Slater[] Collin[] [3] [4] AR 508.6MHz λ =58.9cm 4 9.7m APSAlternating Periodic Structure 50kW.M/m 3M cm 7.5 WR500 f c TE 0 f c = 393MHz 9 90k 0

Size: px
Start display at page:

Download "Slater[] Collin[] [3] [4] AR 508.6MHz λ =58.9cm 4 9.7m APSAlternating Periodic Structure 50kW.M/m 3M cm 7.5 WR500 f c TE 0 f c = 393MHz 9 90k 0"

Transcription

1 OHO π APS A 40 L C R L C R Appendix

2 Slater[] Collin[] [3] [4] AR 508.6MHz λ =58.9cm 4 9.7m APSAlternating Periodic Structure 50kW.M/m 3M cm 7.5 WR500 f c TE 0 f c = 393MHz 9 90k 0A.MW 65% W m 3

3 : AR. APS k..... Q 3

4 . r=b arbitrary scale Hq Ez E z d H q c 0 r/b b : b d TM 00 E z H θ z 0 J 0χ 0r/b J χ 0r/b z χ 0 = z r θ b d E z Transverse Magnetic Mode TM E H z Transverse Electric Mode TE H TM 00 E z H θ z TM 00 E z θ E z r 3 E z z Êz Ĥθ 0 0 r =0 0 J 0 J E z = Êz cos 00 t H θ = Ĥθ sin 00 t + π E r = E θ = H z = H r =0 Ê z = E 0 J 0 χ 0 r/b Ĥ θ = E 0 ζ 0 J χ 0 r/b 00 = χ 0c b d χ 0 = ζ 0 = Ω J 0 3 4

5 c = m/s r =0 r/b = MHz π b.95cm Q Q W P Q = W 4 P P wall Q Q 0 W = µ 0 Ĥ dv = ɛ 0 P wall P wall = ζ m S Ê dv 5 Ĥ ds 6 ζ m σ µ ζ m = µ σ 7 σ = m Ω µ = µ 0 = H/m 500MHz ζ m = Ω δ δ = σζ m 8 TM 00 Q Q 0 = ζ 0 ζ m χ0d d + b 9 9 d Q d Q r.m.s. TM 00 3 L C R Q 0 00 = LC 0 Q 0 = R 00 L L C R E 0 z r =0 t =E 0 d cos 00 t 0 cos 00 t z = d/s z = d/s z t 0 z = vt t 0 5

6 L C R = R a / L = R 00 Q 0 C = Q 0 R : a t =E 0 d/ d/ = 0 T cos 00 t 0 00 z cos + 00 t 0 v a cos 00 t 0 3 T = sin 00d v 4 00d v a 0 T T 0 R a = 0 T = E 0 Td R = a P 5 P 6 R = ζ 0 d ζ m πj χ 0 bb + d T 6 R L C 3 9 rms 5 R a =R 8 5 I 0 R a I 0 d 5 6 d =0.44λ d Q T R a 4 500MHz r a r a = Ra d = E 0T P wall /d d/λ =0.9 /3 3/π [5][6] 6

7 0.8 T R/Rmax Q/Q max πd/λ 4: : f 00 = 00/π = 500MHz σ = m Ω c E 0 /m E 0 b 0.95 m d m U E 0 J 3 P wall E 0 W 3/ Q Q / R a Ω /.. δ n n W n δ n n = δw n W n 9 [7] n δw n F n F n = µ Ĥn 0 ɛ0 Ên n F n n 4 0 n δw n 7

8 δw n = F n dv δ δ δ n n = 4 δ µ Ĥn 0 ɛ0 Ên dv ɛ 0 Ên dv W n,e W n,h δ n δw n,e δw n,h 3. δ n % 56% d 0.6b C C / C δw E T 5 nose cone H q E z Pill-box Cavity Cavity with Noze Cones 5: :.3 5 8

9 500MHz PF cm cm 8cm 4cm 0cm 3cm 500MHz SU- PERFISH R a =9.9MΩ Q 0 44, 000 [8] R a T a r a r = a z E z z r a TM 0 TM 0 e jt z β g exp jβ g tilde à β g β g Ẽ z r, z = à β g π J 0 β β g r e jβgz dβ g 4 Ẽ r r, z = à β g π jβ g β βg J β β g r e jβgz dβ g 5 H θ r, z = à β g π jɛ 0 β βg J β β g r e jβgz dβ g Ẽ θ = H z = H r =0 6 β c 7 r z r = a E z z d/ { 0 z d/ E z =0 z >d/ 8 z d/ E z d 9

