n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Chap11.dvi

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

Z: Q: R: C:

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

Z: Q: R: C: 3. Green Cauchy

2 2 L 5 2. L L L L k.....

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

mugensho.dvi

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

08-Note2-web

v er.1/ c /(21)

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

KENZOU

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

KENZOU

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

notekiso1_09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1) (2) (3) (4) 1

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

Z: Q: R: C: sin 6 5 ζ a, b

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

main.dvi

, ( ) 2 (312), 3 (402) Cardano

I 1

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

- II

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)


pdf

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

DVIOUT

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

sec13.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Fubini

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

gr09.dvi


85 4

2011de.dvi

body.dvi


量子力学 問題

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Gmech08.dvi

Transcription:

n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v

3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt + i v(t)dt 4 c = α + iβ 5 cf(t)dt = c f(t)dt b f(t) f(t)dt f(t) dt θ 4 c = e iθ [ ] b Re e iθ f(t)dt = Re[e iθ f(t)]dt f(t) dt θ = rg f(t)dt 6 z = z(t), t b f(z) f(z(t)) f(z)dz = f(z(t))z (t)dt z = z( t), b t f(z)dz = f(z( t))( z ( t))dt = f(z(t))(z (t))dt b b f(z)dz = f(z)dz z 7 z z fdz = fdz x, y 8 x, y

fdx = 2 ( ) fdz + fdz, fdy = ( ) fdz fdz 2i f = u + iv 6 (udx vdy) + i (udy + vdx) 9 f dz = f(z(t)) z (t) dt f dz = f dz fdz f dz 5 fdz = f(z(t))z (t)dt f(z(t))z (t) dt = f(z(t)) z (t) dt = f dz 3.. p(x, y)dx + q(x, y)dy p, q Ω Ω Ω pdx + qdy Ω U/ x = p, U/ y = q U(x, y) ( )Ω U/ x = p, U/ y = q U(x, y) ( U pdx + qdy = x x (t) + U ) d y y (t) dt = U(x(t), y(t))dt = U(x(b), y(b)) U(x(), y()) dt ( ) (x, y ) Ω (x, y) Ω U(x, y) U(x, y) = pdx + qdy y x

U(x, y) = x p(x, y)dx + C * 2 U/ x = p U/ y = q du = ( U/ x)dx + ( U/ y)dy pdx + qdy f(z)dz = f(z)dx + if(z)dy Ω F (z) F (z) x = f(z), F (z) y F (z) = if(z) F (z) F (z) = i x y f(z) ( fdz ) F (x) 2 F (z) f(z) 2 f fdz f(z) Ω f(z) 3 n Z, n (z ) n dz = (z ) n (z ) n+ /(n + ) n < n ( ) n = C z = + ρe it, t 2π C dz 2π z = iρe it dt = 2πi ρeit log(z ) ρ < z < ρ 2 log(z ) 3..2 x b, c y d R 4 R R R R *2 C

4 f(z) R f(z)dz = η(r) = f(z)dz R R R 4 R (), R (2), R (3).R (4) η(r) = η(r () ) + η(r (2) ) + η(r (3) ) + η(r (4) ) ( 2) R (), R (2), R (3).R (4) R (k) (k =, 2, 3, 4) η(r (k) ) 4 η(r) R n R R R n... η(r n ) 4 η(r n ), η(r n ) 4 n η(r) R n z R δ >, n, z R n, z z < δ δ z z < δ f(z) ϵ > < z z < δ f(z) f(z ) z z f (z ) < ϵ f(z) f(z ) (z z )f (z ) < ϵ z z n δ 3 dz =, zdz = R n R n η(r n ) = (f(z) f(z ) (z z )f (z ))dz R n η(r n ) f(z) f(z ) (z z )f (z ) dz < ϵ z z dz R n R n z z R n d n L n d, L d n = 2 n d, L n = 2 n L η(r n ) < 4 n dlϵ, η(r) < dlϵ ϵ η(r) =

