2015/4/13 10: C C C C John C. Hull,, Steven E. Shreve, (1), Peter E. Kloeden, Eckhard Platen Num

Similar documents
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

i 18 2H 2 + O 2 2H 2 + ( ) 3K

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Untitled

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

meiji_resume_1.PDF

- II

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

body.dvi

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Chap11.dvi


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

mugensho.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

DVIOUT

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

II 2 II

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

II 1 II 2012 II Gauss-Bonnet II

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Chap10.dvi

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

³ÎΨÏÀ

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

i

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

untitled

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

201711grade1ouyou.pdf

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

Chap9.dvi

高等学校学習指導要領

高等学校学習指導要領

入試の軌跡

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

v er.1/ c /(21)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

7-12.dvi


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W


QMII_10.dvi

K E N Z OU

液晶の物理1:連続体理論(弾性,粘性)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Lebesgue Fubini L p Banach, Hilbert Höld

TOP URL 1


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

i

30

webkaitou.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 I

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

phs.dvi

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

応力とひずみ.ppt

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Transcription:

2015/4/13 10:56 0 0.1 http://cm.hit-u.ac.jp/~kobayashi/lecture/ 0.2 C C C C John C. Hull,, Steven E. Shreve, (1, Peter E. Kloeden, Eckhard Platen Numerical Solution of Stochastic Differential Equations, Springer,,,,,,, 1

0.3 C C++ C C++ Borland C++ Compiler http://www.embarcadero.com/jp/products/cbuilder/free-compiler MinGW Visual Studio Cygwin Windows Linux C++ Linux Open Watcom C/C++ Digital Mars C/C++ Compilers Mac Windows Linux 0.4 gnuplot http://www.gnuplot.info/ Download from SourceForge Download 32bit gp***-win32-setup.exe 64 gp***-win64-setup.exe *** 2

0.5 Windows Terapad 3

1 µ, σ 2 X 1, X 2, S n = X 1 + X 2 + + X n nµ nσ 2 σ 2 lim P a n ( Sn nµ nσ = 1 2π a e x2 /2 dx 2 X, Y f X, f Y Z = X + Y f Z f Z f X f Y f Z (x = f X (tf Y (x tdt 1.1 X Y h Z = X + Y Fourier f X Fourier φ X (z = e izx f X (xdx Fourier izx Y Z Fourier φ Z (z = φ X (zφ Y (z Z Z Fourier X Fourier Y Fourier 1.2 4

e izx f X (xdx e izx X E[e izx ] X φ X (z = E[e izx ] X E[e izz ] = E[e iz(x+y ] = E[e izx e izx ] = E[e izx ]E[e izy ] φ Z (z = φ X (zφ Y (z 1.3 P (X = 0 = p, P (X = 1 = q = 1 p Bernoulli 1.4 [0, 1] 1.5 X 1, X 2, µ, σ 2 Y n = S n nµ nσ E[e izyn ] = E[e iz(sn nµ/( nσ ] n = E[e iz(x k µ/( nσ ] k=1 ( = E[e iz(x 1 µ/( n nσ ] ( [ = E 1 + iz(x ] 1 µ z2 (X 1 µ 2 n + R nσ 2nσ 2 n n = (1 z2 2n + ER n e z2 /2 R n n 3/2 1.6 5

2 2.1 r S S 0 S 0 1 99 S H 1 S L V V 1 S S H V H 1 S S L V L V 0 V 0 V 99 V H 0 V H V H 1 + r 0 S V H V L S HV L S L V H S H S L (1 + r(s H S L V 0 V H V L S 0 + S HV L S L V H S H S L (1 + r(s H S L V 0 V 0 S V 0 V 0 = 1 1 + r ( (1 + rs0 S L V H + S H (1 + rs 0 V L S H S L S H S L V 0 p = (1 + rs 0 S L S H S L q = S H (1 + rs 0 1 r S H S L S ps H + qs L = (1 + rs 0 S L S H S L S H + S H (1 + rs 0 S H S L S L = (1 + rs 0 6

2.2 x M > 0 f(x < M g(x f(x = O(g(x O( cos x = O(1 sin x = O(x e x 1 x = O(x 2 x 3 = O(x 2 1 1 + x = 1 x + x2 + O(x 3 O(x s x s 2.3 1 σ t = 0 t = T r 7