10 r R0mm R34.69mm Ez r=0 R50mm R9.375mm z 0mm R30mm 300mm 6: PF 500MHz E z = { E 0 = 0 /d z d/ =0 z >d/ 9 à β g à β g = 0 β g d sinβ g d/ 30 J 0 β βg a r = const. v z =0 φ z exp j v + φ 3 6 z z φ Ṽ φ = à β g π J 0 β βg a e j[/v βg+φ] dβ g dz = à /v J 0 β /v a e jφ = à /v I 0 v/c r e jφ 3 v I 0 x =J 0 jx acc ] acc =Re [Ṽ φ sin d v = 0 d v I 0 v I 0 v v/c r cos φ v/c a a cos φ 33 φ =0 0

11 a v = c a = 0 sin βd/ βd/ 34 T r 3 v = c r [9] β g β g = ±jγ n n =,, J 0 n χ 0n β =π/λ Γ n χ 0n /a β 36 z < d/ z > d/ z d/ sin β g d/ expjβ g d/ exp jβ g d/ E z r, z = E 0 + J 0βr J 0 βa χ 0n cosh Γ n z e Γnd/ Γ na n= J χ 0n r/a J χ 0n 37 I =πah θ a, d/ = E 0 d C C = I j C = C 0 f d a,βa 40 C 0 a d C 0 = ɛ 0 πa d 4 f C 0 fx, y = e x χ 0n y n= χ 0n y = J y yj 0 y n= e x χ 0n y χ 0n y fd/a, βa d/a = βa 7: fd/a, βa 3

12 coupler φ 0bi-periodic structure 3. 8 z φ 0 φ π π φ = π π 8: =0 = π TM C C R π π φ =0 π 0 φ =0 E H cell - cell - cell - cell mode p - mode 9: 0 π π

13 i L L C' C C i 0: C C 43 C L π 0 > π 0 ĩ ĩ jl + jc jl + jc ĩ + jc ĩ ĩ =0 ĩ + jc ĩ ĩ =0 44 ĩ = ĩ 0 0 ĩ = ĩ π π 0 ĩ = ĩ = LC 0 45 E =0 H =0 47 E =0 H = π 9 e h π ĩ = ĩ = 0 + C C π 0 + C C > < π e = 0 c h h = 0 c e e dv = h dv = 49 cell cell e =0 h =0 50 e h 3

14 e = 0 c h h = 0 c e e dv = h dv = 5 cell cell e =0 h =0 5 0 π = S A B B A dv B A A B nds 53 A e B e 9 n S S e e n = [ π c 0 ] v 0π = 0 e h nds c c iris 55 iris v 0π v 0π c e e dv 56 0 cell 55 TM k c e h nds 57 0 iris 55 [ π ] = k 58 v π 0 v 0π e e v 0π TM 00 k a λ 9 z z =0 z ± E z ±e 0 E r 0 z = aξη r = a + ξ +η 59 Φ= a π e 0 ξ tan ξ + 60 [0] e r e r iris = Φ r = z=0 r π a r e 0 6 h e 4

15 z e z e 0 49 h θ h θ iris = 0r c e k = 4 3 a3 e 0 63 b d 49 χ0 r e z = e 0 J 0 64 b k = e 0 = dj χ 0 4a 3 a3 3πb dj χ.57 0 b d k a % 3. 0?? C C n ĩ n jl + ĩ n + ĩ n ĩ n+ ĩ n jc jc =0 67 φ ĩ n+ = ĩ n e jφ 68 = 0 [ + k cos φ] / [ 0 + k ] cos φ 69 0 LC, k C C 70 φ π dispersion curve k pass band ± φ i = i 0 e jf L i 0 e jf i 0 i 0 e jf i 0 e jf C' L L L L C' C' C' C C C C C n = 0 : ñ ĩ n = Ã+e jn φ + à e jn φ 7 ĩ n = A + cos t + n φ + ψ + + A cos t n φ + ψ 7 A ± 0 ψ ± + 5

