sikepuri.dvi

Similar documents
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt



S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

29

( ) ( )

c 2009 i


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

main.dvi

II 2 II

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

( ) : 1997

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

2011de.dvi

08-Note2-web

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


i

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

振動と波動


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(1) (2) (3) (4) 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1

Gmech08.dvi


chap1.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

高校生の就職への数学II

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Part () () Γ Part ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Note.tex 2008/09/19( )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

量子力学 問題

dvipsj.8449.dvi

K E N Z OU

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

熊本県数学問題正解

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

chap03.dvi


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Gmech08.dvi

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2


Microsoft Word - 11問題表紙(選択).docx

30 (11/04 )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

I 1

Transcription:

2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s):

2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z 22 Y 2 Y 22 Z,Z 22 Z 2,Z 2 ( I I 2 V V 2 ) ) 2..2 :H(s) H(s) P(s) Q(s) b ns n + b n s n + + b 0 a m s m + a m s m + + a 0 a i,b j : H(s) V out(s) V in (s) CRs + 3: (LPF) s s H(s) 2..3 H(s) H(s) P(s) Q(s) b n a m (s s 0)(s s 02 ) (s s 0n ) (s s p )(s s p2 ) (s s pm ) b n H : (scale factor) a m s 0, s 0n (zero) s p, s pn (pole) H(s 0i ) 0 H(s pi ) 2

4: s s, s 2 + (s+i)(s i) s Re Re s n > m s H(s) Hs n m (H: ) H(s) s H(s) (n-m ) n < m H(s) Hs H(s) s m-n m n 2..4 x(t) y(t) X(s) L[x(t)] Y (s) L[y(t)] H(s) Y (s) X(s) y(t) L [Y (s)] L [H(s)X(s)] x(t) δ(t) x(t) δ(t) X(s) L[δ(t)] Y (s) H(s) H(s) y(t) L [H(s)] H(s) K L Ke spit Ke αpit e jωpit s s pi (K : s pi α pi + jω pi ) s pi s s m H(s) K m (s s pi ) m + K m (s s pi ) m + + K (s s pi ) 3

K m L (s s pi ) m K m (m )! tm e spit m 2..5 t m s H(s)X(s) 2.2 2.2. ( V V 2 ) ( ) ( Z Z 2 Z 2 Z 22 I I 2 ), ( I I 2 ) ( ) ( Y Y 2 Y 2 Y 22 V V 2 ) Z,Z 22,Y,Y 22... s 2.2.2 Z 2,Z 2,Y 2,Y 2...n m + 4

2.2.3 H(s) s jω log H(jω) log H(jω) + j arg(h(jω)) 2.3 2.3. H(s) H (s s 0) (s s 0n ) (s s p ) (s s pm ) s jω jω 5: H(jω) H(jω) H d 0d 02 d 0n d p d p2 d pm arg(h(jω)) log H (jω) log H + n m θ 0i i i i θ pi n m log d 0i log d pi i 5

(All pass) 6: (All pass) 2.3.2 H(s) P(s) Q(s) H (s)h 2 (s) H k (s) H i (s) () H(s) b s + b 0 s + a 0 H s + β s + α b,b 0 LP Low-Pass (b 0) H(s) b 0 s + a 0 s jω 7: LP 2 HP High-Pass (b 0 0) H(s) b s s + a 0 s jω 6

8: HP 3 AP All-Pass H(s) s a 0 s + a 0 s jω 9: AP 4 H(s) b s + b 0 s + a 0 s jω 7

0: : (2) H(s) b 2s 2 + b s + b 0 s 2 H s2 + ( ωn Q N )s + ωn 2 + a s + a 0 s 2 + ( ω0 Q 0 )s + ω0 2 H(s) s R L s 2 + s R L + LC 8

2: LP H(s) Hω 2 0 s 2 + ( ω0 Q 0 )s + ω 2 0 3: LP 2 HP Hs 2 H(s) s 2 + ( ω0 Q 0 )s + ω0 2 4: HP 3 BP(Band-Pass) 9

