L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

Similar documents
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

LLG-R8.Nisus.pdf

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W


/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Kullback-Leibler

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

meiji_resume_1.PDF

Untitled

第5章 偏微分方程式の境界値問題

untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

「産業上利用することができる発明」の審査の運用指針(案)

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Lagrange.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

waseda2010a-jukaiki1-main.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

H.Haken Synergetics 2nd (1978)


note1.dvi

kato-kuriki-2012-jjas-41-1.pdf

IA

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

(Stochastic Thermodynsmics) Langevin Langevin

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

陦ィ邏・2

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33


D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

(pdf) (cdf) Matlab χ ( ) F t

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

all.dvi

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

16 7 5

構造と連続体の力学基礎

AHPを用いた大相撲の新しい番付編成

untitled

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

DVIOUT-fujin

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Cercignani Shen Kuščer

A

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


ver.1 / c /(13)

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

Grushin 2MA16039T

( ) (, ) ( )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

わが国企業による資金調達方法の選択問題

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x


30

1 Tokyo Daily Rainfall (mm) Days (mm)

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

201711grade1ouyou.pdf

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

量子力学 問題

I II III IV V

総研大恒星進化概要.dvi

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

untitled


1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

main.dvi

Transcription:

L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical Review 91 1953 pp. 1505 151. Ph. D. S. M.. 1

L. S. 1. 1 RRIP II Sec.5 Gaussian random variables s ij R ij Γ k log ProbΓ = SΓ + const. 1.1 Γ Γ joint probability RRIP I II 1 L. Onsager, Reciprocal Relations in Irreversible Processes, Phys. Rev. 37, 405 1931; 38, 65 1931. RRIP I II

3 3 4-7 II, pp.65 74 Casimir 4 5 RRIP RRIP 6 7. RRIP II extensive variables 1,,, n intensive variables 3 M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys. 17, 33 1945. J. E. Moyal, J. Roy. Statist. Soc. B11, 150 1849 J. L. Doob, Stochastic Processes J. Wiley and Sons, New York, 1953 4 H. B. Casimir, Revs. Modern Phys. 17, 343 1945. 5 A. Einstein, Ann. Physik 33, 175 1910, Sec.I, General Matters Relating to Boltzmann s Principle. 6 RRIP II, Sec.5 Fokker-Planck N. Hashitsume, Prog. Theoret. Phys. 8, 461 195 7 A. N. Kolmogoroff, Foundations of the Theory of Probability, Chelsea Publishing Company, New York, 1950, Chap III, Sec.4 Borel

4 L. S. 8 3 9 S = S 1,, n = S. S 0 S 0 = S0,, 0. X i = S/ i,.1 10 8 P. W. Bridgeman, Rev. Modern Phys., 56 1950. 9 S. Machlup and L. Onsager, following paper, Phys. Rev. 91, 151 1953. 10.5 X

5 R ij j = X i, i = 1 n;. j L ij X j = i,.3 j L R Ohm Fourier Fick R ij = R ji [R = R tr ],.4 tr transpose Ṡ = j S/ j j = j X j j,.1.5 = i,j R ij i j,..6 = i,j L ij X i X j..3.7 Φd /dt, d /dt = 1 R ij i j,.8 i,j Φ X, X = 1 L ij X i X j,.9 Φd /dt, d /dt i,j

6 L. S. S = S 0 1 s ij i j + higher terms..10 i,j Prob.{ } exps/k exp 1 1 s ij i j..11 k i,j X i = j s ij j..1. R ij j + s ij j = 0..13 j 3. 3.1... R ij j = X i + ϵ i, 3.1 j ϵ X i 3.1 t t t

7 p < t < t p cumulative distribution function, c. d. f. F p 1 p t t p = Prob.{t k k, k = 1, p}. 3. c.d.f. 11 c. d. f. τ, F p 1 p = F p 1 p + τ t p + τ. 3.3 F p t,, t p 1,, p k gates 1 µ 1,,µ p =0 1 q F 1 + µ 1 1 p + µ p p p F p 1 p 1 p, 3.4 p q = p µ k. k=1 11, Harald Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946

8 L. S. F p p.d.f. p p + 1 p.d.f. F 1 p+1 t p+1 1 p = Prob.{t p+1 = p+1 t k = k, k = 1, p}, 3.5 F p+1 1 p+1 +1 = 1 p p+1 p-fold F 1 t p+1 x1 x p df p x 1 x p. 3.6 F 1 p+1 t p+1 1 p = F 1 p+1 t p+1 p t p. 3.7 3.6 3.7 1 f p p p = f p t p p 1 t p 1 p t p t 1 p 1 t p 1 1. 3.8 p.d.f..11 p.d.f. t + τ 1 t 3.9 t p

9 3.1 ϵ i ϵ i ϵtϵt + τ = 0, τ 0. p.d.f. Sec.3 Khinchin Cramér 1 L 3... RRIP II i t i t + τ i i, t + τ, t Av = i t + τ d, 3.10 t. Callen Greene 13 1 A. Khinchin, Math. Ann. 109, 604 1933. 13 H. B. Callen and R. F. Greene, Phys. Rev. 86, 70 195; 88, 1387 195.