16 jl + r + ĩ n jc π + ĩ n ĩ n+ ĩ n jc = π φ 0 φ π φ r L r L : C' C' n φ =0 φ = π φ Ã+ Ã 0 d λ g β g λ g π = πd β g φ 73 C C C 3: Q exp t/q Q 3 r 9 R v p v p = ± β g = ± d φ 74 Q = L r = Cr Q = R = RC 77 L 0, 0 ± φ, v p /d 3 r r L jl jl + r 68 ĩ n+ = ĩ n e jφ α 78 α 76 α φ 75 6

17 φ =0 φ = π α Cr k sin φ = kq sin φ 79 α 69 φ =0 φ d Ẽ x, y, z + d =e φ Ẽ x, y, z H x, y, z + d =e φ H x, y, z 8 [] φ 0 φ Cr φ = π α ln/k 80 r L π φ α lnπ φ 8 4 α k = 0.0 Q = 000 π R. M. Bevensee[][] TM 00 5 z = nd n z = nd ncell n 0 φ =0 φ = π 0 - mode φ = φ /rad n = 0.04 z / φ /rad 0.98 z = : Q = 000 k =0.0 α 0.0 φ 0.99π φ 0 =/ LC π - mode φ = π n = 0 z = 0 z 5: 0 π φ 0 Ẽ, H 7

18 0 Ẽ, H E, H 53 A e B E 0 55 { [ ] φ } = 0 [ c 0 A φ + right iris left iris A φ cell0 ] E h nds 83 E edv E e e e 0 E A e A = cell0 E e dv 85 A A E cell0, rightiris = A e cell0, rightiris + A e jφ e cell, leftiris = A e jφ e cell0, rightiris 86 E cell0, leftiris = A e cell0, leftiris + A ejφ e cell, rightiris = A e jφ e cell0, leftiris 87 e n { [ ] φ } 0 A c cos φ A 0 right iris e h nds = A k cos φ 88 A A /A π π 8

19 Floquet z d nπ jβg+ Ẽ z x, y, z = Ẽ n,z e d z n= = e jβgz n= nπ j Ẽ n,z e d z 89 e jβgz d β g z z z 0 π a = a φ a 6 v p v p = a φ a d 90 v b 6 φ a π 7 π φ a π mπ m m = d TW in +z direction TW in -z direction v phase = /β g = v beam φ = β g /d -π -π -φ a 0 φ a π π φ a -π π-φ a π+φ a 6: +z z φ a v phase = v beam -π 0 π π 3π 7: φ a π φ = β g /d π φ =0 0 π 8 PEP PETRA 9

20 3.4 N N 8 0 Rees[3] i L C' i L i 3 C' L i N L i N i N L L C' C' + k ĩ k 0 ĩ = ĩ + k 0ĩ k 0 ĩ k 0 ĩ3 = ĩ. + k 0ĩN k 0 ĩn k 0 ĩn = ĩ N + k ĩn k 0 ĩn = ĩ N 93 π ĩ = ĩ = ĩ 3 = = N ĩ N C C C C C C 8: N 0 =+k 95 π π L C C π 0 =+k 96 N 0 LC, k C C 9 L C L C, k C C 9 L L C C k k k Hĩ = π ĩ 97 H = k k k k k k k k k k k k k k k k 98 0

21 ĩ = ĩ ĩ ĩ 3.. ĩ N ĩ N ĩ N 99 n n / π n nπ = k cos π N k cos nπ N n =,,...,N 00 ĩn = {ĩ n,m } m =,,...,N ĩ n = mode number m = m = m = 3 m = [ ] m nπ ĩ n,m = + δ nn N sin 0 N δ nn n = N π N = π N =5 9 0 k 0.05 m / π m : N=5 k =0.05 m = 5 amplitude cell number n 0: k + jc r ĩ k 0 ĩ = ĩ + k + jcr 0ĩ k 0 ĩ k 0 ĩ3 = ĩ. +k+jcr 0ĩN k 0 ĩn k 0 ĩn = ĩ N + k + jc r ĩn k 0 ĩn = ĩ N 0 r H