H(s) H( ω0 Q 0 )s s 2 + ( ω0 Q 0 )s + ω 2 0 5: BP 4 H(s) H(s2 + ω 2 N ) s 2 + ( ω0 Q 0 )s + ω 2 0 6: 5 AP ( ) H(s) H(s2 ( ω0 Q 0 )s + ω 2 0) s 2 + ( ω0 Q 0 )s + ω 2 0 0

7: AP 2.4 2.4. 8: 9: (All-pass) Z a Z b R 0

H(s) R 0 Z a (s) R 0 + Z a (s) Z a,z b All-Pass Z in R 0 R 0 ) Z a Z a (s) Z a (s) Z a ( s) H(s) s p R 0 + Z a (s p ) 0 R 0 Z a ( s p ) 0 R 0 Z a (s) s s p s p s p s p 2.4.2 H(s) (s s 0) (s s 0n )(s s 0)(s s 02) (s s p ) (s s pm ) s 0 s 0n : s 0,s 02 : (s + s 0)(s + s 02) H(s) (s s 0) (s s 0n )(s + s 0)(s + s 02) (s s p ) (s s pm ) (s s 0)(s s 02) (s + s 0 )(s + s 02 ) H(s) 20: H( ) H(s) /H(s) 2

2: 2.4.3 H(s) H(s) 2.5 R,L,C 2.5. e(t) i(t) t e(t )i(t )dt 0 2.5.2 Hurwitz Z(s) )s 2)Re(s) > 0 ReZ(s) > 0 Z(s) Z(/s),/Z(s) Z(s) ReZ(jω) 0 s jω s Z(s) (Re(s) > 0) ReZ(s) > 0 s Z(s) 0 Z(s) Z(s) s 3

Z(s) ()s (2)Re(s) > 0 Z(s) (3) Re(jω) 0 (4) 2.6 L,C 2.6. 2.6.2 Z(s) P(s) Q(s) P(s) Q(s) Z(s) Z(s) H (s 2 s 2. 0) (s 2 s 2 0n) s (s 2 s 2 p ) (s2 s 2 p(n ) ) 2. H s (s 2 s 2 0) (s 2 s 2 0n) (s 2 s 2 p ) (s2 s 2 pn) 4. 3. Hs (s2 s 2 0) (s 2 s 2 0n) (s 2 s 2 p ) (s2 s 2 pn) H s s p,,s pn, s p,, s pn s 0,,s 0n, s 0,, s 0n (s 2 s 2 0) (s 2 s 2 0(n ) ) (s 2 s 2 p ) (s2 s 2 pn). 2. 3. 4. s 0 0 0 s 0 0 0 0 0 0 2.6.3 2 s,0 3 Z(s) Z(jω) jx(ω) () dx(ω) dω > 0 X(ω) 4

(2)X(ω) 22: 0 23: 0 24: 0 25: 0 26: 27: 28: 0 0 29: 0 0 5

2.6.4 Z(s) Z(s) s5 +6s 3 +8s (s 2 +)(s 2 +3) )Foster s 4 +4s 2 +3 s(s2 +2)(s 2 +4) Z(s) sl sc s /s Z(s) s5 + 6s 3 3 + 8s s 4 + 4s 2 + 3 s + 2 s s 2 + + 2 s s 2 + 3 s + 2 3 s + 3 2 s + 2s + 6 s 30: Foster 2)Foster Y (s) /Z(s) /sl,sc s Y (s) Z(s) s4 + 4s 2 + 3 s 5 + 6s 3 + 8s 8 3 s + 4 s 3 s 2 + 2 + 8 s s 2 + 4 8 3 s + 4s + 8 s + 8 3 s + 3 32 s 3: Foster 3)Cauer Z(s) Z(s) L s + C s + L 2s+ 6

