特殊なケースでの定式化技法

Similar documents
Microsoft PowerPoint - sys_intro_17

Microsoft PowerPoint - mp11-02.pptx

Microsoft Word - 非線形計画法 原稿

Microsoft PowerPoint - no1_19.pptx

Microsoft PowerPoint - no1_17

様々なミクロ計量モデル†

情報システム評価学 ー整数計画法ー

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

航空機の運動方程式

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

PowerPoint Presentation

Microsoft PowerPoint - 9.pptx

横浜市環境科学研究所

2011年度 大阪大・理系数学

パソコンシミュレータの現状

Microsoft PowerPoint - 9.pptx

DVIOUT

Microsoft Word - NumericalComputation.docx

PowerPoint Presentation

頻出問題の解法 4. 絶対値を含む関数 4.1 絶対値を含む関数 絶対値を含む関数の扱い方関数 X = { X ( X 0 のとき ) X ( X <0 のとき ) であるから, 絶対値の 中身 の符号の変わり目で変数の範囲を場合分けし, 絶対値記号をはずす 例 y= x 2 2 x = x ( x

Microsoft Word - 補論3.2

モデリングとは

2017年度 金沢大・理系数学

Microsoft PowerPoint - mp13-07.pptx

memo

Microsoft Word - å“Ÿåłžå¸°173.docx

Probit , Mixed logit

微分方程式による現象記述と解きかた

Microsoft Word - 微分入門.doc

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

Chap3.key

ミクロ経済学Ⅰ

Microsoft PowerPoint - mp11-06.pptx

Microsoft Word - Chap17

(c) 規模に関して収穫一定の生産技術をもっているから, 総費用は直線で表され, また平均費用も限界費用も同様に直線で表されかつフラットな形状になる. 問 (b) の解答より, 1 脚当たりの総費用は $65( $390 / 6 ) であるから, 各費用関数は図 9.12 のように描くことができる.

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

第2章

DVIOUT-SS_Ma

Microsoft Word - 1B2011.doc

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ

データ解析

Microsoft Word - ASMMAC_6

Microsoft Word - thesis.doc

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - H21生物計算化学2.ppt

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

ディジタル信号処理

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので,

Microsoft PowerPoint - sc7.ppt [互換モード]

<4D F736F F F696E74202D20837E834E838D2D91E6428FCD EF97708DC58FAC89BB96E291E E707074>

<4D F736F F D208CF68BA48C6F8DCF8A C31312C CC295CA8FC194EF90C582C697988E718F8A93BE90C52E646F63>

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

したがって このモデルではの長さをもつ潜在履歴 latent history が存在し 同様に と指標化して扱うことができる 以下では 潜在的に起こりうる履歴を潜在履歴 latent history 実際にデ ータとして記録された履歴を記録履歴 recorded history ということにする M

ミクロ経済学・基本講義 第2回

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

Microsoft Word - 断面諸量

Microsoft Word - 8章(CI).doc

「経済政策論(後期)《運営方法と予定表(1997、三井)

Microsoft PowerPoint - 13approx.pptx

PowerPoint Presentation

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

Microsoft Word - 19-d代 試é¨fi 解ç�fl.docx

スライド 1

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1.民営化

DVIOUT

学習指導要領

DVIOUT-SS_Ma

講義「○○○○」

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

画像類似度測定の初歩的な手法の検証

Microsoft PowerPoint pptx

Microsoft Word - Chap11

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

PowerPoint プレゼンテーション

Microsoft Word - lec_student-chp3_1-representative

Microsoft PowerPoint - DA2_2019.pptx

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

問 題

講義「○○○○」

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする

PowerPoint プレゼンテーション

産業組織論(企業経済論)

2014年度 千葉大・医系数学

<4D F736F F F696E74202D20837E834E838D2D91E682618FCD EF97708DC58FAC89BB96E291E E B8CDD8AB B836

SAP11_03

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

Microsoft PowerPoint - CSA_B3_EX2.pptx

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

PowerPoint プレゼンテーション

Transcription:

特殊なケースでの定式化技法 株式会社数理システム. はじめに 本稿は, 特殊な数理計画問題を線形計画問題 (Lear Programmg:LP) ないしは混合整数計画問題 (Med Ieger Programmg:MIP) に置き換える為の, 幾つかの代表的な手法についてまとめたものである. 具体的には以下の話題を扱った. LP による定式化 絶対値最小化問題 最大値最小化問題 ノルム最小化問題 MIP による定式化 インディケータ変数を用いた定式化 セパラブル モデルを用いた非線形計画問題の近似. 絶対値最小化問題 本章では, 絶対値最小化問題の LP による定式化について説明する. ここでは, 絶対値最小化問題の例として, 以下の問題を考える. Mmze c subec o a b ただし, c (,..., ) (,..., m) 本問題を, 絶対値を用いず,LP で表現する方法を以下に説明する... 自由変数本節では, 絶対値最小化問題の定式化の準備として, 自由変数について説明する. 自由変数とは, 上下限値を持たない, 制約の無い変数の事である. 自由変数 は, 以下のような置き換えをすることが出来る.,

ただし, の時, の時, である. これは,, のどちらかが必ず になる事を示している. この, いると, は で表現できる. を用.. 絶対値最小化問題の LP による定式化上の絶対値最小化問題を,. 節の自由変数の置き換えを用いて書き換えると以下の様になる. Mmze c subec o ( ) ただし, c (... ) a ( ) b (,..., m), (*) ここで,(*) の制約は,, の少なくとも一方が必ず になるというものである が, 問題が最小化問題であることと, c (,..., ) という仮定より, 省略する ことが出来る. このように, 絶対値最小化問題は LP で表現できる.. 最大値最小化問題 本章では, 最大値最小化問題を LP で表現する方法について説明する. 最大値最小化問題の例として, 以下の問題を考える. Mmze z, z,... subec o ma z c z k (,..., k) これを,LP で表現する方法を以下に説明する... 最大値最小化問題の LP による定式化 Mmze z, z,... ma z k この証明はここでは省略する. 最大化問題の場合は c (,..., ) という仮定が必要.

は次の問題と等価である. Mmze subec z z (,.., k) z よって, 最大値最小化問題を LP で表現すると以下のようになる. Mmze z subec o z. ノルム最小化問題 c, この章では, ノルム最小化問題を LP で表現する方法について説明する. 以下に標準的なノルムの定義をあげる. z z, z,..., z ) の時, ( m - ノルム z m - ノルム z z m z ノルム z ma z m 章, 章で述べた つの方法を応用すれば,- ノルム, -ノルムの最小化を LP で定式化することが出来る. ただし,-ノルムに関しては,LP で表現することは出来ない... -ノルム最小化問題この節では, 上で述べた-ノルムの最小化問題, すなわち Mmze m z を LP として, 表現する方法を以下に述べる. これは,. 節で説明した絶対値の定式化を用い, v v z

v, v のように, 絶対値の中身を置き換えればよい. よって,- ノルム最小化の定式化は, 以下の様になる. m Mmze ( v v ) subec o v v z ) (,..., m v, (,..., m) v.. -ノルム最小化問題この節では, -ノルムの最小化問題, すなわち Mmze z ma z m を LP として, 表現する方法を以下に述べる. この問題も. 節同様, 絶対値の中身を, v v z v, v のように, 置き換える. さらに, 最大値最小化問題であるため, 新しい変数 q を導入し Mmze q subec o q (,..., m) v v と置き換えられる. v, (,..., m) v 5. インディケータ変数を含む問題 インディケータ変数とは, 状態の o/off を表す変数である. これを用いることによっ て, 以下に挙げる様な事例を混合整数計画問題 ( Med Ieger Programmg Problem:MILP) で表現することが出来る.