22 L r L r L i i i 3 C' C' C C C : r 8 H + H ĩ = π ĩ 03 H 77 j Q j 0 Q j 0 0 Q H j Q 0 0 j Q 0 j Q 04 H = ĩt n H ĩn 05 ĩn = N m n π ĩ t m H ĩn m π n π ĩm 06 t n n n + j 07 π π Q H p δ 0 08 H p j Q j Q + δ π ĩ N 06 n = N Ṽejt H + H ĩ 0 ĩ = π jcṽ r C' L e jt C C C cell number: n n n + r : Q π = π m = C' L

23 jcṽ Ĩ 0 E N N Ĩ H + H E ĩ = 0. 0 ĩ = N a n ĩ n 3 0 a n a N = j Q N Ĩ Q sin a n = j jq n nπ N N n N 4 n n π 5 π Q N a N π N π a N 5 π m = N ĩ ĩ N 0 4 Ĩ ĩ Ĩ [ ] j Q sin N π N + N Q N ĩ Ñ I j Q N N + sin [ N N π N Q N ] 6 Q 000 ĩ N /ĩ ] arg [ N ĩ N /ĩ 3 4 N N N kπ N 7 N π i end cell / i first cell : Q N π Q = 000 k = APS φ a = π N 3

24 Arg{- N- i end cell / i first cell} rad N : Q N π Q = 000 k =0.05 5: 500 MHz APS 0 0 π/ 6 SCS side coupled structure [6] ACS annular coupled structure [7] DAW diskand-washer [8] 5 APS alternating peiodic structure[4][5] π 0 π 0 φ = π 0 π 0 biperiodic structure π/ 6: APS SCS side coupled structure ACS annular coupled structure DAW disk-and-washer coupling cell APS 6 4

25 l s φ 0 Ω l Ω φ s = K cos i = i exp-j l -jf i s exp-j -jf/ L l C' L s Ll L s L l C' i i expjf/ i expjf l s C' C' l 4 φ =0 φ = π =Ω, Ω φ =0 C l C s C l Cs C l 7: jl l + jc l ĩ l jc jl s + = jc s jc = φ φ ej j + e jc ĩ l ĩ s φ φ ej j + e jc ĩ l 8 φ/ z k l C l C k s C s C 9 8 ĩ k l l l cos φ = ĩ s + k l l = + k s s + k s s 0 Ω l l +kl Ω s l +ks K l s kl k s = Ω =Ω l, Ω s φ = π 3 Ω l +Ω s Ω ± K + l Ω s 4 φ = π v g d φ d K sin φ v g = 4 Ω l Ω s d 5 Ω l Ω s φ = π v g =0 Ω l =Ω s Ω confl 6 π d = ± K 7 4Ω confl Ω l =Ω s confluence 9 C l C s 5 TM 00 APS k s k l k l =0.03 k s =0.09 Ω l /Ω s

26 8 l s = Ω l Ω s φ = π 0 = Ω l = Ω s /Ω l Ω s /.0 Ω l /Ω s = φ 9: φ = π APS = Ω > Ω 8: TM 00 APS φ = π 9 φ =0 30 =Ω =Ω 0 π Ω Ω s < Ω l l s = Ω 30: φ =0 APS Ω Ω l =Ω s Ω Ω = K l Ω s Ω l Ω s 8 Ω Ω l Ω s Ω kl k s 9 Ω l Ω s k s,k l k Ω Ω /Ω l k 6

27 k s k l 6 l s = +k s +k l > 30 φ = ĩs ĩ l = +k s +k l > 3 k s k l C s C l 3 ĩ s C s ĩ l C l 33 4 aperture loop matched coupling undercoupling overcoupling well-padded 3 S a S a S S a 3 S m S a S m S a S m S z 7

28 k k S a n k Sa n = k 導波管 z 方向 k = n Sm on S a 実際の結合穴 空洞 3: S a e n, h n 34 e n, h n e jt e n, h n + n e nr c =0 h n r n =,, 3, n S e n r =0 h n r =0 37 n e n r =0 n h n r =0 38 δ nn e n e n dv = δ nn h n h n dv = δ nn 39 e n r e n r m 3/ e n r = c h n r n h n r = c e n r n 40 Ẽ H Ẽ + jµ 0 H =0 H jɛ 0 Ẽ =0 Ẽ H Ẽ H n A B =A B n 4 A B dv = A Bdv + S [A B] n ds 4 8

