Note5.dvi



Similar documents
note4.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

esba.dvi

24.15章.微分方程式

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値



0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)



, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

untitled

行列代数2010A

TOP URL 1

基礎数学I

29

Gmech08.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

ワークショップ

プリント

2011年10月 179号 新レイアウト/001     4C

Part. 4. () 4.. () Part ,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

第86回日本感染症学会総会学術集会後抄録(II)

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9


hirameki_09.dvi


,..,,.,,.,.,..,,.,,..,,,. 2

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

応用数学III-4.ppt

b3e2003.dvi

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

genron-3

Part () () Γ Part ,


i I

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

A A. ω ν = ω/π E = hω. E

2000年度『数学展望 I』講義録

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

h4_1_et

2 p T, Q

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

: , 2.0, 3.0, 2.0, (%) ( 2.

本文/020:デジタルデータ P78‐97

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

December 28, 2018

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

all.dvi


6 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1 P2 P P3P4 P5P8 P9P10 P11 P12

EndoPaper.pdf

ii



note1.dvi

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

I II

note01

2012 A, N, Z, Q, R, C

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

第88回日本感染症学会学術講演会後抄録(III)

untitled

行列代数2010A

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

30

newmain.dvi

直交座標系の回転

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

福岡大学人文論叢47-3

平成18年度弁理士試験本試験問題とその傾向

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i


dynamics-solution2.dvi

入試の軌跡


96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

受賞講演要旨2012cs3


I ( ) 2019

( ) I( ) TA: ( M2)


橡超弦理論はブラックホールの謎を解けるか?

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

Transcription:

12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1

2.3 2.3.1 Onsager S B S(B) = t S( B) (S mn (B) =S nm ( B)) (8.29) Schrödinger Schrödinger [ (i + ea) 2 2m + V ] ψ = Eψ (8.30) A A [ ] (i + ea) 2 + V ψ = Eψ 2m {ψ ( B)} = {ψ(b)} (8.31) ψ(b) ψ ( B) ({ } ) ψ(b) Schrödinger (8.30) Sc{a b}(a S b ) Sc{a(B) b(b)} {ψ(b)}, (8.32) i.e., b(b) =S(B)a(B) (8.33) (8.33) b (B) = S(B)a (B). (8.34) exp(±ikr) *1 Sc(b (B) a (B)) {ψ (B)} (8.35) B B Sc{b ( B) a ( B)} {ψ ( B)} = {ψ(b)} (8.36) i.e. a ( B) =S(B)b ( B) (8.37) (8.37) b (B) =S 1 ( B)a (B) (8.38) *1 (8.30) Schrödinger iωt ikr 12-2

(8.34) S(B) =S 1 ( B) =S ( B) ( unitarity SS = S S = I) S(B) = t S( B) (8.39) (ρ xx ) ( ) ρ xx (B) =ρ xx ( B) (8.40) 2.3.2 Landauer-Büttiker p q 8.16 p μ p = ev p p J p p p p T p q J p = 2e h [T q p μ p T p q μ q ] (8.41) q T pq T p q (p q), T pp q p T q p T J = t (J 1,J 2, ) µ = t (μ 1,μ 2, )( ) J = 2e h T µ V q = μ q e, G pq 2e 2 ht p q J p = q [G qp V p G pq V q ] (8.42) J q = 0 (8.43) q 12-3

B Onsager [G qp G pq ] = 0 (8.44) q G qp (B) =G pq ( B) (8.45) S-matrix Onsager 4 V 4 =0 J 1 J 2 = G 12 + G 13 + G 14 G 12 G 13 G 21 G 21 + G 23 + G 24 G 23 V 1 V 2 (8.46) J 3 G 31 G 32 G 31 + G 32 + G 34 V 3 (Casimir) J 1 = J 3, J 2 = J 4 (8.47) J 2 =0 1 3 2 4 V ij V i V j ( J1 ) ( )( ) α11 α = 12 V13 J 2 α 22 V 24 α 21 (8.48) q ev q q J q 1 1 ev 1 J 1 J 2 2 2 ev 2 J p p p ev p 8.16 LB 12-4