L s C s Z(s) L Z(s) s5 + 6s 3 + 8s s 4 + 4s 2 + 3 s(s4 + 4s 2 + 3) + 2s 3 + 5s s 4 + 4s 2 s + 2s3 + 5s + 3 s 4 + 4s 2 + 3 s + s + 2 s + 4 3 s+ 3 2 s+ s 3 s 4 +4s 2 +3 2s 3 +5s 32: Causer 33: Causer 4)Cauer 2 Z(s) Z(s) C s + L + s C 2 s + 2 Z(s) + 6s2 + 6s 4 2s + 8s 3 ( + 4s2 ) + 2s 2 + 6s 4 2s( + 4s 2 ) 2s + s + s +3s Z(s) s5 + 6s 3 + 8s s 4 + 4s 2 + 3 3+4s 2 +s 4 8s+6s 3 +s 5 2s + 2s+8s 3 2s 2 +6s 4 + 8 3 s 7 32 s+ 88 49 s + 2 968 s + 443 s 34: Causer 2 7

35: Causer 2 36: Causer 2 2 2.6.5 Z(s) Z(s) Z(s) ( Z (s) Z 2 (s) ) Z 2 (s) Z 22 (s) Z Re[Z (s)x 2 + 2Z 2 (s)x x 2 + Z 22 (s)x 2 2] > 0 (Re[s] > 0 ) Z 2 Z 2 x,x 2 Q Z (s)x 2 + 2Z 2 (s)x x 2 + Z 22 (s)x 2 2 Q Q Z Z Q (Re(s) > 0 Q > 0 Z (Y ) s a + bj x,x 2,a,b 4 Z Z Z,Z 22 ( ) Z 2 (Foster ) Z (s) h(0) s + k Z 22 (s) h(0) 22 s + k Z 2 (s) h(0) 2 s + k 2sh (k) s 2 + ωk 2 + h ( ) s 2sh (k) 22 s 2 + ωk 2 + h ( ) 22 s 2sh (k) 2 s 2 + ωk 2 + h ( ) 2 s 8

h 0 s h (0) 0 h(0) 22 0 h(0) h(0) 22 (h(0) 2 )2 0 h (k) 0 h(k) 22 0 h(k) h(k) 22 (h(k) 2 )2 0 h ( ) 0 h ( ) 22 0 h ( ) h( ) 22 (h ( ) 2 )2 0 Z,2 2 Z 2 k a,b (a,b) ( s 2 +a s 3 +4s b s 3 +4s ( ( a 4 )s s 2 +4 + ( a 4 ) s ( b 4 )s s 2 +4 + ( b 4 ) s b s 3 +4s s 2 +2 s 3 +4s ) ( b 4 )s s 2 +4 + ( b 4 ) s ( 2 )s s 2 +4 + ( 2 ) s a 4 0, 2 0, ( a 4 ) 2 (b 4 )2 0 ) a 4 0, 2 0, a 4 2 (b 4 )2 0 a 2 b2, 8 b 2 a, 0 a 4 2 37: a-b 9

2.7 RL RC 2.7. RL RC RL Z (s) ψ(s) (R C ) Z LC(s) Z RL (s) ψ(s) Z LC (s) s ψ(s2 ) Z RL (s) s3 + 6s 2 + 8s s 2 + 4s + 3 Z LC(s) s s6 + s 4 + 8s 2 s 4 + 4s 2 + 3 Foster RC R L Z RC (s) φ(s) Z LC (s) sφ(s 2 ) 3 ( ) 38: g6 3. ω 0 20

LPF LPF,HPF,BPF,BEF Butterworth( ) : Tchebyscheff( ) : LPF ( )F(jω) F(jω) 2 + ϕ 2 (ω) (0 < ω < ), ( < ω) 0 ( log 0 ) ω ϕ 0,ω ϕ ϕ LPF 3.. Butterworth ϕ(ω) ω n F(jω) 2 + ω 2n n Butterworth F(j0) 2 F(j ) 2 0 F(j) 2 2 s jω F(jω) 2 F(jω)F(jω) F(jω)F( jω) F(s)F( s) + ( ) n s 2n + ( ) n s 2n 0 s 2n ( ) n+ ( ) n (e πj ) n e (n )πj e ((n )π+2kπ)j k : s e (n )π+2kπ 2n j 2n 2

