Size: px
Start display at page:

Download ""

Transcription

1 c ( ) : takuya@math.kyushu-u.ac.jp : takuya/edu.html

2

3 i Witt Witt 5.1 Gram-Schmidt Witt Witt p Q p Hensel Hilbert Hasse Hasse

4 ii Weil Weil Weil Leray Weil SL(, F ) O(E) SL(, F ) Weil O(E) SL(, F ) θ SL(, A) SL(, A) O(E A )

5 Dedekind M K M Euler χ(m) Gauss-Bonnet K dσ = πχ(m). M M S 1 (U(1, R) ) π : P M ω dω = π Ω M ( ) De Rham H dr(m) [Ω] π : P M Euler e(p ) H (M, Z) π (de Rham ) Euler e(p ) S 1 π : P M (obstruction) Z ( ) Z Q p F p Q p Z p C p =, 3, 5 S n Galois Q Galois (Dedekind ) ( ) 4

6 1 Z O(n) Euler A, B, C SL() Hecke, Shalika-, Jacquet, Labesse-Langlands 10 takuya/arithlec06.html 1. F F F V (bilinear form) (, ) : V V F v V V v (v, v ) F, V v (v, v) V V {v 1,..., v n } v = n i=1 x i v i, v = n j=1 x jv j á ë á ë (v1, v 1 )... (v 1, v n ) x 1 n n (v, v ) = x i x j(v i, v j ) = (x 1,..., x n ) i=1 j= (v n, v 1 )... (v n, v n ). x n (, ) á ë (v1, v 1 )... (v 1, v n ) T :=..... (v n, v 1 )... (v n, v n ) (, ) {v 1,..., v n } V (, ) (v, v) = (v, v ), v, v V

7 (symmetric) V {v 1,..., v n } T : t T = T. V (quadratic form) Q : V F Q(xv) = x Q(v), x F, v V ; (, ) Q : V V (v, v ) 1 Ä Q(v + v ) Q(v) Q(v ) ä F {V } Q (, ) Q Q(v) := (v, v) (, ) { V } (1.1) 1.3 F V Q (V, Q) ( (V, (, ) Q )) F (quadratic space) 1.1. (i) V = F a F Q(x) = ax (V, Q) (F, a) (ii) V = F Q((x, y)) = xy (V, Q) (hyperbolic plane) (H, Q H ) ( (H, (, ) H )) (V 1, Q 1 ), (V, Q ) V 1 V Q 1 Q Q 1 Q (v 1, v ) := Q 1 (v 1 ) + Q (v ), (v 1, v ) V 1 V (V 1 V, Q 1 Q ) (V 1, Q 1 ), (V, Q ) (direct sum) (V, Q) (V, Q ) (morphism) f : V V Q (f(v)) = Q(v), v V f : V V (V, Q) (V, Q ) (isometry) (V, Q), (V, Q ) (V, Q) (V, Q ) (V, Q) O(V ) = O(Q) := {g GL F (V ) (g.v, g.v ) Q = (v, v ) Q, v, v V } (V, Q) (orthogonal group) 1.. f : (V, Q) (V, Q ) (v, w) Q = (f(v), f(w)) Q = 0, v ker f, w V V/ker f Q(v + ker f) := Q(v) f : (V/ker f, Q) (im f, Q im f )

8 (V, Q), (V, Q ) v = (v 1,..., v n ), v = (v 1,..., v n) T := ( t v, v) Q = Ä (v i, v j ) Q äi,j, T := ( t v, v ) Q f : V V v, v A = Ä a i,j äi,j : f(v) = v A V Q f v ( t f(v), f(v)) Q = ( t A t v, v A) Q = t AT A f (V, Q) (V, Q ) t AT A = T n S, S (F n, S), (F n, S ) A GL(n, F ) t AS A = S 1.4 (Gram-Schmidt ). (i) (V, Q) 1.1 (i) n i=1 (F, a i ) (ii) a i F/(F ) (V, Q). (i) V V = 0 dim V = n Q = 0 (V, Q) n i=1 (F, 0) Q 0 a 1 := Q(v 1 ) 0 v 1 V V 1 := span {v 1 }, V 1 := {v V (v, v 1 ) Q = 0} = ker (, v 1 ) Q (V, Q) = (V 1, Q V1 ) (V 1, Q V 1 ) (V 1, Q V1 ) (F, a 1 ) dim V 1 = n 1 (ii) 1.5. (H, Q H ) ( 1.1 (ii) ) {v 1 := (1, 1), v := (1, 1)} Q(v 1 ) = 1, Q(v ) = 1, (v 1, v ) Q = 0 (H, Q H ) (F, 1) (F, 1)