M = T M, t m = m S p us q = 1 p ds u > 1 > d > 0 d = 1/u p, u r e r pu + qd = e r p + q = 1 p = er d u d, q = u er u d log S σ 2 p(log u r 2 + q(log d r 2 = σ 2 p, q (e r d(log u r 2 + (u e r (log d r 2 = (u dσ 2 log u = ε, log d = ε (e r e ε (ε r 2 + (e ε e r ( ε r 2 = (e ε e ε σ 2 2(e ε + e ε 2e r εr = (e ε e ε (σ 2 r 2 2 ε 2 ε 2(ε 2 2r + O(ε 4 + O( 2 εr = (2ε + ε3 3 + O(ε5 (σ 2 ε 2 + O( 2 2ε 2 r = 2σ 2 (2 + O(ε 2 + O(ε 4 + O( 2 ε 2 = σ2 + O(ε 4 + O( 2 1 + O( = σ 2 + O(ε 4 + O( 2 8

ε = σ 2 + O(ε 4 + O( 2 = σ + O( 1/2 ε 4 + O( 3/2 ε = σ O( 1/2 ε 4 + O( 3/2 = O( 3/2 ε O( x x x x x u = e σ, d = e σ, p = er d u d, q = u er u d Cox, Ross and Rubinstein(1979 O( Taylor 2.1 d = 1/u p = q = 1 u d 2 S n = S 0 e nσ t m = m S n Y m,n t = t m t = t m+1 Y m,n = e r (py m+1,n+1 + qy m+1,n 1 t = t M t = 0 Y m,n t = 0 S N S N t = M S (M+N S M+N 2.2 t = 0 9

2.3 t = 0 t = 0 1 2 1 t = 0 2 t 1 Y 1, 1 Y 1,1 Y 1,0 C double yy[1001]; double *y; y = yy + 500; y[-500] y[500] t = t m t = t m+1 f(s ( Y m,n = max e r (py m+1,n+1 + qy m+1,n 1, f(s n 2.4 t = 0 2.5 t = 0 10

3 a n a n = a + cλ n + o(λ n a n = λa n+1 a n λ 1 a n = a + o(λ n Richardson Richardson Richardson λ λ Aitken 3.1 π 4 = 1 1 3 + 1 5 1 7 + 1 9 a n = 4 2 n k=0 ( 1 k 2k + 1 a 0, a 16 Richardson π 3.2 Richardson 2 n a n λ 2 4 2 1 4 1 Richardson 4 Black-Scholes Y m,n = e r (py m+1,n+1 + qy m+1,n 1 11

Y m+1,n Y m,n = Y m+1,n e r (py m+1,n+1 + qy m+1,n 1 ( 1 = Y m+1,n e r 2 (Y m+1,n+1 + Y m+1,n 1 + p q 2 (Y m+1,n+1 Y m+1,n 1 = (1 e r Y m+1,n ( 1 e r 2 (Y m+1,n+1 2Y m+1,n + Y m+1,n 1 + p q 2 (Y m+1,n+1 Y m+1,n 1 Y m+1,n Y m,n = 1 e r Y m+1,n e r ( 1 2 (Y m+1,n+1 2Y m+1,n + Y m+1,n 1 + p q 2 (Y m+1,n+1 Y m+1,n 1 s = log S 0 Y m+1,n Y m,n Y t 1 e r Y m+1,n ry 1 2 (Y m+1,n+1 2Y m+1,n + Y m+1,n 1 = σ2 2 Ym+1,n+1 2Y m+1,n + Y m+1,n 1 (σ 2 σ2 2 2 Y s = σ2 S 2 2 Y 2 2 p q 2 (Y m+1,n+1 Y m+1,n 1 = S + σ2 S 2 2 Y S (p qσ = (2er u dσ (u d Ym+1,n+1 Y m+1,n 1 2(σ (r σ2 Y (r 2 s = σ2 S Y 2 S Ym+1,n+1 Y m+1,n 1 2(σ 2 Y t = S 2 σ2 2 2 Y Y rs S2 S + ry Black-Scholes Black-Scholes 12

