実解析的方法とはどのようなものか

Similar documents
January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

Lebesgue Fubini L p Banach, Hilbert Höld

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

6.1 (P (P (P (P (P (P (, P (, P.

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

6.1 (P (P (P (P (P (P (, P (, P.101

°ÌÁê¿ô³ØII

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

v er.1/ c /(21)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


meiji_resume_1.PDF

takei.dvi

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S


TOP URL 1

Z: Q: R: C: sin 6 5 ζ a, b

mugensho.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

I , : ~/math/functional-analysis/functional-analysis-1.tex

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

³ÎΨÏÀ

Grushin 2MA16039T

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

A 21 A.1 L p A A.3 H k,p () A

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

基礎数学I

body.dvi

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Chap11.dvi

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

第5章 偏微分方程式の境界値問題


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

untitled

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

i

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

B ver B


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

2011de.dvi

Note.tex 2008/09/19( )


leb224w.dvi

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

newmain.dvi

II Brown Brown

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

DVIOUT

Transcription:

(1) ENCOUNTER with MATHEMATICS 2001 10 26

(2) 1807 J. B. J. Fourier 1 2π f(x) f(x) = n= c n (f) = 1 2π c n (f)e inx (1) π π f(t)e int dt Fourier 2 R f(x) f(x) = F[f](ξ)= 1 2π F [f](ξ)e ixξ dξ f(t)e iξx dx f(x) = 1 2π F [f](ξ) = F [f](ξ)e ixξ dξ f(t)e iξx dx

N 1 c n (f)e inx f(x) (N ) 1 2π n= N R R e iξx F [f](ξ)dξ f(x) (R ) (3) Fourier etc.

(4) 1. Hardy-Littlewood 2. Calderón-Zygmund 3. Littlewood-Paley 1. 2. 3. Plancherel L p ( )

(5) 1 Hardy-Littlewood 3 f L 1 loc (Rd ) 1 Mf(x)= Q sup x Q Q: f(y) dy Q Hardy-Littlewood 4 (Hardy-Littlewood ) f L 1 {x : Mf(x) >λ} C 1 λ f L 1 (1,1) {x:tf(x)>λ} C λ f L 1

(6) 5 (Marcinkiewicz ) (X, µ) (Y,ν) :σ 1 <p 1 T :L 1 (X, µ)+l p 1(X, µ) {Y }( ) T : L p (1,1) = T : L p (X, µ) L p (Y,ν)( ) 1 <p<p 1 Mf L f L Hardy-Littlewood Marcinkiewicz Mf L p C p f L p (1 <p< ) 6 ( ) f(x) d dx x lim h 0 1 2h a f(t)dt = f(x) x+h x h f(t)dt = f(x)

(7) Lebesgue : 7 (Lebesgue ) f L 1 loc (Rd ) 1 lim r 0 Q(x, r) lim r 0 1 Q(x, r) f(y)dy = f(x)a.e. x R d Q(x,r) Q(x,r) f(y) f(x) dy =0 a.e. x R d (2) Q(x, r) x r (2) f(x) Lebesgue

(8-i) 7 f L 1 p 1 T (p)(x)= lim sup f(y) f(x) dy r 0 Q(x, r) Q(x,r) {x : T (f)(x) > 0} = 0 (3) λ>0: {x : T (f)(x) >λ} = 0 (4) Lebesgue ε>0 ε >0, g C 0 : f g L 1 <ε f = h + g (h := f g) T (g) =0 T (f) =T (h + g) T (h)+t(g) =T (h)

(8-ii) T (h)(x) Mh(x) + h(x) { {T (h) >λ} Mh> λ { + 2} h > λ 2} Hardy-Littlewood : {Mh> λ} C 1 λ h L 1 < C λ ε Chebyshev : { h > λ } 2 2 λ h L 1 {x : T (f)(x) >λ} < C λ ε Hardy-Littlewood Hardy-Littlewood

