PowerPoint Presentation

Similar documents
BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

untitled

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

rcnp01may-2

nenmatsu5c19_web.key

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


スーパーカミオカンデにおける 高エネルギーニュートリノ研究


( ) ,

Mott散乱によるParity対称性の破れを検証

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


The Physics of Atmospheres CAPTER :

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ


LHC-ATLAS Hà WWà lνlν A A A A A A

総研大恒星進化概要.dvi

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Canvas-tr01(title).cv3

25 3 4

PowerPoint Presentation

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

meiji_resume_1.PDF

LLG-R8.Nisus.pdf


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

untitled

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Microsoft PowerPoint - okamura.ppt[読み取り専用]

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Solar Flare neutrino for Super Novae Conference

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

スライド 1

B

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =


日本内科学会雑誌第102巻第4号

untitled

From Evans Application Notes

Drift Chamber

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 2 2 (Dielecrics) Maxwell ( ) D H


Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

untitled

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

main.dvi

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

I II III IV V

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

10

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

untitled

FPWS2018講義千代

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

main.dvi

gr09.dvi

本文/目次(裏白)

Microsoft Word - 11問題表紙(選択).docx

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

untitled

X線分析の進歩36 別刷


SFN

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

J-PARC October 14-15, 2005 KEK

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Electron Ion Collider と ILC-N 宮地義之 山形大学

Muon Muon Muon lif

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

201711grade1ouyou.pdf

keisoku01.dvi

ohpmain.dvi

JPS2016_Aut_Takahashi_ver4

1 Tokyo Daily Rainfall (mm) Days (mm)

OHO.dvi

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

V懇_2017.key

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

2000年度『数学展望 I』講義録

Transcription:

KEK I. II. a. BESS b. c. d. III. BESS-Polar IV.

Introduction

D

p GeV (<1GeV )

D B.G. free D (Fuke et al.) D D D (<1GeV/n)

LSP WIMP Dark Matter χ jet fragmentation D K.Mori et al, APJ 566 (2002) 604

PBH PBH D

D BESS 1997-2000 : σ t C

BESS Detector

BESS Spectrometer BESS 99 T ~ 0.3m 2 sr, ~8-10 g/cm 2 / wall Rigidity (=Pc/Ze), β (σ t ~70ps), de/dx

Trigger

Balloon Flights

BESS Balloon Flight Launch up to ~36km (~5mbar) BESS spectrometer ~200m

Data Taking Live Time (hr) Mean Air Depth (g/cm 2 ) 1997 1998 1999 2000 15.8 16.8 27.4 28.7 5.4 5.2 3.9 5.9

Analysis

Event Selection Pre-Selection single track downward going fully contained N TOF = 1 or 2 Upper TOF de/dx Quality Cut trajectory fitting Paticle Identification de/dx vs Rigidity 1/β vs Rigidity Aerogel Chrenkov OK NG

Fiducial Volume

Quality Cuts Hits used in trajectory fitting χ 2 of trajectory fitting Dropped hits Trajectory agreement with IDC hits ( r-φ, z ) Trajectory agreement with TOF hits ( r-φ, z ) (TOF, de/dx)

Particle ID

Upper TOF de/dx dx cut Eliminate recoil deuterons ( fake events ) broad tail in upper de/dx Tighter than lower / JET de/dx

Particle ID

1/β cut

Silica aerogel veto cut eliminate e - /µ - backgrounds especially in high β region (1/β < 1.1) 97 n=1.03 98~ 00 n=1.02

Survived Events No D candidate

Deuteron Samples Number of D samples Rigidity (GV) 1997 7545 < 3.70 1998 7183 < 3.65 1999 8050 < 3.58 2000 5204 < 3.59 Efficiency

Possible Contamination D ( in R >2.3 GV where p 1/β band overlaps D band ) D p ~ 1 event / 4 flights (+3.89σ) ( c.f. ~ 0.1 event / 4 flights (+6σ) ) e - /µ - ~ 0.1 times p contamination p < 0.5 % T < 1 % e + /µ +, He << 0.1 %

Results D

Outline conservative D ( independent ) obs Φ D Ω total live 2 1 N S ε T ( E E )(1 sys. err) min ε = ε ε ε ε ε ε ε ε ε ε total trig rec pre qual d E/dx 1/ β agl acctrk acchit air

Normalization, Correction 3.09 for 95% C.L. upper limit (with null b.g.) obs Φ D Ω total live 2 1 N S ε T ( E E )(1 sys. err) min Monte Carlo simulation (GEANT) Measured by 1 MHz-clock

Normalization, Correction ε = ε ε ε ε ε ε ε ε ε ε total trig rec pre qual d E/dx 1/ β agl acctrk acchit air D sample p sample random p beam M.C.