9 5 Witt Witt.1 Gram-Schmidt (V, Q) n i=1 (F, a i ) a i 0 (V, Q) (rank) rk V = rk Q a i 0 F /(F ) (V, Q) det V = det Q F = R R /(R ) {±1} a i 0, ±1 a i 1 1 p, q (p, q) (V, Q) (signature) sgn V = sgn Q (V, Q) (non-degenerate) I (type I) rk V = dim V v 0, V (v, w) Q 0 w V Q = 0 (V, Q) II O(V ) GL F (V ) 1.4 II.1. (i) C n (ii) R n 1. F R Gram-Schmidt (i) n m A m n m Q m R A = QR (QR ) (ii) n GL n (R) B n, n O n (R) := {g GL(n, R) g t g = 1 n } GL n (R) = B n O n (R)

10 6 Witt Witt. F R (i) n S T : t T ST = D, (D ) (ii) A n (R +) n Cartan GL n (R) = O n (R) A n O n (R) (g GL n (R) t gg ) (iii) GL n (R) ( n M n (R) R n ). Witt (V, Q) F v V Q(v) = 0 (isotropic), (anisotropic) X V (totally isotropic) Q X 0 (X, Q X ) II (V, Q) 0.. (V, Q) II (v, w) Q 0 v, w V Q(v + w) Q(v w) = 4(v, w) Q v + w, v w.3. (i) (H, Q H ) e 1 := (1, 0), e := (0, 1) 1.5 v 1, v (ii) 1 (F, a) (a 0 ) C.4 ( ). X (V, Q) X {e 1,..., e r } {e 1,..., e r} V (e i, e j) Q = 0, (e i, e j) Q = δ i,j, (1 i, j r) (, ) Q X X := span{e 1,..., e r} X. X := {v V (v, x) Q = 0, x X} Z : V = X Z. ϕ : Z z Ä x (x, z) Q ä X

11 .. Witt 7 ϕ(z) = 0 z X Z = 0 ϕ Q X x (x, ) Q Z rk ϕ Z = dim Z = dim Z dim X. ϕ {e 1,..., e r} X {e 1,..., e r } f i := ϕ 1 (e i ), (1 i r) e i := f i Q(f i) i 1 e i (f i, e (f i, e i ) k) Q e k Q k=1 (e i, e j ) Q = (f i, e j ) Q = δ i,j i > j i = j (e i, e j) Q =(f i, e j) Q Q(f i) (e i, e i 1 (f i, e i ) j) Q (f i, e k) Q (e k, e j) Q Q k=1 =(f i, e j) Q (f i, e j) Q = 0, Å (e i, e i) Q = Q f i Q(f ã Å ã i) Q(f i ) e i = Q(f i ) f i, e i = 0 (e i, f i ) Q (e i, f i ) Q Q (H, Q H ) r Ä (x 1, y 1 ),..., (x r, y r ) ä r x i e i + y i e i (V, Q) i=1.5 (Witt ). (V, Q) W f : (W, Q W ) (V, Q) O(V ) (V V ). u V (reflection) r u : V v v (u, v) Q Q(u) u V O(V ) f m(w ) := dim W + dim(w W ) m(w ) = 0 f V W (W, Q W ) w (.) L := span {w}, W 1 := {v W (v, w) Q = 0} (i) W = L W 1. (L p w : W v Ä (v, w) Q /Q(w) ä w L L = im p W, W 1 = ker p W )