29 n Ẽ e n dv + n c n Ẽ h n ds S m = n c n j µ 0 S m = j µ 0 S a H h n dv n Ẽ h n ds n Ẽ h n ds S a n Ẽ h n ds 43 Ẽ Ẽ H δ = µ 0 σ n Ẽ = +j µ 0δ H 44 Q n Q n 45 δ n S m h nds δ n = n Q n n Q Q n 43 /Q n H h n dv j S a n Ẽ µ 0 j n Q n n n h n ds 46 n 47 Q n Q n 46 n e n, h n 0 rotational irrotational [9] H g m g m g m r =0 + m c g m r =0 48 S g m n =0 49 Ẽ n Ẽ g mds 50 S a m H n + m h n j S a n Ẽ h n ds µ 0 j n Q n n [ j ] g m n µ 0 Ẽ g m ds S a 5 n =0 9

30 4. z k S a S a 5 h n S a Ẽ k +z t z x, y z A x, y, z e jt =[A t x, y+a z x, y] e jt βgz 5 β g z TM transverse magnetic z TE transverse electric Z g H t,g x, y =±k E t,g x, y 53 [0] + e jβgz +z e jβgz z Z g wave impedance ζ 0 = Ω β β g TM Z g = = β g Y g β TE 54 Z g = Y g = β β g 55 Y g e g x, y h g x, y Ẽ g,t x, y, z =Ṽ ze g x, y H g,t x, y, z =Ĩzh g x, y 56 e g x, y h g x, y S g e g e g dxdy = h g h g dxdy = 57 S g S g eg x, y = hg x, y z + z Ṽ + z =Z g Ĩ + z =Ĩ+z/Y g e jβgz Ṽ z = Z g Ĩ z = Ĩ z/y g e +jβgz 59 z =0 Z L z 0 Ṽ z =Ṽ+z+Ṽ z Ĩz =Ĩ+z+Ĩ z 60 30

31 z =0 Ṽ 0 = Z L Ĩ Ṽ 0 Ṽ + 0 = Z L Z g Z L + Z g R 6 R z Z in = Z g +Re jβgz Re jβgz = Z g Z L jz g tan β g z Z g jz L tan β g z 63 S a Ẽ t aperture =Ṽge gt H t aperture =Ĩgh gt 64 z Ṽg Ĩg 64 5 Ĩ g h gt n + m h n jṽg S a n e gt h n ds µ 0 j n Q n n [ ] jṽg g m n e gt g m ds µ 0 S a 65 e gt n A B = n A B e gt h gt kds S a = e gt h gt nds S a = 66 S a Ĩ g jṽg n jṽg m [ Sa n e gt h n ds] µ 0 j n Q n [ µ 0 n S a n e gt g m ds ] 67 [ ] 67 n n 67 Ṽ g Ĩ g µ 0 n Q n [ S a n e gt h n ds ] r n 68 r n r n C n n r nq n 69 L n r nq n n 70 3

32 L 0 µ 0 [ ] 7 n S n e a gt g m ds r C L Ω Farad Henry S a Ỹ in =/ Z in Ỹ in = Ĩg Ṽ g = jl 0 + n 7 jc n + r n + jl n 3 L 0 L L r r C C 3: 0 7 n Ỹ Ỹ in 0 jl 0 + Ỹ 73 Q 0 n Ỹ n Ỹ in n + jc n + r n + jl Ỹ n n 74 3 Y g /Z g 45 Q Q n Q Q ext, n Ln Q ext, n Y g = r n Y g Q n 75 C n 74 Ỹ in n j n Q ext, n Y g + Ỹ n 76 n + Q n 4 S a /4 z = ± π β g Ỹ in / Z in S a Ỹ in / Z in Ỹ in = Z in = Y g = Z in Ỹ in Z Z in = n jl + jc n + n R n C 0 L 0 Y 0 C n L n Y 0 L n C nz 0 + jc 0 78 R n r n Z

33 33 L' L' C' 0 C' C' R' R' k = M m 0 F ideal = 83 0 m 35 Z Z Z /m 33: 3 3 λ g/ [ ] 34 F F = L M jm L L m : I = F I jl L M M L M I M I L M L M 34: M 80 8 L L M m = sqrtl /L k = M/ L L 8 m : Z = I = m I = Z m 84 Z m Z 35: 68 7 [ ] e gt h n g n e gt h n g n S a h n g n e gt c n m n = S a e gt h n nds c 0 m 0 = [ ] m S e a gt h n nds 85 c 0 c n 33

