PowerPoint プレゼンテーション

Similar documents
スライド タイトルなし

宇宙史国際連携研究・教育プログラム

untitled

news

PowerPoint プレゼンテーション

1 2 2 (Dielecrics) Maxwell ( ) D H

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

21世紀COE講義2006_5.ppt

Mott散乱によるParity対称性の破れを検証

PowerPoint Presentation

J-PARC October 14-15, 2005 KEK

nakajima_

Microsoft PowerPoint - okamura.ppt[読み取り専用]

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

QMI_10.dvi

rcnp01may-2

ニュートリノ崩壊光子探索用STJ検出器の較正に用いる遠赤外分子レーザーの性能評価

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

FPWS2018講義千代

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

LHC-ATLAS Hà WWà lνlν A A A A A A

nenmatsu5c19_web.key

muramatsu_ver1.key

BH BH BH BH Typeset by FoilTEX 2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

X線分析の進歩36 別刷

25 3 4

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

スライド 1

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

太陽系外惑星探査

untitled

Solar Flare neutrino for Super Novae Conference

XFEL/SPring-8

大面積Micro Pixel Chamberの開発 9

総研大恒星進化概要.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

橡実験IIINMR.PDF

Electron Ion Collider と ILC-N 宮地義之 山形大学

GJG160842_O.QXD

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Hasegawa_JPS_v6

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

( ) ,

PowerPoint Presentation

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

HK-Yokoyama-ICRR2013.key

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Δ Δ Δ 250

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

Slide 1

1. Introduction SOI(Silicon-On-Insulator) Monolithic Pixel Detector ~µm) 2

PowerPoint Presentation

B

宇宙理論研究室ガイダンス

main.dvi

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

05/09/2009

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

PDF

OPA277/2277/4277 (2000.1)

SO(2)

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

„´™Ÿ/’£flö

JFE.dvi


Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

自然現象とモデル_ pptx

橡

0810_UIT250_soto

1 SOI KEK _SSS14_XraySOI_v4.key

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

スケーリング理論とはなにか? - --尺度を変えて見えること--



LM837 Low Noise Quad Operational Amplifier (jp)

フォト IC ダイオード S SB S CT 視感度に近い分光感度特性 視感度特性に近い分光感度特性をもったフォトICダイオードです チップ上には2つの受光部があり 1つは信号検出用受光部 もう1つは近赤外域にのみ感度をもつ補正用受光部になっています 電流アンプ回路中で2

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

<4D F736F F D2091AA92E895FB964082C982C282A282C45F >


Microsoft PowerPoint - 島田美帆.ppt

Ws shojia 2016x mini

Thick-GEM 06S2026A 22 3

空気の屈折率変調を光学的に検出する超指向性マイクロホン

Transcription:

宇宙背景ニュートリノ崩壊探索ロケット実験設計と検出器開発 武内勇司 ( 筑波大 ) Dec. 7, 2013 ニュートリノフロンティア研究会 @ クロス ウェーブ府中 1

Collaboration Members As of Dec. 2013 Japan Group Shin-Hong Kim, Yuji Takeuchi, Kenji Kiuchi, Kazuki Nagata, Kota Kasahara, Tatsuya Ichimura, Takuya Okudaira, Masahiro Kanamaru, Kouya Moriuchi, Ren Senzaki (University of Tsukuba), Hirokazu Ikeda, Shuji Matsuura, Takehiko Wada (JAXA/ISAS), Hirokazu Ishino, Atsuko Kibayashi, Yasuki Yuasa(Okayama University), Takuo Yoshida, Shota Komura, Ryuta Hirose(Fukui University), Satoshi Mima (RIKEN), Yukihiro Kato (Kinki University), Masashi Hazumi, Yasuo Arai (KEK) US Group Erik Ramberg, Mark Kozlovsky, Paul Rubinov, Dmitri Sergatskov, Jonghee Yoo (Fermilab) Korea Group Soo-Bong Kim (Seoul National University) 2