α 11 =2G q [ T 11 S 1 (T 14 + T 12 )(T 41 + T 21 )] (8.49a) α 12 =2G q S 1 (T 12 T 34 T 14 T 32 ) (8.49b) α 21 =2G q S 1 (T 21 T 43 T 23 T 41 ) (8.49c) α 22 =2G q [ T 22 S 1 (T 21 T 23 )(T 32 + T 12 )] (8.49d) S = T 12 + T 14 + T 32 + T 34 = T 21 + T 41 + T 23 + T 43 (8.50) (8.48) (8.47) V 1 V 2 V 3 2.3.3 2 Onsager (8.40) Landauer- Büttiker 4 (8.45) (8.48) α 11 (B) =α 11 ( B), α 22 (B) =α 22 ( B), α 12 (B) =α 21 ( B) (8.51) 13: 24: LB R 13,24 R 13,24 = V 2 V 4 J 1 = α 21 α 11 α 22 α 12 α 21 (8.52) Onsager R (8.40) R 24,13 = α 12 α 11 α 22 α 12 α 21 (8.53) (8.51) T km T ln T kn T lm R mn,kl = R q, D R 2 D q(α 11 α 22 α 12 α 21 )S (8.54) R mn,kl (B) = R kl,mn ( B) (8.55) B B 12-5

2.4 Aharonov-Bohm 1 a b 2 S Aharonov-Bohm(AB) AB 1 2 ψ 1,2 ψ = ψ 1 + ψ 2 ψ 2 = ψ 1 2 + ψ 2 2 +2 ψ 1 ψ 2 cos ϕ (8.56) ϕ? p p + ea (k + e A) exp(ik x) θ AB = b a k dx Δθ AB = e b a A dx (8.57) [ Δθ = e b A ds (1) a b a ] A ds (2) = e A ds = e loop BdS =2π Φ Φ 0, Φ 0 h e. (8.58) Φ 0 2π (8.56) Φ 0 S AB S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (8.59) 2 1/2 1/2 *2 AB ( ) 0 e iθ AB S AB = e iθ, θ 2π φ = e φ (φ ) (8.60) AB 0 φ 0 S S ( ) 0 e iθ 0 S w = e iθ0 0 (8.61) *2 12-6

a 1 =1 b 1 S t b 2 a 2 b 3 S AB S w a 4 b 4 a 5 S t b 6 a 6 =0 2 (a) a 3 b 5 0 (c) 0 / 0 1 2.8 0 2.2 1.6 0 / 0 1.0 t 2 (b) 2 0 (d) 0 =0.4 0 / 0 1 8.17 (a)ab S (b) (8.62) AB t 2 (θ 0 ) φ/φ 0 (c)(b) (d) φ/φ 0 φ 0 AB θ 0 =1.6 π θ 0 θ AB (8.29) S t = 4sinθ 0 1+e iθ AB (e iθ AB + e iθ 0 3e iθ 0) (8.62) ((8.28) )T = t 2 φ 8.17(b) φ 0 AB θ 0 2π t 2 φ =0 S (8.60) Onsager (8.62) φ 0 θ 0 π 12-7

φ 0 /2 θ 0 φ 0 0 π AB (phase rigidity) AB AB AB *3 (8.56) (8.60) S (8.62) 8.17(d) AB 2DEG AB 10 2.5 Green S S Keldysh 2.5.1 Green Green S T Green D GR G A G R 1 = E H + iη G A 1 = E H iη (η +0), (8.63a) (η +0) (8.63b) 1 (x) G R (E H + iη)g R (x, x )=δ(x x ) (8.64) x x Ψ α x Ψ α = ψ α (x) G R (x, x )= x α Ψ α Ψ α E H + iη x = α ψ α (x)ψ α (x ) E H + iη (8.65) *3 Onsager 12-8