(9) Hardy-Littlewood Π + = {(x, t) :x R, t > 0} Π + = R f L p (R) P [f](x, t) = 1 π t x t 2 + t 2f(y)dy, (x, t) Π + (Poisson ) Π + Hardy-Littlewood x Π + α Stoltz Γ α (x) ={(y, t): x y <αt}, x Π +, α > 0 (x) x Π + u(x, t) N α (u)(x)= sup (y,t) Γ α (x) u(y, t) N α (P [f])(x) CMf(x), x Π + (5)

(10) 8 x 0 Π + f(x) Lebesgue, lim P [f](x, t) =f(x 0 )(6) (x,t) (x 0,0), (x,t) Γ α (x 0 ) 2 (5) x y <αt t π P [f](y, t) y z t y z 2 + t 2 f(z) dz t + k=0 2 k t< y z 2 k+1 t y z 2 + t 2 f(z) dz 1 f(z) dz t y z t 1 + f(z) dz (2 2k +1)t k=0 y z 2 k+1 t 1 f(z) dz t x z (1+α)t 1 + f(z) dz (2 2k +1)t k=0 x z (α+2 k+1 )t 1 Mf(x) + 2kMf(x) Mf(x) k=0

(11) (6) x 0 :Lebesgue ε >0 δ >0:δ r>0= 1 f(y) f(x 0 ) dy < ε Q(x 0,r) Q(x 0,r), g(x) = f(x) f(x 0 ) χ Q(x0,δ) Mg(x 0 ) Cε. y <αt P [f](x 0 y, t) f(x 0 ) = 1 P t (z y) {f(x 0 z) f(x 0 )} dz := (I) π z 2 +t 2 z y 2 + y 2 +t 2 z y 2 +(1+α 2 )t 2 P t (z y) C α P t (y) (I) P t (z) f(x 0 z) f(x 0 ) dz + z <δ z δ P t (z)g(x 0 z)dz z <δ + P t (z) f(x 0 z) f(x 0 ) dz =:(II)+(III) z δ (II) P [g](x 0,t) Mg(x 0 ) <ε (III) 0 (t 0)

(12) 2 Calderón-Zygmund ( ) Tf(x) = K(x, y)f(y)dy (7) K(x, x) = : Hilbert K(x, y) = 1 x y, x,y R Hilbert L p = Fourier L p

(13) Fourier S R f(x) = 1 2π R R Plancherel e ixξ F [f](ξ)dξ (Fourier ) f L 2 (R): lim R S Rf f L 2 = 0 (8) L p 1 1 Hf(x)= lim ε>0 π x y >εx y f(y)dy M a f(x) =e iax f(x) S R f(x) = i 2 (M ahm a M a HM a ) Hilbert L p = (8) Hilbert L p M. Riesz Calderón&Zygmund

(14) f L p (R)(1 p< ) (x, y) Π + P y [f](x) = 1 π Q y [f](x) = 1 π y (x u) 2 + y 2f(u)du (Poisson ) x u (x u) 2 + y 2f(u)du ( Poisson ) u(x, y)=p y [f](x), ũ(x, y)=q y [f](x):π + z = x + iy f(z):= u(x, y)+iũ(x, y) {x + iy : x R, y > 0} ũ(x, y) : u(x, y) u(x, y) f(x) ũ(x, y) Hf(x) (y 0)a.e. x (y 0)a.e. x

(15) 1. 2. Hilbert

(16) 9 ( ) = { (x, x) :x R d} K(x, y) δ>0 K(x, y) :R d R d \ 1 K(x, y) C x y d K(x, y) K(x, z) C y z δ x y d+δ, y z < 1 2 x y K(x, y) K(w, y) C x w δ x y d+δ, x w < 1 2 x y T : S(R d ) S (R d )!K S (R d R d ): Tϕ,ψ = K, ψ ϕ, ϕ,ψ S(R d ) ψ ϕ(x, y) =ψ(x)ϕ(y) K : T

(17) 10 T : S(R d ) S (R d ) T L 2 Calderón-Zygmund

(18) : 1. T L p 2. f L p (R d ) Cauchy lim K(x, y)f(y)dy ε 0 x y >ε 3. T : Littlewood-Paley Lipschitz Wavelet ( Haar wavelet ) : Calderón-Zygmund