Cosmic neutrino background (CνB) CMB n γ = 411/cm 3 T γ = 2.73 K n ν = n ν = 3 4 T ν T γ 3 nγ C B 2 = 56 cm3 T ν = 4 11 1 3 T γ = 1.95K 3

Motivation Search for ν 3 ν 1,2 + γ in cosmic neutrino background (CνB) Direct detection of CνB Direct detection of neutrino magnetic dipole moment Direct measurement of neutrino mass: m 3 = m 2 2 3 m 1,2 2E γ Aiming at sensitivity of detecting γ from ν decay for τ ν 3 = Ο 10 17 yr SM expectation τ = Ο(10 43 yr) Current experimental lower limit τ > Ο(10 12 yr) L-R symmetric model (for Dirac neutrino) predicts down to τ = Ο(10 17 yr) for W L -W R mixing angle ζ < 0.02 4

Neutrino Magnetic Dipole Moment Neutrino magnetic moment term νjliσ μν q ν ν ir γ ν jl SM: SU(2) L x U(1) Y ν jl ν ir γ W L ν il l L = e L, μ L, τ L m νi ν ir Suppressed by m ν, GIM Γ~ 10 43 yr 1 LRS: SU(2) L xsu(2) R xu(1) B-L γ W 1 W 1 W L ζw R W 1 W 2 = ν jl l L l R m τ ν ir cosζ sinζ sinζ cosζ PRL 38,(1977)1252, PRD 17(1978)1395 10 26 enhancement to SM Γ~ 10 17 yr 1 Suppressed only by ζ~0.02 W L W R 5

dn/de(a.u.) Photon Energy in Neutrino Decay ν 3 ν 1,2 + γ E γ = m 3 2 2 m 1,2 From neutrino oscillation Δm 2 23 = m 2 3 m 2 2 = 2.4 10 3 ev 2 2m 3 Δm 2 12 = 7.65 10 5 ev 2 From CMB fit (Plank+WP+highL+BAO) m i < 0.23 ev 50meV<m 3 <87meV, E γ =14~24meV λ γ =51~89 m ν 2 ν 3 γ E γ E γ distribution in ν 3 ν 2 + γ m 3 = 50 mev m 3 =50meV Red Shift effect Sharp Edge with 1.9K smearing E =24.8meV E =24meV m 2 =8.7meV m 1 =1meV E =4.4meV 25meV E γ [mev] 6

dn/de(a.u.) Backgrounds to CνB decay Zodiacal Light Zodiacal Emission AKARI COBE Expected E γ spectrum m 3 = 50meV, τ(ν 3 ) = 1.5 10 17 yr Galaxy evolution model CMB CIB (fit from COBE data) Galactic dust emission Integrated flux from galaxy counts Sharp edge with 1.9K smearing and energy resolution of a detector(0%-5%) C B decay Red shift effect E γ = 25meV E γ = 25meV ニュートリノ崩壊光 (m 3 = 50meV, τ(ν 3 ) = 1.5 10 17 yr を仮定 ) の ~3x10 4 倍の宇宙赤外線背景放射 (CIB) 更に黄道光が CIB 観測データ (COBE) の約 20 倍 7

Neutrino lifetime lower limit from AKARI data Published in Jan. 2012 AKARI CIB data after subtracting foregrounds and distant galaxies Best fit E γ spectrum from C B decay ν 3 lifetime lower limit as a function of m 3 x10 12 yr m 3 = 50 mev Fit CIB data to E γ spectrum expected from ν decay assuming all contribution to CIB is only from ν decay m 3 = 50 mev~ 150 mev 8

Detector requirements Requirements for detector Continuous spectrum of photon energy around E γ ~25 mev(λ = 50μm, far infrared photon) Energy measurement for single photon with better than 2% resolution for E γ = 25meV to identify the edge spectrum Rocket and satellite experiment with this detector Superconducting Tunneling Junction (STJ) detectors in development Array of 50 Nb/Al-STJ pixels with diffraction grating covering λ = 40 80μm For rocket experiment aimed at launching in 2016 in earliest, aiming at improvement of lower limit for τ(ν 3 ) by 2 order STJ using Hafnium: Hf-STJ for satellite experiment (after 2020) Δ = 20μeV : Superconducting gap energy for Hafnium N q.p. = 25meV 1.7Δ = 735 for 25meV photon: ΔE E < 2% if Fano-factor is less than 0.3 9