10 L. S. Doop 14.11.13 covariant Aτ tr t t + τ Aτ 1 Aτ = Aτ 1 + τ, 3.11 RC. Sec. 4.1.. 4. R + s = ϵ, 4.1 p.d.f. t + τ 1 t { = 1 1 exp 1 π k s 1 e γτ s k } [ e γτ 1 ] 1 e γτ 4. γ = s/r 4..11, τ 1 e γτ 3.8 t, t + τ p p 1 = t, t = t + t,, t p+1 = t + τ = t + p t 14, V Sec.8. p+1 t p+1 1

= p 1-fold p+1 t p+1 11 p t p t 1 d d p. 4.3 Chapman Kolmogoroff 15 p 1 t 4.1 k λ k 1 = y k, 4.4 λ = 1 τ, y k = ϵt k τ/r y σy 4.3 16 p+1 p 1-fold { exp 1 σy t p+1 1 [ p+1 λ p + + λ 1 ]} d d p. 4.5 4.,, p p+1 t p+1 1 { exp 1 [ σy p+1 λ p + + λ 1 ]} ; 4.6 p 4.6 = 1,, t p+1 = p+1 p+1 t p+1 1 { exp 1 1 k tp+1 } R [ t + γt] dt. 4.7 min p.d.f. 1 15 A. Kolmogoroff, Math. Ann. 104, 415 1931. 16 4.7

1 L. S. t 1 = max, 4.8 4.7 + γ = 0, 4.9.13 = 1 4.7 p.d.f. = 1 = 0 t 0 [ exp 1 1 k s ]..11 L, = R[ γ] Euler Lagrange d L dt L = 0, 4.10 γ = 0, 4.11 e γt e γt t = t = t t = e γt = 0, t = 1 t R [ t + γt] dt 4 min = 1. 4.1 4... s R ϵ i [ 3.9] n * 4.7 L p.d.f. p.d.f. 4.7

13 R[ t + γt] = R + 1/Rs + d/dts, 4.13 γ = s/r S = S 0 1 s i i, [.10 ], 4.14 i Φd /dt, d /dt = 1 R i i, [.8 ], 4.15 i Ψ X, X = 1 1/R i Xi = 1 1/R i s i i, [.9 ]. 4.16 i i R i [ i + γ i ] = Φd /dt, d /dt + Ψ X, X d/dts, 4.17 i p.d.f.4.7 = 1, t = { exp 1 4 1 k t f n t 1 = f i 1 t 1 i i [Φ d /dt, d /dt + Ψ X, X ddt ] } S dt. 4.18 min Φ Ψ X p.d.f. = 1, t = 1 f n t [ { 1 1 exp k S 1 + 1 S 1 4 = f n t t 1 f n 1 [ Φ d /dt, d /dt + Ψ X, X ] }] dt. min 4.19 p.d.f. 4.18 3.8

14 L. S. = 1, t =,, t p = p [ { 1 1 exp k S 1 + 1 S p 1 tp 4 1 f p pn [ Φ d /dt, d /dt + Ψ X, X ] }] dt. min 4.0 4.0 = 0 =, 1 = 1 1 t1 [ Φ d /dt, d /dt + Ψ X, 4 ] X dt min = 1 S 1 + const. 4.1 4.10.13.13 t t.6.7 t = Φ d /dt, d /dt + Ψ X, X = Ṡ, 4. 4.1 17 t p, 4.0 = 1, t =,, t p = p 1 f p pn [ exp 1 1 [ Φ d /dt, d /dt + Ψ X, 4 k ] ] X dt. 4.3 min X i 4.3 17 II, Sec.3

15 4.3.. 4.3 p.d.f. 4.3 4.4.. RRIP I Rayleigh 18 4.18 t t = t = 1 1 [Φ d /dt, d /dt + Ψ X, 4 k X ddt ] S t = max. 4.4 Ṡ Φ d /dt, d /dt = max. 4.5 [.4.] 4.5.. Callen 19 R 18 Lord RayleighJ. W. Scott, Phil. Mag. 6, 776 1913. 19 13, H. Takasi, J. Phys. Soc. Japan 7, 439 195.

16 L. S. Fourier