34 C n = C n /m n L n = m nl n r n = m n r n L 0 = m n L 0 86 m n m m n Q ext, n n Q n Q ext, n 3 : m 0 : m : m L'' 0 r'' L'' r'' L'' C'' C'' : 3 k 34

35 beam loading J t, x, y, z H E + µ 0 t =0 E H ɛ 0 t = J 87 Ẽ H S a 0 40 E H h n J dv 88 h n =0 h n J dv = J h n dv = n J e n dv 89 c h n J dv J h n dv = J hn dv = J hn n =0 S t + n Ẽ e n dv + n c n Ẽ h n ds S = J e n dv 90 ɛ 0 t t + n H h n dv + n µ 0 t Ẽ h n ds S =+ n c J e n dv j Ẽ e n dv = J e n dv 9 ɛ 0 n j Q n n n 35

36 Ẽ x, y, z = e n x, y, z Ẽ e n dv n = n j e n x, y, z J e n dv ɛ 0 n n 93 j Q n n = q z x = y =0 c +z T =π/ J t, x, y, z [ = ki 0 δxδy + p= cos p t z c ] 94 k +z p δx δy x y I 0 I 0 = q T 95 p = n = J t, x, y, z ki 0 δxδycos t z c z qz =q 0 δz J x, y, z =ki 0 δxδye jz/c n = Ẽ x, y, z e n x, y, z j k e 0, 0,z e jz/c dz I 0 ɛ 0 j Q = e n x, y, z j e z z e jz/c dz I 0 98 ɛ 0 j Q e z e z z n = = Ẽ x, y, z = e x, y, z Q I 0 ɛ 0 e z z e jz/c dz e jz/c E t, x, y, z =Re [Ẽ ] x, y, z e jt e n x, y, z Q I 0 ɛ 0 e z zcos t z dz c 99 z z E t, z qz = q 0 e z σz πσz σ z r.m.s. q 0 I 0 e σ z c I 0 36

37 e z z z E t, z = e z zcost Q I 0 ɛ 0 e z zcos z c dz 00 z = ct br br = = Q I 0 ɛ 0 E z/c,z dz [ e z zcos z ] c dz 0 = 0 e e dv = [ e z zcos z ] c dz [ ] E z zcos z c dz = E 0 E dv 4 Q Q = ɛ 0 E E dv 03 P wall 0 br = br 04 I 0 P wall R a br = I 0 R a =I 0 R Ṽ b = I 0 jc + jl + R a 06 C = Q R a L = R a Q I 0 e jt L C R = R a / 37: I 0 e jt L C R = R a / L C R = R a / 38:

38 39 R = R a / jb = j Q R Y 0 = /Z 0 ±z ṽ g± Ĩg Y 0 n I g e jt v g+ v g Y 0 /R jb I 0 e jt クライストロン導波管加速空洞ビーム Y 0 = /Z 0 : n 39: /n n Z 0 /n I g e jt v g+ v g β/r /R jb I 0 e jt クライストロン導波管加速空洞ビーム β/r 40: 39 β Ṽ g+ = R β Ĩg Ṽ g = R β Ĩg 0 5 Ṽ g+ + Ṽg Ĩ g + Ĩg 40 I 0 =0 Ṽg I g =0 Ṽb Ṽg 0 40 Ṽ g = Ṽg+ + Ṽg = R β Ĩg Ĩg β R Z 0 /n 09 = Ĩg + Ĩg + jb R Ṽg± = ṽ g± /n / Ĩg R /β Ĩg Ṽ g = R +β + jbr Ĩ g

39 tuning angle ψ Im < ' = ' g > ' gr ξ ψ tan ξ 4 0 ψ θ Re ξ BR +β = Q +β 5 Ṽ g = gr cos ψe jψ+jθ 6 gr = gr R Ĩ g +β 7 θ 6 R gr P g = R Ĩg β 8 gr = β R P g = β Ra P g 9 +β +β 4 gr Ĩg =0 Ṽb Ṽ b = R I 0 +β cos ψejψ = br cos ψe jψ 0 6 π 4: Ṽg ψ θ br R I 0 +β = R a I 0 +β 7 Ṽc Ṽ c = Ṽg + Ṽb c e jφ c φ [] Perry Wilson 4 [] Ṽc a a = c cos φ 3 P b = I 0 a β β 39