STJ( 超伝導トンネル接合 ) 検出器 Superconducting Tunnel Junction 超伝導体 / 絶縁体 / 超伝導体のジョセフソン接合素子 2Δ 上下の超伝導電極間に電位差を与える放射線 ( 光 ) によって励起された準粒子がトンネル電流として観測 10

STJ のエネルギー分解能 発生する準粒子の個数のゆらぎがエネルギー分解能の限界を決める 超伝導ギャップエネルギーが小さいものが有利 STJ のエネルギー分解能 σ E = 1.7Δ FE Δ: バンドギャップエネルギー F: fano factor E: 放射線のエネルギー Nb の場合の発生準粒子数 N=25meV/1.7Δ=9.5 個 Energy resolution はないが photon counting は可能 Si Nb Al Hf Tc[K] 9.23 1.20 0.165 Δ[meV] 1100 1.550 0.172 0.020 Hc[G] 1980 105 13 Hf を用いた場合の発生準粒子数 N=25meV/1.7Δ=735 個 ΔE/E < F/ N= F/ 735=3.7 F % @25meV Fano factor <0.3 なら分解能 2% を達成可能 11 Tc : 相転移温度 超伝導膜に用いた金属の Tc( 相転移温度 ) の 1/10 程度で安定動作 Hc : 臨界磁場 11

STJ 検出器の性能評価法 STJ の電流電圧 (I-V) 特性を測定 STJ の超伝導転移, ジョセフソン接合の有無, リーク電流, エネルギーギャップなど素子の性能がわかる ジョセフソン電流は磁場を印加して抑制 12

STJ バックトンネリング増幅効果 トンネルバリアの近傍の準粒子は, 次々とトンネル効果を引き起こし電荷を増幅する トンネルバリアの近傍の準粒子の存在確率を上げるためトラップ層を置く Nb/Al-STJ Nb(200nm)/Al(10nm)/AlOx/Al(10nm)/Nb(100nm) 近接効果により Al の超伝導転移温度は Nb の転移温度に近づく 増幅効果 2~200 倍 放射線 ( 光子 ) Nb Al Al Nb 13

FIR photon spectroscopy with diffraction grating + Nb/Al-STJ array Diffraction grating covering λ = 40 80μm (16-31meV) Array of Nb/Al-STJ pixels: 50( )x8( ) We use each Nb/Al-STJ cell as a single-photon counting detector with extremely good S/N for FIR photon of E γ = 16~31meV Δ = 1.5 mev for Nb: N q.p. = 60~120 if consider factor 10 by back-tunneling Expected average rate of photon detection is ~350Hz for a single pixel Need to develop ultra-low temperature (<2K) preamplifier In collaboration with Fermilab Milli-Kelvin Facility group (Japan-US collaboration: Search for Neutrino Decay) SOI-STJ in development with KEK Nb/Al-STJ array Assuming 1μs for STJ response time, requirements for STJ Leak current <0.1nA Need T<0.9K for detector operation Need to 3 He sorption or ADR for the operation Δθ Δλ E γ = 16~31meV 14

Feasibility of FIR single photon detection Assume typical time constant from STJ response to pulsed light is ~1μs Assume leak current is 0.1nA 0.1nA = 6.25 10 8 e s = 6.25 10 2 e μs Fluctuation due to electron statistics in 1μs is 6.25 10 2 e μs = 25 e μs While expected signal charge for 25meV are 25meV 1.7Δ 10e = 25meV 1.7 1.5meV 10e = 98e (Assume back tunneling gain x10) More than 3sigma away from leakage fluctuation Requirement for amplifier Noise<16e Gain: 1V/fC V=16mV 15