5 j R ζ j R f(z) R lim (z ζ j )f(z) = z ζ j R f(z)dz = R ζ j ζ R 9 3 R 9 f(z)dz = f(z)dz R R z ζ (z ζ)f(z) ϵ > R R f(z) ϵ z ζ 2 fdz R = fdz f(z) dz ϵ R R R dz z ζ R ζ 2k z R z ζ k ϵ dz ϵ R z ζ < ϵ dz = 8ϵ k R 3..3 3 n = f(z) Ω Ω 6 f(z) f(z)dz = f(z)dz 5 7 ζ j f(z) j lim z ζ j (z ζ j )f(z) =

f(z)dz = 3.2 3.2. 8 dz z 2πi z = z(t), α t β h(t) = t α z (t) z(t) dt [α, β] z (t) h (t) = z (t) z(t) g(t) = e h(t) (z(t) ) g(t) g(t) g (t) = h (t)e h(t) (z(t) ) + e h(t) z (t) = g(t) = g(α) e h(t) (z(t) ) = e h(α) (z(α) ) = z(α) z(β) = z(α) e h(β) = h(β) 2πi 9 2. n(, ) = n(, ) n(, ) = dz 2πi z 2. n(, ) = ( 6 ) 3. n(, )

2 2 z, z 2 z z 2,z 2 z 2 z z 2 2 n(, ) = 3.2.2 f(z) F (z) = f(z) f() z z z = lim z F (z)(z ) = lim (f(z) f()) = z 7 f(z) f() f(z) dz = dz = f() z z dz = 2πi n(, )f() z 22 f(z) n(, )f() = f(z) 2πi z dz ( ) 7 n(, ) = f() = f(z) 2πi z dz n(, ) = f(z) n(, ) = f(z) 23 f(z) n(, z) = f(z) = 2πi ζ z dζ f(z) 2 3.2.3 23

24 φ(ζ) φ(ζ) F n (z) = (ζ z) n dζ F n(z) = nf n+ (z) φ(ζ) 7 f(z) F (z) z z z < δ z z z < δ/2 ζ ζ z > δ/2 F (z) F (z ) = (z z ) φ(ζ)dζ (ζ z)(ζ z ) z z φ(ζ) ζ z ζ z dζ < z z 2 δ 2 φ dζ z z F (z) z φ(ζ) φ(ζ)/(ζ z ) F (z) F (z ) φ(ζ) = z z (ζ z)(ζ z ) dζ z z F 2 (z ) F (z) = F 2 (z) ( ) Ω f(z) Ω δ Ω C f(z) C z n(c, z) = f(z) = 2πi ζ z dζ 24 f (z) = 2πi C C (ζ z) 2 dζ, f (n) (z) = n! dζ 2πi C (ζ z) n+ Ω Ω 25 Ω Ω 3.3 3.3. 7 24 f(z)

26 Ω Ω f(z) Ω Ω Ω f(z) lim z (z )f(z) = ( ) ( ) C C Ω z C f(z) = 2πi C ζ z dζ 24 C z f(z) z = Ω 2πi C ζ dζ f(z) f() F (z) = f(z) f() z z = lim (z )F (z) = z z F (z) f () z F (z) z = f () f (z) f (z) z f (z) f () z = z f () f 2 (z) n f n (z) f n (z) = f n () + (z )f n (z) z = f(z) = f() + (z )f () + (z ) 2 f 2 () + + (z ) n f n () + (z ) n f n (z) n z = f (n) () = n!f n () 27 f(z) Ω Ω Ω f n (z) Ω f(z) = f() + f () (z ) + + f (n ) ()! (n )! (z )n + f n (z)(z ) n f n (z) C C z f n (z) = 2πi (ζ ) n (ζ z) dζ C

3.3.2 28 Ω f(z) Ω f() f (n) () f(z) f n (z) f(z) f() f (h) () 29 Ω f(z) f() = Ω f (h) () h f(z) = (z ) h f h (z) f h (z) f h () (f h () = (z ) ) f h (z) f h (z) z = 3 f(z) f(z) < z < δ f(z) z < δ f() lim z f(z) = f(z) f() = < z < δ f(z) δ δ g(z) = /f(z) g(z) g(z) g() = g(z) g(z) = (z ) h g h (z), g h () h f h (z) = /g h (z) f h () f(z) = (z ) h f h (z) α. lim z α f(z) = z 2. lim z α f(z) = z z 3 (i) α f(z) (ii) h Z α > h α < h 2 (iii) α 2 (i) (ii) h f(z) f(z) f() h

(z ) h f(z) z = φ(z) (z ) h f(z) = B h + B h (z ) + + B (z ) h + φ(z)(z ) h z (z ) h f(z) = B h (z ) h + B h (z ) h+ + + B (z ) + φ(z) φ(z) f(z) z = 2 (iii) f(z) *3 f(z) = e z z = g(z) = f(/z) = e /z z = (z g(z) + z g(z) z g(z) ) 3 3.4 2 3.4., 2,..., n fdz = fdz + fdz + fdz + 2+ + n 2 n + 2 + + n f 2 2 *3 f(z) z = f(/z) z =