A m A m y p y q x p 0 0 x q 8.18 S Green 2.5.2 1 D (D.10) x y y ϕ n (y) (8.65) G R (x, y; x,y ) G R (x, y; x,y )= n ( i ) ϕ n (y)ϕ n v (y )exp[ik n x x ]. (8.66) n 2.5.3 S 8.18 x p =0 x q =0 G R (y q ; y p )= (δ nm A m + s vm nm A + m v )χ n(y q ) (8.67) n n q,m p A ± m s nm S v i (8.66) A ± m = χ m(y p ) i v m G R (y q ; y p )= n q,m p i v n v m χ n (y q )(δ nm + s nm )χ m (y p ) (8.68) s nm = δnm + i v n v m dy q dy p χ n (y q )G R (y q ; y p )χ m (y p ) (8.69) S [1]T.Ando,A.B.Fowler,andF.Stern,Rev.Mod.Phys.54, 437 (1982). 12-9

[2] S. Datta, ElectronTransport in Mesoscopic Systems (Cambridge Univ. Press, 1995). [3] ( 2002) [4] K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980). [5] S. Kawaji and J. Wakabayashi, in Physics in High Magnetic Fields, eds.s.chikazumi and N. Miura (Springer, Berlin 1981). [6] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). [7] (, 1995) [8] (, 1998) D Green S R Green ( )Ĝ R = ĜS Ĝ = D 1 when DR = S (D.1) S Schrödinger [E H ]ψ = S (D.2) Green Ĝ =[E H ] 1 (D.3) Ĝ ( 1 ) (x, x ) G(x, x ) (D.3) [E H ]G(x, x )=δ(x x ) (D.4) (D.2) G(x, x ) x x 1 E E H = E + 2 2 2m x 2 (D.5) G x k x G(x, x )=A ± exp[±ik(x x )], x x (k = 2mE/ ), (D.6) x = x G(x x +0,x )=G(x x 0,x ). (D.7) 12-10

(D.4) (D.5) G/ x (D.7) x = x G E [ ] G = 2m x x δ(x 2 x ) x [ ] [ ] G G = 2m x x 2. (D.8) (D.7) (D.8) (D.6) x x +0 x x 0 A + = A, ik[a + + A ]=2m/ 2, A + = A = 1 m ik 2, (D.9) G R (x, x )= i v exp [ik x x ], v k m, (D.10) (retarded solution) (advanced solution) G A (x, x )= i v exp [ ik x x ], η [E + 2 2 ] 2m x + iη G R (x, x )=δ(x x ) 2 (D.11) (D.12) k k = k [ 1+ iη 2E ( ) ( ) ]. G R 1 = E H + iη G A 1 = E H iη (η +0), (D.13a) (η +0) (D.13b) 12-11

E α Casimir α ( (8.48)) T (8.50) α 11 α 21 Casimir V 2 = V 4 =0 h 2e 2 J 1 =(T 21 + T 31 + T 41 )V 1 T 13 V 3 h 2e 2 J 3 = T 31 V 1 +(T 13 + T 23 + T 43 )V 3 Casimir J 1 = J 3 J 1 + J 3 =(T 21 + T 41 )V 1 +(T 23 + T 43 V 3=0 V 3 = T 21 + T 41 T 23 + T 43 V 1. J 2 = J 4 V 1 =1 (2G q ) 1 J 2 = T 2 1+T 23 T 21 + T 41 T 23 + T 43 = T 23T 41 T 21 T 43 T 23 + T 43 V 13 =1+ T 21 + T 41 = T 21 + T 41 + T 23 + T 43 T 23 + T 43 T 23 + T ( ) 43 T23 T 41 T 21 T 43 α 21 = 2G q =2G q S 1 (T 21 T 43 T 23 T 41 ). T 21 + T 41 + T 23 + T 43 (2G q ) 1 J 1 = T 21 + T 31 + T 41 + T 13 T 21 + T 41 T 23 + T 43 α 11 =2G q [ (T21 + T 31 + T 41 )(T 23 + T 43 S + T ] 13(T 21 + T 41 ) S =2G q (T 12 + T 13 + T 14 S 1 (T 14 + T 12 )(T 21 + T 41 )) =2G q ( T 11 S 1 (T 14 + T 12 )(T 21 + T 41 )). 12-12