5.. 固定値の表現 この節では, 以下のような問題を考える. ある製品を 単位生産するものとする, このとき, 単位あたりの生産に要する 費用はC である. これに加え, もし, その製品が少しでも生産されるならば, 立 ち上げの為の初期費用 C も発生する. このことは次式で表現される. の時総費用 = の時総費用 =C C これを表現するために, インディケータ変数 を導入した以下の式を考える. 総費用 =C C M ( M は が取り得ることない, 十分大きなパラメータ ) (*) この時 (*) によって, の時には, の値は に固定され, 総費用 = が表現出来 る. また, の時には, は ではない値を取ることができ, 総費用 =C C を 表現することが出来る. 5.. 不等式制約の切り替え インディケータ変数 を用いると, 不等式制約として g( ) と g( ) のどちらを 用いるかを切り替えることが出来る. その為には以下の つの式を連立させればよい. g ( ) ( ) M ( M : g() の絶対値より十分大きなパラメータ ) g( ) M ( : g() が とみなせる十分小さなパラメータ ) この時, ならば, g ( ), g( ) M である. これらをまとめると, g ( ) M である. これは事実上, g( ) という制約が適用される事を示し ている. また ならば, g( ) M, g() である. これはすなわち, M g() である. これは事実上, g( ) ている. 5.. インディケータ変数の利用 という制約が適用される事を示し インディケータ変数 を用いると, 変数の値を固定したり, 関数を差し替えることが 出来る. 例えば が [] の時, 変数を に固定するには, [ ] とすればよい. また,5. 節の内容を用いると, の値によって関数 f を差し替える事が出来る. そ の為には, 十分大きなパラメータ M を用いて, 5

M ( ) f a M( ) () M f b M () とすればよい. この時, =ならば, f は () により a ない. また = ならば, f は () によりb いない事がわかる. 5.. 起動 停止コストの表現 に固定され,() は事実上有効では に固定され,() の制約は効いて この節では, 機器が起動または停止する際にかかるコストを最小化する問題を考える. これもまた, インディケータ変数 で表現することが出来る. この表現方法を以下に 説明する. 時系列の運転インディケータ変数 (,..., T) と, 起動 停止インディケータ, (,..., T ) を導入する. は機器が運転している時に, 停止している時に となるものとする. また は機器が運転を開始した時刻のみに となり, 残り の時刻では となるものとする. 同様に, は機器が停止する時刻のみに をとるも のとする. これらの一例を次の表に挙げる. - この時, 起動 停止にかかるコストは で表現できる. さらに, と - ( C D ) ( ), の関係は, 以下の つの式を連立させる事によって表現できる. ( 起動 ) ( 停止 ) この式の左辺は, 運転状態の変化を示している. すなわち, 運転状態が変化すると であり, 変化がないと である. これらの式だけでは, 運転状態の変化がない時刻に も, が となる可能性があるが,, は最小化される目的関数 ( ) に現れる事 に注意すると, 起動 停止時のみ, その他の時には であることが言える. 5.5. 論理条件の表現 インディケータ変数を用いると, 状態間の論理的な結びつけが可能となる. 例として, 論理和と論理積について表現すると, 論理和 : 論理積 : 6

となる. 5.6. 折れ線関数の表現 インディケータ変数を用いると, 折れ線関数を表現することも出来る. 折れ線関数 f () が連続で, の定義域がその中において f () が線形関数とみなせる 個の区間に分割される場合を考える. この時 f () は次のように表される. y f ( ) s y L (,..., ) L z L z (,..., ) ここで, z (,..., ) はインディケータ変数であり, s (,..., ) は各折れ線の傾き, y は の時の y の値, L (,..., ) は各区間の幅である. ただし, z, z は z, z と固定しても一般性を失わない. よって, 必要なインディケータ変数の実際の総数は 個である. y y s s s y s s 傾き s y s 傾き s y 傾き s L L L 図 折れ線関数の例 具体的に, つの区間に分割されている, 折線関数を定式化してみる. y s s s y 7