= + 2 2 + + n n, j N, j ( ) = 2 j *4 Ω 3.5 32 Ω / Ω, n(, ) = (mod Ω) (mod Ω) 2 2 Ω Ω, (mod Ω) (mod Ω ) 33 f(z) Ω Ω f(z)dz = Ω δ > δ Ω Q j, j J Ω J δ Q j Q j Q j Γ δ = j J Q j Q j Q j Q j Ω δ 4 Ω Ω δ δ ζ Ω Ω δ Q j, j J Q ζ Q, ζ / Ω ζ ζ ζ Q Ω δ Ω δ n(, ζ) = n(, ζ ) = Γ δ ζ n(, ζ) = f Ω z Q j 4 5 n *4 = i i p i, q i p = q j, p 2 = q j2,..., p n = q jn, {j, j 2,..., j n } = {, 2,..., n} i=

2πi Q j ζ z dζ = f(z) = 2πi Γ δ f(z) (j = j ) (j j ) ζ z dζ z z Ω δ f(z)dz = ( 2πi Γ δ ) ζ z dζ dz Γ δ n(, ζ) = f(z)dz = Γ δ ( ) 2πi ζ z dz dζ = Ω Ω z < R Ω Ω Ω Ω n(, ) = (mod Ω ) Ω Ω Ω 4 n= n 2 = π2 6 *5 34 n 2 = π2 6 x2 n= log x π2 dx = x 6 log x x x dx x = e 2y dx dy = 2e 2y = 2(x ) x = e 2δ, x 2 = e 2Y x2 log x Y dx = 2 log ( e 2y )dy x δ x x, x 2 + δ +, Y + *5

log ( e 2y )dy = π2 2 π log (sin x)dx e 2iz = 2ie iz sin z e 2iz = e 2y (cos 2x + i sin 2x) (z = x + iy) x = nπ, y log ( e 2iz ) log ( e 2iz ) π π, π, π + iy, iy π δ 5 *6 π π log ( e 2Y (cos 2x + i sin 2x))dx log ( e 2Y (cos 2x + i sin 2x)) dx (Y + ) log ( e 2iz )dz e2iz log z dz + log z dz e 2iz lim = 2 δ log z log δ + π z z 2 log z dz 4 δ log δ + π δ (δ ) 8 π π log ( 2ie ix sin x)dx = π (log 2 + log ( i) + log (sin x) + log (e ix ))dx = π π log ( i) = iπ 2, log (eix ) = ix π log 2 π2 2 i + π π log (sin x)dx + π2 2 i = log (sin x)dx = π log 2, π 2, π 2 + iy, iy π 2 δ *7 6 5 log (sin x) x = π 2 π 2 log (sin x)dx = π log 2 2 *6 5 *7 π 2

π 2 log ( 2ie ix sin x)dx = π 2 (log 2 + log ( i) + log (sin x) + log (e ix ))dx = π2 8 i δ +, Y + Y 2 3 2 δ Y δ Y δ Y δ Y log ( e 2i iy ) idy + Y log ( e 2y )dy + log ( e 2y )dy + log ( e 2y )dy + δ Y δ δ 2Y log ( e 2i( π 2 +iy) ) idy π2 8 i log ( + e 2y )dy π2 8 (log ( e 4y ) log ( e 2y ))dy π2 8 2δ log ( e 2y )dy = π2 8 log ( e 2t ) π2 dt 2 8 log ( e 2y )dy = π2 2 (t = 2y ) n Z, n lim x + xn+ log x = lim x + lim [ ] x n log xdx = n + xn+ log x (n + ) 2 xn+ = (n + ) 2 N x n log xdx = n 2 (N ) N n= n= x N x log xdx = N n= n 2 (N ) * 8 x N log x x dx *9 f(x) = x log x x < x < f (x) = log x x + ( x) 2 < f(x) =, lim f(x) = < x < < f(x) < lim N x,x 2 + x x2 x x2 x x N dx < x2 x x N log x x dx < x N dx = lim N N = x N log x lim N x dx = *8 *9 2

n= n 2 = lim x N π2 log xdx = N x 6 5 n= n 2 = π2 6 n 2 = log x x dx L. V. / n=