JAXA Rocket Experiment for Neutrino Decay Search JAXA のロケット実験 ロケットで高度 200km~300km まで上昇. 約 5 分の観測 検出器, 光学系, 冷凍機の R&D 完了から 2 年程度で打ち上げ可能 (2016 年 ~) λ = 40 80μm (16-31meV) の範囲で連続スペクトラムを測定 ( 回折格子で 50 分割 ) 100μm x 100μm x 50x8 array Focal length 1m

Cosmic Infrared Background measured by COBE and AKARI COBE: M. G. Hauser et al. Astrophys. J. 508 (1998) 25, D. P. Finkbeiner et al. Astrophys. J. 544 (2000) 81. AKARI: S. Matsuura et al. Astrophys. J. 737 (2011) 2. ロケット実験観測範囲 40μ m ~80μ m Zodiacal Light Zodiacal Emission AKARI COBE Zodiacal Emission λi λ ~500nW/m 2 /sr Galaxy evolution model CMB CIB (COBE) λi λ ~30nW/m 2 /s Galactic dust emission Integrated flux from galaxy counts Neutrino decay for τ = 5 10 12 yr λi λ ~30nW/m 2 /s for τ = 1.5 10 17 yr λi λ ~1pW/m 2 /s E γ = 25meV at λ=50μm 17

JAXA Rocket Experiment for Neutrino Decay Search Event Rate and expected Lifetime Limit dn/de 前景放射強度 ( 黄道光 ): λi λ ~500nW/m 2 /sr at λ=50μm Pixelあたりの立体角 : ΔΩ = 100μm 2 = 1 10 8 sr 1m 望遠鏡口径 : S=π x 0.075 2 m 2 Pixelあたりの前景放射レート λi λ S ΔΩ = 0.88 10 16 W = 0.55 10 3 ev s 80μm 40μm Δλ λ = 50μm = 0.016 50 Δλ λ λi λ S ΔΩ E γ = Measurements for 200s x 50 pixel x 8 列 N=28M events / 50x8 pixels 8.8eV s 25meV ~350Hz Sensitivity to detecting an edge spectrum δ(λi λ )~ 2 N N λi λ =0.19nW/m 2 /sr τ ν 3 > 10 14 yr (95%CL) の寿命下限設定が可能 E 18

Summary 宇宙背景ニュートリノ崩壊探索実験ためのロケット実験を提案 高度 200km で約 5 分の遠赤外域分光測定 Nb/Al-STJ array と回折格子の組み合わせによる波長 λ = 40 80μm の連続スペクトラム τ ν 3 > 10 14 yr (95%CL) の寿命下限設定 ( 現在の下限値を 1~2 桁改善 ) R&D Nb/Al-STJ による 25meV(50μm) フォトンの 1 光子計数 leakage <0.1nA, 受光面積 100μmx100μm/pixel, back-tunneling gain>10 そのための超低ノイズアンプ ( 極低温アンプ noise <16e, gain>1v/fc): SOI-STJ など 分光素子 光学系の設計 : 望遠鏡口径 15cmΦ, 焦点距離 1m ロケット搭載クライオスタットの設計 (<0.9K) LHe 減圧 (1.8K)+ 3 He sorption DAQ 19

Backup 20

Energy/Wavelength/Frequency E γ = 25 mev ν = 6 THz λ = 50μm 21

Feasibility of VIS/NIR single photon detection Assume typical time constant from STJ response to pulsed light is ~1μs Assume leakage is 160nA 160nA = e 10 12 s = e 10 6 μs Fluctuation from electron statistics in 1μs is e 10 6 μs = 10 3 e μs While expected signal for 1eV are (Assume back tunneling gain x10) 1eV 1eV 1.7Δ 10e = 10 = 4 1.7 1.5meV 103 e More than 3sigma away from leakage fluctuation 22

Nb/Al-STJ による可視光分光 国立天文台 λ=475nm 23