: 2-Sylow U 2 N G (U 2 ) = {e, (13), (24), (13)(24), (12)(34), (23)(14), (1234), (1432)} (25) N G (U 2 ) = U 2 N G (U 2 ) U 2 C. n 2 N G (U 2 ) =8 n 2 = T 4 C 3. G N G (U 2 ) = 3 (26) 3.3 T 6, T 8 U 2 A T 4. G=Q(6) Q(8) S 4 Z 2. G = 48 = 2 4 3 2-Sylow 3-Sylow. 6 1, 2, 3, 4. Q(n) S 4. Q(n) +1 1 Z 2 = {±1}. 12

5: 3.3.1 2-Sylow U 2 G 2-Sylow., U 2 = 16. 6 A. A 4 2 5., A Stab G (A) ={(e, ±1), ((13), ±1), ((24), ±1), ((13)(24), ±1), ((12)(34), ±1)((14)(23), ±1), ((1234), ±1)((1432), ±1)}( ) 6: 2-Sylow U 2 Stab G (A) ={(e, ±1), ((13), ±1), ((24), ±1), ((13)(24), ±1), (27) ((12)(34), ±1), ((14)(23), ±1), ((1234), ±1)((1432), ±1)} (28) N G (U 2 )( ) (29) 13

N G (U 2 ) = U 2 N G (U 2 ) U 2 A. n 2 N G (U 2 ) = U 2 = 16 G n 2 = N G (U 2 ) = 3 (30) A 3. 14

4 4.1 Geogebra.. p-sylow.. T 4 p-sylow, (p=2,3 ) T 6, T 8 2-Sylow, Sylow (T 4 p=2 ) T 4 2-Sylow 4.2 T 6, T 8 3-Sylow,. T 12, T 20 p-sylow,. p-sylow,.. 1. [1] 30 1989. [2] M.A 2007. [3] 2015. [4] 1987. 15