5 5.1 S n = S 0 e nσ t m = m S n1 S n2 Y m,n1,n 2 n 1 n 2 { e r (py m+1,n1 +1,n 1 +1 + qy m+1,n1 1,n 1 (n 1 = n 2 Y m,n1,n 2 = e r (py m+1,n1 +1,n 2 + qy m+1,n1 1,n 2 (n 1 < n 2 t = 0 S N S N t = M S (M+N S M+N 0 S N S M+N 5.1 t = 0 2 int main({ double yy[2000][2000];... } 13

double yy[2000][2000]; int main({... } int main({ static double yy[2000][2000];... } static C int m; double *a; m = 1000; a = (double*malloc(m*sizeof(double; // a[0] a[m-1] free(a; // 1 int i; int m, n; double **a; m = 1000; n = 1000; a = (double**malloc(m*sizeof(double*; a[0] = (double*malloc(m*n*sizeof(double; for (i=1; i<m; i++{ a[i] = a[i-1] + n;} // a[0][0] a[m-1][n-1] free(a[0]; // free(a; 14

2 C++ 1 int m; double *a; m = 1000; a = new double[m]; // a[0] a[m-1] delete[] a; // 2 int i; int m, n; double **a; m = 1000; n = 1000; a = new double*[m]; a[0] = new double[m*n]; for (i=1; i<m; i++{ a[i] = a[i-1] + n;} // a[0][0] a[m-1][n-1] delete[] a[0]; // delete[] a; C++.cpp 15

5.2 S n = S 0 e nσ 0 t m = m S n1 S n2 Y m,n1,n 2 t m = m S n1 S n2 t m+1 = (m + 1 p S n1 +1 q S n1 1 p A = (m + 1S n 2 + S n1 +1 q B = (m + 1S n 2 + S n1 1 m + 2 m + 2 A B t m t m+1 t m+1 ( Y m,n1,n 2 = e {p r Sna+1 A Y m+1,n1 +1,n S na+1 S a + na +q ( Snb +1 B S nb +1 S nb Y m+1,n1 1,n b + A S n a S na+1 S na Y m+1,n1 +1,n a+1 A = (m + 1S n 2 + S n1 +1, S na A < S na+1, m + 2 B = (m + 1S n 2 + S n1 1, S nb B < S nb +1. m + 2 B S n b S nb +1 S nb Y m+1,n1 1,n b +1 }, t = 0 S N S N t = M S (M+N S M+N 0 S M+N S M+N 5.2 t = 0 16

6 U V U V σ 1, σ 2 U, V U n = U 0 e nσ 1, V n = V 0 e nσ 2 t m = m U n1, V n2 Y m,n1,n 2 U p 1 q 1 V p 2 q 2 u 1 = e σ 1, d 1 = e σ 1, p 1 = er d 1, q 1 = u 1 e r u 1 d 1 u 1 d 1 u 2 = e σ 2, d 2 = e σ 1, p 2 = er d 2, q 2 = u 2 e r u 2 d 2 u 2 d 2 Y m,n1,n 2 = e r (p 1 p 2 Y m+1,n1 +1,n 2 +1 + p 1 q 2 Y m+1,n1 +1,n 2 1 + q 1 p 2 Y m+1,n1 1,n 2 +1 + q 1 q 2 Y m+1,n1 1,n 2 1 t = 0 U N1 U N1 V N2 V N2 t = M U (M+N1 U M+N1 V (M+N2 V M+N2 6.1 2 t = 0 6.2 t = 0 6.3 t = T/2 t = 0 17

7 2 Black-Scholes Y t = S 2 σ2 2 2 Y Y rs S2 S + ry s = log S Y s Y S = Y s ds ds = 1 S Y s 2 Y S = ( 1 2 S S Y = 1 s S Y 2 s + 1 S 2 Y s 2 ds ds = 1 S 2 Y s + 1 S 2 2 Y s 2 Y t = σ2 2 2 Y s 2 (r σ2 Y 2 s + ry s Y (m, n s Y m,n Y Y m+1,n, Y t Y m+1,n Y m,n, Y s Y m+1,n+1 Y m+1,n 1, 2 s 2 Y s Y m+1,n+1 2Y m+1,n + Y m+1,n 1, 2 s 2 Black-Scholes Y m+1,n Y m,n = σ2 2 Ym+1,n+1 2Y m+1,n + Y m+1,n 1 s 2 (r σ2 Ym+1,n+1 Y m+1,n 1 2 2 s + ry m+1,n Y m,n Y m+1,n 1, Y m+1,n, Y m+1,n+1 0 7.1 18