(19) L p (Calderón-Zygmund ) 1. L 2 2. (1,1) 3. Marcinkiewicz 1 <p<2 4. duality argument 2 <p< L 2 : Cotlar-Stein Shur T1 Tb 2 : Calderón-Zygmund =. T ( T ( ), T( )

(20) 2 R d 2 k Z m =(m 1,,m d ) Z d [ m1 Q k,m = 2, m ) [ 1 +1 md k 2 k 2, m ) d +1 k 2 k ( k 2 ) D k = { Q k.m : m Z d} D= k Z D k, 11 (1) R d = Q D k Q k Z (2) Q k,m Q k,m = (m m ) (3) k l Q D k Q D l = Q Q Q Q = (4) k l Q D k,!q D l : Q Q (5) Q D k, Q D k 1 Q 2 d Q

(21) 2 : Calderón-Zygmund Littlewood-Paley 2 12 (Calderón-Zygmund ) f L 1 (R d ) f 0 λ >0 2 Q j (j =1, 2, ) ( 2 ) g(x) b j (x) (j =1, 2, ): (1) f(x) =g(x) + b j (x) (2)0 g(x) Cλ a.e.x g L 1 C f L 1 (3) {x : b j (x) 0} = Q j (4) b j (x)dx =0 (5) b j L 1 C Q j (6) Qj C λ f L 1

(22) 13 (Calderón-Zygmund ) f L 1 (R d ) f 0 λ>0 2 Q j (j =1, 2, ) (1) f(x) λ a.e. x/ Q j (2) Q j 1 λ f L 1 (3) λ< 1 f(x)dx (:= m j ) 2 d λ Q j Q j Calderón-Zygmund 13 g(x) =f(x)χ R d \Ω λ + m j χ Qj (x) b j (x) ={f(x) m j } χ Qj (x) j 13 : E k f(x) = Q D k f L 1 loc ( ) 1 f(y)dy χ Q (x) Q Q x R d M d f(x)= sup k E k f(x) 2

(23) E k : D k σ F k Doob Hardy-Littlewood Martingale Lebesgue 14 (1) C>0 {x : M d f(x) >λ} C λ f L 1, f L 1 (2) f L 1 lim E kf(x) =f(x)a.e. x k + lim E kf(x) =0 k x R d λ>0 Ω λ = {x : M d f(x) >λ}. x/ Ω λ Lebesgue f(x)= lim k E k f(x) M d f(x) λ Ω λ =0 g = f b j =0

(24) Ω λ 0 : A k = {x : E k f(x) >λ,e j f(x) λ (j <k)} Ω λ = A k, A k A k = (k k ) k Z E k f E j f (j <k): Q D k Ω λ = Q j, Q j : 2 Hardy-Littlewood Qj = Ω λ C λ f L 1 Q j : Q j Q j λ< 1 f(x)dx Q j Q j 2 1 Q j f(x)dx λ Q j 1 f(x)dx = Q j Qj Q j 1 Q j Q j f(x)dx Q j 2d Q j f(x)dx 2 d λ Q j

(25) Haar 15 (X, ) Banach {x i : i N} X x X,! {a i } N i=1 C : lim N x a i x i =0 i=1 {x i : i N} { x σ(i) : i N } X Banach Hardy H 1 Maurey (1980)( ) Carleson, Wojtaszczyk ( ) Y. Meyer H 1, Besov Triebel-Lizorkin etc. Donoho (1993, 1996)

(26) Donoho sparsity critical index X =[0, 1] or [0, 1] 2 {φ i } : L 2 (X) θ i (f) = f, φ i f θ i φ i i=1 θ (i) : θ wl p = sup i 1 i 1/p θ (i) ( ) 1 p, δ > 0 {i : θ i >δ} θ wl p Θ δ p (Θ)= inf {p :Θ wl p } p sparse optimal (Donoho)