L L L L z L L z z L z ( L z L z ( L z L z ) L ) 本定式化により, インディケータ変数 z, z の組み合わせで, 各場合を表現できてい る事になる. 以下, その事を確認してみる. z, z の時 L この時,, は に固定され, により L の区間が表現されている. z, z の時 L L L この時,, は, L に固定され, により, L の区間が表現 されている. z, z の時 L L L L L この時,, は L, L に固定され, により L の区間が表現さ れている. z, z の時 Lz Lz という制約があるため, 選ばれることは無い. 8

6. セパラブル モデル 最後にセパラブル モデルの MIP による近似について説明する. セパラブル モデルについて説明するため, まずセパラブルな関数について説明する. セパラブルな関数とは, 変数関数の和として表される関数の事である. つまり, つの項の中に含まれる変数の数は つである. 例 ) e セパラブルな関数は, 以下の性質を持つ. インディケータ変数を用いて折れ線近似が出来る 最小化問題で凸な問題に対して, 折れ線近似した問題において, 大域最適解を得ることが出来る ( ただし, 非凸な問題に対しては, 局所的最適解が得られる ) つまり, セパラブル モデルとは, 上で述べたセパラブルな関数をもつ, 数理計画モデルの事である. 6.. セパラブル モデルの MIP による定式化セパラブル モデルを MIP として定式化する為には, セパラブルな関数の非線形項を線形近似する必要がある. ここでは, 例として二次の非線形項がある, 凸計画問題のセパラブル モデルの定式化を以下に示す. 例 )Mmze subec o 5, 一般には, これとは違った概念で セパラブル という言葉を定義する事もあるが, ここではその定義は割愛する. 9

y 6.5 6 5.5..5..5 図 折れ線による近似の例 上の例で, 非線形項 を取り除くことを考える. ここでは区間. 5 を,,. 5 の つの区間に分割し, 図 のように折線近似 を行う..5 y 6.5 (,...,) ただし, はたかだか つの隣り合った のみがゼロではない.( ) ( ) は y, が折れ線上の値を取る事を保証するものである. この制約を定式化するには, インディケータ変数 (,...,) を導入して, ( )

とすればよい. 上記を踏まえ, 上の例のセパラブル モデルを MIP として定式化すると, 次のよう になる. Mmze y subec o 5.5 y 6.5 y,,,,,, 条件 ( ) ( ) さらに, 今回の問題は次の特徴を持つ. y は最小化される目的関数に含まれている y は凸関数であるこれらの特徴により, 問題 ( ) から条件 ( ) をとり除く事が出来る. 従って問題は LP として表現できる. 本定式化には, 折れ線近似を用いているので, ある程度の不正確さは伴う. しかし, 不正確性は近似する直線の数を増やすことによって減らす事が出来る. また, 不正確性を取り除く事が非常に重要であると考えられる場合には, 本定式化で得られた, 最適解付近の分割を細かくし, 再度最適化を行うという方法もある. 6.. 凸関数の線形近似の一般化 6.. で示した凸関数の線形近似を一般化すると, 次のようになる. 非線形項 y f () を区間 に分割する時, 新しい変数 を導入し, y f ( ) のように, 定式化できる. 6.. セパラブルな関数への変換セパラブル モデルは, セパラブルな関数だけに適用可能であるが, セパラブルでな

い関数をセパラブルな関数に組み替える事が可能な場合がある. 現実のモデルのセパ ラブルでない関数は, つ, もしくはそれ以上の変数の積である事が多い. この変換 の例を以下に示す. 例 ) という項をセパラブルな形に変換する u というつの新しい変数を以下の様に定める.,u u u この時, ( ) / ( ) / u u となるので, をセパラブルな形に変換する事が出来た. 参考文献 [] H.P. ウイリアムス ( 前田栄次郎監訳, 小林栄三訳 ) 数理計画モデルの作成法, 産業図書,995 [] Gerge B.Dazg, Mukud N. Thapa Lear Programmg :Iroduco Sprger-Verlag,997