39: F(s) F( s) s F(s) 2n F(s) F(s) 2 +( ) n s 2n n F (s)f ( s) s 2 ( s)( + s) F (s) + s 3..2 Tchebyscheff ϕ(ω) εv n (ω) n Tchebyscheff V n (ω):n cos(ncos ω) ω V n (ω) cosh(ncosh ω) ω V n (ω) 2ωV n (ω) V n 2 (ω) (V 0 (ω), V (ω) ω) V n (ω) ω n F(jω) 2 F(jω)F( jω) ω + ε 2 V 2 n (ω) ω V n (ω), V n () + ε 2 + ε 2 V 2 n (ω) 22

40: g6 3..3 H(jω) H(jω) e jθ(ω) τ(ω) dθ(ω) dω τ(ω) θ(ω) ω 3.2 LC 4: F(jω) V 2 V 0 23

0, 0 R R 2 R 0 R 2 3.2. ( ) V I ( A C ) ( B D V 2 I 2 ) 42: ( ) ( ) ( ) ( ) V A B A 2 B 2 V 3 I C D C 2 D 2 I 3 ( ) ( ) A A 2 + B C 2 A B 2 + B D 2 V 3 43: C A 2 + D C 2 C B 2 + D D 2 I 3 V 3 V H(s) V 3 V A A 2 + B C 2 44: I I 2 I, V V 2 IZ ( ) ( ) ( ) V Z V 2 0 I I 2 24

45: V V 2 V, I I 2 (I I 2 )Z V ( ) ( )( ) V 0 V 2 I Z I 2 LPF ( ) ( ) ( ) ( ) V R 0 V 2 I 0 sc I 2 ( )( ) + scr R V 2 sc H(s) 46: LPF + scr I 2 ( ) ( ) ( ) ( )( ) V sl 0 sl 2 V 2 I 0 sc 0 I 2 ( )( ) s 2 CL + s 3 CL L 2 + s(l + L 2 ) V 2 sc s 2 CL 2 + I 2 ( ) ( ) V 2 I 2 47: Z in, Z out ( ) ( ) ( V A B C D I V AV 2 + BI 2 V 2 I 2 ) 48: I CV 2 + DI 2 25

Z in V I AV 2 + BI 2 CV 2 + DI 2 AR 2 + B CR 2 + D ( V 2 I 2 R 2 ) Z in Z in Z in s Cauer Z out Z out DR + B CR + A 3.2.2 R R 49: R ( ) ( ) ( ) R A B A + CR B + DR 0 C D C D F(s), T(s) F(s) T(s) V 0 V 2 A + CR N (s I20 2 ) + sn 2 (s 2 ) I 2 0 A C A N (s 2 ),CR sn 2 (s 2 ) Z in AR 2 + B CR 2 + D A + B R 2 C + D R 2 R 2 A C N (s 2 ) sn 2 (s 2 ) R :3 R T(s) s 3 + 2s 2 + 2s + 26

3 ( 6 ) R N (s 2 ) 2s 2 + sn 2 (s 2 ) s(s 2 + 2) Z in R Z in 2s2 + s 3 + 2s 2 s + 4 3 s+ 3 2 s 50: 3 R R 2 3.2.3 0 R 0 R 5: 0 R ( ) ( ) ( ) A B 0 A + B R 2 B C D R 2 C + D R 2 D 27

F(s), T(s) F(s) T(s) V 0 V 2 A + B N (s I20 2 ) + sn 2 (s 2 ) R 2 I 2 0 A B A N (s 2 ), B R 2 sn 2 (s 2 ) Z out DR + B CR + A R 0 B A sn 2(s 2 ) N (s 2 ) R 2 3 :3 R 2 Z out s3 + 2s 2s 2 + 2 s + 4 3 s + 3 2 s 52: 3 0 R Z out R 0 3.2.4 R R 2 3.3 LPF ( ) ω 0 ω c R R LPF LPF,HPF,BPF,BEF 3.3. LPF LPF (cut off Freq) ω c R 28