(27) 16 (Haar ) h(x) =χ [ 0, 1 2) (x) χ [ 1 2,1 ) (x) j, k Z : {h j,k } : Haar h j,k (x) =2 j/2 h(2 j x k) Haar : L 2 (R) L p (R) : Calderón-Zygmund β = {β j,k }, β j,k 1 0 T β f(x) = K β (x, y) = j Z k Z K β (x, y)f(y)dy L p (1 <p< ). h j,k (x)h j,k (y)

(28) T β f(x)g(x)dx h j,k (x)g(x)dx h j,k (y)f(y)dy j Z k Z = h j,k,g h j,k,f j Z k Z h j,k,g 2 1/2 j,k Z j,k Z = g L 2 f L 2 h j,k,f 2 1/2 (1,1) : f L 1 (R) f 0 λ>0 CZ : f = g + b, b = bj { { Tf >λ} Tg > λ { + 2} Tb > λ 2}

[Good part ] { Tg > λ } 4 2 λ 2 C λ [Bad part ] Tg 2 dx C g 2 dx λ 2 g dx C f L 1 (29) b i x / Q i Tb i (x) = h j,k (x) h j,k (y)b i (y)dy =0 j,k Q : h j,k 2 i) Q Q i = ii) Q Q i iii) Q i Q i): h j,k b i =0 ii): h j,k (x) =0 iii): b i cancellation hj,k b i =0 (h j,k Q i = ) { Tb > λ 2} Qi C λ f L 1

(30) Lipschitz Cauchy a(x, ξ) : S m : a(x, ξ) C (R d R d ) β x α ξ a(x, ξ) C α,β (1 + ξ ) m α ( (x, ξ) R d R d) T a f(x) = 1 a(x, ξ)f[f](ξ)dξ (2π) d R d a(x, ξ) S 0 Calderón-Zygmund. S 0 1,1 CZO Wavelet Bergman ( )

(31) 3 Littlewood-Paley {φ j } : L 2 β j R ( β j 1) f = cj φ j h = βj c j φ j Plancherel h L 2 f L 2 h L p C f L p p 2 (9) {φ j } : L p (9) Fourier L p (p 2)

(32) f L 1 (T ) n Fourier n s n (f; x) = c k (f)e ikx k= n g(f)(x) 2 = s 2 n+1 1(f; x) s 2 n 1(f; x) 2 = n=0 n=0 2 n k 2 n+1 1 g(f)(x) c n (f)e inx Littlewood-Paley g 2 17 (Littlewood-Paley) 1 <p< C p f L p g(f) L p C p f L p c 0 = 1 π f(x)dx =0 2π π

(33) 2 n k 2 n+1 1 β k ( β k 1) h L p C p f L p

(34) 18 ( ) ϕ j S ( R d) (j =0, 1, 2, ) (1)supp ϕ 0 { x 2} (2)supp ϕ j { 2 j 1 x 2 j} j =1, 2, (3) α ϕ j (x) c α 2 j α j =0, 1, 2, (4) ϕ j 1 j=0 Φ ( R d) j f(x) =F 1 [ϕ j F [f]] g : G(f)(x) = ( j Z j f(x) 2 ) 1/2 19 1 <p< C p f L p G(f) L p C p f L p

(35) G(f) : ( ( G s (f)(x) = 2 sj j f(x) ) ) 1/2 2, j Z <s< C p f H s p Gs (f) L p C p f H s p, 1 <p<, <s< H s p s L p Sobolev : [ ( f H s := p F 1 1+ ξ 2) s ] 2 F [f] Triebel-Lizorkin ( G s q (f)(x) = ( 2 sj j f(x) ) ) 1/q q, j Z L p <s< G s (f)(x)= sup 2 sj j f(x), <s< j Z { F s p,q (Rd )= f S (R d ): f F s p,q = G s q } < L p

(36) G s q = L p ( j Z ( 2 sj j f(x) ) q ) 1/q L p l q L p : Besov <s<, 0<p,q ( ) 1/q ( ) f B s p,q = 2 sj q j f(x) L p j Z f B s = sup 2 sj j f(x) p, L p j Z { } B s p,q (Rd )= f S (R d ): f B s p,q < B s, = Cs s>0 (Hölder Littlewood-Paley )