40 ψ br b br Im 0 c ψ a θ g ψ gr gr e jθ Re 4: P. B. Wilson c a λ/4 /S µq 0 S µ Q 0 Q P b c β β =+ [][3] P b P wall 5 P wall = c 6 R A OHO96 λ/4 λ/4 S µq 0 S µq 0 µ µ Q 0 S µq 0 [] SLATER, J.C.:Microwave Electronics D. an Nostrand Co., Inc., 950. [] COLLIN, R. E.: Foundations for Microwave Engineering, nd Ed. MacGrawhill, 99. [3] MONTGOMERY, C. G., DICKE, R. H. and PURCELL, E.M.:Priciples of Microwave Circuits, M. I. T. RadiationLaboratory Series ol. 8 MacGrawhill, 948. [4] STRATTON, J. A.: Electromagnetic Theory MacGrawhill, 94. [5] GINZTON, E. L.: An Electron Linear Accelerator, Rev. Sci. Instr., [6] CHODOROW, M., et al.: Stanford High-Energy Linear Electron Accelerator Mark III, Rev. Sci. Instr., [7] LANDAU, L. D. andlifshitz, E. M.: Mechanics, 3rd Ed. [8] YAMAZAKI, Y., et al.: KEK Report, KEK

41 980. [9], [0] WENDT, G.: Handbuch der Physik, Band 6, p.40 Springer, 958. [] BEENSEE,R. M.: Electromagnetic Slow Wave Systems John Wiley & Sons, 964. [] BEENSEE, R. M.: Periodic Electromagnetic and Quantum Systems, Annals of Physics, 96. [3] REES, J. R.: A Perturbation Approach to Calculating the Behavior of Multi-cell Radiofrequency Accelerating Structures, PEP Notes, PEP , SLAC. [4] NISHIKAWA, T., et al.: Rev. Sci. Instr., [5] AKAI, K., et al.: Proc. of 3th Int. Conf. High Energy Accelerators, [6] KNAPP, E. A., et al.: Rev. Sci. Instr., [7] KAGEYAMA, T., et al.: Particle Accelerators, [8] ANDREE,. G.: Soviet Physics - Technical Physics, [9] BORGNIS, F. E. and PAPAS, C. H.: Handbuch der Physik, Band 6, p. 44 Springer, 958. [0] JACKSON, J. D.: Classical Electrodynamics, nd edition John Wiley & Sons, 975. [] NISHIKAWA, T.: Proc. of st Particle Accelerator Conference, IEEE NS [] WILSON, P. B.: Beam Loading in High-energy Storage Rings, Proc. 9th Int. Conf. High Energy Accelerators [3] WILSON, P. B.: KEK Lecture Notes on Beam Loading and Impedance Problems in e+e- Storage Rings, KEK-Accelerator

2 [1] KEK Report L C R L C R [2] 2

2 [1] KEK Report L C R L C R [2] 2 Fundamentals of RF Acceleration Revised Edition Koji TAKATA 2 [1] KEK Report L C R L C R [2] 2 3 Slater [3] Collin [4] [5] [6] [7] MIT Radiation Laboratory Series 8 Principles of Microwave Circuits [8]

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

I

I 217 8 I 1 1 1 2 1 3 2 4 3 4.1.......... 3 4.2.......... 4 4.3... 5 11 27 11.1............ 27 11.2......... 28 11.3............ 28 12 28 12.1.......... 29 12.2........... 29 12.3.......... 3 13 31 14 31

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c 10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2 8 ( ) 2014 11 23 OP h g m r d 4 ( ) 4.2 + (lumped constant circuit) 4.2.1 3 (Poynting ) (strip line) (waveguide) (coaxial cable) GHz 4.4(a) dj dx dv Zdx Ydx ( ) (distributed constatn circuit) *1 4.4(c)

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x 2D-RCWA two dimensional rigoros copled wave analsis, 2] εx, εx, ϵ mn exp +jmk x x + nk ] m,n m,n ξ mn exp +jmk x x + nk ] 2 K x K x Λ x Λ ϵ mn ξ mn K x 2π Λ x K 2π Λ ϵ mn ξ mn Λ x Λ x Λ x Λ x Λx Λ Λx Λ

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information