LPF x jx j ω ω c LPF ω ω ω c jxa i j ω ω c a i j a i ω c ω ω c jxb i jωb i j bi ω c ω x ω P64 R R R R R a i a ir ω c b i b i ω c R L C LPF LPF 3.3.2 LPF HPF x < x > ω c jx j ω ω c x ω c ω jxa i j ω c ω a i j( ω ca i )ω R j( ω ca i )ω j( ω ca ir )ω C ω ca ir j ω jxb i ω c b i j R ω c b i ω L R ω cb i 29

3.3.3 LPF BPF x < ω < ω < ω 2 HPF LPF ω ω x k ω 0 k 0 2 ω ω ω 0 x 0 ω 0 ω ω 2 k k 2 k ω0 ω 2 ω ω b ω b ω 2 ω p64 jx j ω 0 ω b ( ω ω 0 ω 0 ω ) p65 3.3.4 LPF BEF BEF BPF jx j ω0 ω b ( ω ω 0 ω0 ω ) 53: LPF 4 5 30

5. x Z,Y : 54: 5.2 55: { V (x) V (x + x) + Z xi(x) I(x + x) I(x) Y xv (x + x) { V (x+ x) V (x) x ZI(x) I(x+ x) I(x) x 0 () x Y V (x + x) { dv (x) dx ZI(x) di(x) dx Y V (x + x) Z,Y x { V (x) Ae γx + Be γx I(x) Z 0 (Ae γx Be γx ) γ Y Z : Z 0 Z γ : 3

(2) γ α + βj Ae γx e αx x Be γx 56: Z 0 57: 0 B 0 V Ae γx I Z 0 Ae γx x V I Z 0 Z 0 Z 0 Z,Y Z jωl Y jωc γ Y Z jω LC jβ L Z 0 C λ 2π β 2π ω LC 32

5.3 x V ( l) V,I( l) I,V (0) V 2,I(0) I 2 () { A + B V 2 A B Z 0 I 2 A V 2 + Z 0 I 2, B V 2 Z 0 I 2 2 2 58: () x l V V 2 cosh γl + Z 0 I 2 sinhγl I V 2 Z 0 sinhγl + I 2 cosh γl (3) 59: Z 2 Z V 2 I 2 Z 2 Z V I Z 0 V 2 cos γl + Z 0 I 2 sinhγl V 2 sin γl + Z 0 I 2 cosh γl Z 0 Z 2 + Z 0 tanh γl Z 0 + Z 2 tanh γl Z Z 2 0) Z s Z Z20 Z 0 tanh γl 33

Z 2 ) Z f Z Z2 Z 0 tanh γl Z 0 coth γl Z s Z f Z 2 0 Z 0 Z s Z f, tanhγl Z 0 Z 0 (Z s ) ( ) (Z f Z s Z f { Z s jz 0 tan βl Z f jz 0 cot βl l λ 4 β 2π λ βl π 2 Z s Z f 0 l λ 4 λ 4 l Z s Z f 0 < l < λ 4 L C λ 4 < l < λ 2 C L 5.4 Z L (2) { V Ae γx + Be γx Z 0 I Ae γx Be γx 60: x 0 V,I V Z L I A + B, Z L Z 0 A + B A B Z 0 I A B B A Z L Z 0 Z L + Z 0 s 34

s A B Z L Z 0 s 0 B 0 Z L 0 s Z L s Ae γx : Be γx : s(x) Beγx Ae γx B A e2γx : ( ) s(0)e 2γx s(0)e 2αx e 2jβx γ α + jβ s 5.5 6 s age 7 3 TEX : 7/3( ) : : 7:40 : 3000 m( )m 35