Cross section Elastic/inelastic cross sections of D scale those of p by hard sphere model σ 1/3 1/3 1/3 1/3 ( Ai, At) Ai + At 0.71( Ai + At ) Inelastic interaction D is fragmented or annihilated 2

Efficiency of Quality Cut Quality cut efficiency basically from Deuteron data. In high-e region, quality cut is essential for p/d separation. Estimated by using both of data and MC. ε qual ε = εqdata ( p) ε qmc qmc ( D) ( p) simulated ε ε qmc qmc ( D) ( p) ε ( p) qdata estimated ε qual

Efficiencies

( ε ) ( ) Systematic errors 2 2 2 2 2 2 SΩ Tlive total SΩ T ε live trig ε ε rec = + + + + SΩ T ε SΩ T ε ε ε live total live trig rec pre 2 2 2 2 2 2 2 ε ε ε ε ε ε ε + + + + + + + ε ε ε ε ε ε ε qual de/dx 1/ β agl acctrk acchit air qual de/dx 1/ β agl acctrk acchit air pre dominant ~ 9 % 2nd largest ~ 6 % 3rd largest ~ 3 % Total ~ 10.4 % The above three efficiencies from MC. Uncertainty in cross sections is not considered ( fixed by the assumption )

Effective exposure factor

D 97-00 1.92x10-4 ( sum ) (m 2 s sr GeV/n) -1 1997 9.82x10-4 1998 8.87x10-4 1999 6.91x10-4 2000 6.24x10-4 0.17-1.15 GeV/n

Discussions

Prediction of D s D s from PBHs Calculation steps Particle emission Coalescence model Source spectrum Interstellar spectrum Solar modulation

Particle Emission dn s 2s dt 2 π [exp( Q/ kt) ( 1) ] d 2 N = N det d = 3 c T 8π GMk M j Γ Q= E dq emission spectrum Γs d g ( Q, E) j jn α j dq 2s j 2 π [exp( Q/ kt) ( 1) ] de antinucleon emission rate 13 10 g GeV T vs. M relation M t 14 u 1/3 5.0 10 ( ) g initial mass of expring PBHs 13.7Gyr

Coalescence model 3 3 3 3 d n 4 d n d d 3 p n 4 n D n 3 p γ = π p 3 0 γ p 3 γ 3 π 0 γ 3 dp 3 dp dp 3 dp 2 Coalescence momentum p 0 = 130MeV/c c.f. Other predictions of D spectra p 0 ~110~160MeV/c A+A accelerator (Low E) p 0 ~140~210MeV/c Theoretically p 0 ~100~400MeV/c PYTHIA/JETSET

Coalescence model

Source Spectrum dn dt 4.2 2 2 T ε ρ h M 1 3 8 3 14 5.2 10 GeV pc 1GeV 10 0.3GeV/cm 5.0 10 g ρ ε h local density of halo dark matter ratio of the density of PBHs with M = M to i ρ h

Interstellar Spectrum Propagation by the Standard Leaky Box 1 λ esc I D QD =, λesc = λesc( R, β) 17g/cm 4πρ m c.f. τ esc λ ρβ c esc 7 = 3 10 yr 2 B/C ratio, C/O ratio

Solar Modulation Numerical calculation of the spherically symmetric model by Fisk. 1 V 2 2 r r 3 r E α ( 2 rs) = ( EU) Modulation parameter from proton spectrum 1997: φ = 500MV 1998: φ = 610MV 1999: φ = 648MV 2000: φ = 1344MV

Solar Activity Climax Neutron Monitor Solar Min. Solar Max. http://odysseus.uchicago.edu/neutronmonitor/

PBH D

Local PBH R PBH T 1 dn dt d T 3.1 ε ρ M 10 pc yr 10 0.3GeV/cm 5.0 10 g 95% C.L. (pc -3 yr -1 ) 97-00 1.8x10 0 sum 1997 5.2x10 0 1998 6.9x10 0 1999 5.7x10 0 2000 2.6x10 1 3 h 3 1 8 3 14 2 c.f. Upper limits on R PBH p ~10-2 TeV-GRB ~10 5-6 Diffuse γ-ray ~10-1

PBH 95% C.L. 1 α dε ε M i =, α = dm M M dε ε Ωh Ω Ω = d 10 0.1 9 PBH h dm i 2.0 10 M 8 M i 97-00 1.2x10-6 sum 5 2 result c.f. Upper limits on Ω PBH p ~10-8 ~ -9 e + /e - ~10-9 Diffuse γ-ray ~10-8

Future Prospects BESS-Polar Tiger Antarctica Flight, 2001/2002

Future Prospects BESS-Polar AMS PAMELA GAPS

BESS-Polar D

BESS-Polar / PAMELA / AMS Sensitivity SΩεt BESS 3 yr 20 days 3 yr

BESS-Polar BESS-Polar

10 1 @ Ft. Sumner

BESS-TeV BESS-Polar

BESS-Polar

D 1.9 x 10-4 (m 2 s sr 2 GeV/n) -1 in 0.17-1.15 GeV/n D BESS 97-00 D D Local PBH PBH BESS-Polar