(37) 1 ψ S ( R d) { } 1 supp ψ x 2, 2 ( 1 ψ(x) > 0 2 x ) 2 ϕ j (x) = ψ(2 j x) ψ(2 k x) k= ϕ 0 (x) =1 ϕ j (x) j=1 (j =1, 2, ),

(38) 2 19 l 2 Hörmander- Mihlin 20 1 <p< m k,j L (R d ) f j (j, k =0, 1, 2, ) ( [ ] F 2) 1/2 1 m k,j F [f j ] k=0 j=0 L p ( ) 1/2 C p,m f k (x) 2 L p k=0 C p,m = c sup R>0 0 α [d/2] (R 2 α d R/2 x 2R j,k=0 D α m k,j (x) 2 dx ) 1/2

(39) L-P 21 0 <ε 1 {S k (x, y)} k Z : S k (x, y) C2 kd S k (x, y) =0 ( x y C2 k ) S k (x, y) S k (x,y) C2 k(d+ε) x x ε S k (x, y) S k (x, y ) C2 k(d+ε) y y ε [S k (x, y) S k (x,y)] [S k (x, y ) S k (x,y )] C2 k(d+ε) x x ε y y ε S k (x, y)dx = S k (x, y)dy =1 (x, y R d ) D k (x, y) =S k (x, y) S k 1 (x, y) (k Z) f S D k f(x) = D k (x, ),f

(40) Han, Jawerth, Taibleson, Weiss (1990): D k f S k f. h C ([0, ]) supp h [0, 2] h(x) =1, (x [0, 1/2]) T k f(x):= 2 kd h ( 2 k x y ) f(y)dy ( C 1 T k 1 C). M k f(x):= 1 T k 1(x) f(x), [ ( ) 1 1 W k f(x):= T k (x)] f(x), T k 1 S k = M k T k W k T k M k S k (x, y) :S k 1 S k (x, y) = m(x)m(y) t(x, z)t(z, y) dz w(z) m(x) =T k 1(x), t(x, y) =2 kd h(2 k x y ), [ ( ) ] 1 1 w(x) = T k (x) T k 1

(41) ( ε ) Littlewood-Paley 22 (Han, Jawerth, Taibleson, Weiss, 1990) ε <α<ε 1 p, q [ ( f 2 kα D k f ) ] 1/q q Fp.q α f B α p,q k Z [ k Z L p ] 1/q ( ) 2 kα p D k f L p Han and Sawyer (1994)

(42) 23 (Han, Lu, Yang ( ), 1999) ε <α<ε 1 p, q [ ( f F α p,q 2 kα D k f ) ] 1/q q k Z + L p f B α p,q [ k Z + ] 1/q ( ) 2 kα q D k f L p D 0 = S 0

(43) 24 (Coifman, Weiss, 1971) (X, ρ, µ) X Hausdorff ρ µ X Radon 0 <µ(b ρ (x, 2r)) Cµ (B ρ (x, r)) < B ρ (x, r) ={y : ρ(x, y) <r} {B ρ (x, r)} r>0 X 25 X 1,,X m : Hörmander R d C = (U, ρ, dx) : (Nagel, Stein, Wainger, Fefferman, Phong ) (ρ )

(44) 26 (X, g): Cartan-Hadamard < b 2 K a 2 < 0 S( ): Eberlein-O Neil ( ), ω : (on S( )) = (S( ),ρ,ω): (Anderson, Schoen; see also A [8]) CR etc.

(45) [1] J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Math. vol. 29, Amer. Math. Soc. 2001. [2] J. García-Cuerva and J. L. Rubio de Fracncia, Weighted Normn Inequalities and Related Topics, North-Holland, 1985. [3] E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, 1996. [4] E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. [5] 50 (1997), 29-55.

f(x)dx f(x) dx

ψ,ψ C(R) c ψ(x) (1 + x ) 1+α ψ c (x) (1 + x ) 1+α ψ(x + h) ψ(x) h β ψ (x) ψ (x + h) h β ψ(x) = ψ (x) =0 T η f = η j,k 2 j f, ψ (2 j x k) ψ(2 j s k) j,k = T η CZO CZ-norm C η l