7.2 t = 0 7.3 s ry m+1,n ry m,n s = σ (1 + ry m,n = ( 1 2 + 2σ (r ( σ2 1 Y m+1,n+1 + 2 2 2σ (r σ2 Y m+1,n+1 2 Y m+1,n ( 1 n ε Y m,n (Y m+1,n + ( 1 n ε (Y m,n + η = σ2 2 (Y m+1,n+1 + ( 1 n+1 ε 2(Y m+1,n + ( 1 n ε + (Y m+1,n 1 + ( 1 n 1 ε s 2 (r σ2 (Ym+1,n+1 + ( 1 n+1 ε (Y m+1,n+1 + ( 1 n 1 ε + r(y m+1,n + ( 1 n ε 2 2 s η η = ( 1 r 2σ2 ( 1 n ε s 2 2σ 2 s 2 < 2 r 19

s 2 < 1 σ 2 ry m+1,n ry m,n η = ( 1 1 2σ2 ( 1 n ε 1 + r s 2 2σ 2 < 2 + r s 2 2 t m Y m, Y m+1,n Y m,n = σ2 2 Ym,n+1 2Y m,n + Y m,n 1 s 2 (r σ2 Ym,n+1 Y m,n 1 2 2 s + ry m,n s 7.4 3 3 7.5 O( Y m+1,n Y m,n t = t m t = t m+1 t = (t m + t m+1 /2 t = (t m + t m+1 /2 20

t = t m t = t m+1 t = (t m + t m+1 /2 Y m+1,n Y m,n = 1 { σ2 2 2 Ym,n+1 2Y m,n + Y m,n 1 s 2 (r σ2 Ym,n+1 Y m,n 1 + ry m,n 2 2 s σ2 2 Ym+1,n+1 2Y m+1,n + Y m+1,n 1 s 2 } (r σ2 Ym+1,n+1 Y m+1,n 1 + ry m+1,n 2 2 s 7.6 2 { Y m,n1,n 2 = e r py m+1,n1 +1,n a + qy m+1,n1 1,n b }, ( ( (m + 1Sn2 + S n1 +1 (m + 1Sn2 + S n1 1 n a = 1 σ log Y m+1,n1,n 2 Y m,n1,n 2 (m + 2S 0 = 1 e r Y m+1,n1,n 2, n b = 1 σ log e r ( 1 2 (Y m+1,n 1 +1,n 2 2Y m+1,n1,n 2 + Y m+1,n1 1,n 2 e r ( p Ym+1,n 1 +1,n a Y m+1,n1 +1,n 2 + p q 2 (Y m+1,n 1 +1,n 2 Y m+1,n1 1,n 2 (m + 2S 0 + q Ym+1,n 1 1,n b Y m+1,n1 1,n 2, 3 Black-Scholes 1 U t u = log U Y m+1,n1 +1,n a Y m+1,n1 +1,n 2 = Y m+1,n 1 +1,n a Y m+1,n1 +1,n 2 log S na log S n2 log S n a log S n2 21

Y m+1,n1 +1,n a Y m+1,n1 +1,n 2 Y log S na log S n2 u log S na log S n2 = 1 ( ( (m + 1Sn2 + S n1 +1 log log S n2 m + 2 = 1 ( log 1 + S n 1 +1 S n2 S U (m + 2S n2 tu Y m+1,n1 +1,n a Y m+1,n1 +1,n 2 Y m+1,n1 1,n b Y m+1,n1 1,n 2 Y t = S 2 σ2 2 Y u S U tu Y u S U tu 2 Y Y rs S2 S S U t Y U + ry Y U t V = tu V V t t, S, V Z(t, S, V Y (t, S, U = Z(t, S, tu Z Y t = Z t + U Z V, Y U = t Z V Y Z t = S 2 σ2 2 2 Z Z rs S2 S S Z V + rz s = log S Z t = σ2 2 2 Z (r s σ2 Z 2 2 s es Z V + ry 7.7 22

7.8 7.9 8 [0, 1] rand( 0 RAND_MAX ( rand( + 0.5 / ( RAND_MAX + 1 [0, 1] RAND_MAX ( rand( + ( rand( + 0.5 / ( RAND_MAX + 1 / ( RAND_MAX + 1 8.1 [0, 1] 100 Box-Muller U 1, U 2 [0, 1] Z 1 = 2 log U 1 cos 2πU 2 Z 2 = 2 log U 1 sin 2πU 2 Z 1, Z 2 0 1 23

8.2 Box-Muller (, + 8.3 Box-Muller 24