12 8 Witt Witt (ii) m(w 1 ) = m(w ) 1. (W W = {v W 1 W (v, w) Q = 0} = W 1 W 1. ) (ii) g 1 O(V ) g 1 W1 w := g1 1 f(w) = f W1 Q(w + w ) + Q(w w ) = (Q(w) + Q(g 1 1 f(w)) = 4Q(w) 0 w ± w w + w w w r w+w r w (w) = w (w + w, w) Q (w + w ) Q(w + w ) = w + Q(w) + (w, w) Q Q(w) + (w, w) Q (w + w ) = w, r w w (w) = w Q(w) (w, w) Q Q(w) (w, w) Q (w w ) = w g O(V ) g (w) = w v W 1 (v, w ) Q = (g 1 (v), f(w)) Q = (f(v), f(w)) Q = (v, w) Q = 0 g W1 = id W1 g := g 1 g O(V ) (i) a F, w 1 W 1 g(aw + w 1 ) = ag 1 (w ) + g 1 (w 1 ) = af(w) + f(w 1 ) = f(aw + w 1 ) g W = f W.4 W {e 1,..., e m } {e 1,..., e m ; e 1,..., e m} (H, Q H ) m W W V, W := span{e 1,..., e m} f(w ) {f(e 1 ),..., f(e m )}.4 {f(e 1 ),..., f(e m ); f(e 1 ),..., f(e m ) } f m m W W x i e i + y i e i x i f(e i ) + y i f(e i ) V i=1 i=1 W W m(w W ) = dim(w W ) = dim W < 3 dim W = dim W + dim(w W ) = m(w ) W W

13 .. Witt 9 (V, Q) X V.4 X V (, ) Q X X V := (X X ) (V, Q) = (X X, Q X X ) (V, Q ), Q := Q V (.1) (V, Q ) v 0, V X F v X (V, Q) Witt (V, Q ) (V, Q) (anisotropic kernel) X, Y V dim X dim Y.5 f : X Y g O(V ) g 1 (Y ) X X dim X = dim Y Witt (V, Q) r = dim X (V, Q) Witt (Witt index) r(v ) = r(q)

14 Witt F Witt-Grothendieck W (F ) Witt-Grothendieck (V, Q) (V, Q ) (V, Q) (V, Q ) := (V V, Q Q : V V v v Q(v)Q (v ) F ) W (F ) (F, 1) F Witt-Grothendieck W (F ) (H, Q H ) F Witt Witt(F ) (V, Q) Witt(F ) (V, Q) W (F ) W (F ) F Witt 3. F = R F (V, Q) O(V ) (V, Q) O(V ) End R (V ) 4. Witt(C) Witt(R) 3. p Q p p x Q p m a/b, (m Z, a, b Z pz) x p := p m 0 p = 0 Q x y p x p 0, x Q; x p = 0 x = 0; ( ) x + y p x p + y p, x, y Q Q Q p Q p Q (a n ) n N p Cauchy ε > 0 N N a n a m p < ε, n, m > N

15 Q p Cauchy F (N, Q) p (1) n N ß m(n, Q) p := (a n ) n F (N, Q) p lim a n = 0 n F (N, Q) p d p ((a n ) n, (b n ) n ) := lim n a n b n p, (a n ) n, (b n ) n F (N, Q) p Q p := F (N, Q) p /m(n, Q) p (a n ) n F (N, Q) p m(n, Q) p (a 1 n ) n F (N, Q) p Q p 5. x + y p max( x p, y p ), x, y Q p Q p Z p := {x Q p x p 1} p n Z p = {x Q p x p p n } = {x Q p x p < p 1 n }, n N 0 x Q p {x + p n Z p } n N R Q R Q p R x, y R nx > y n N 1 Q p n N np p < 1 = 1 p 3.3 (local field) F ( ) dx a F F x ax F dx d(ax) F a F := d(ax)/dx F : F R + a F a 0 F : F a 0 a = 0 R 0 1 { nx n N} R

16 1 3 F (module) F [Wei95, I.3] (i) (non-archimedean) (ultrametric inequality) x + y F max( x F, y F ), x, y F F F R + (a) 0 F p p Q p (b) p F p F q (q p ) Laurent F q ((T )). (ii) (archimedean) R, C R + R z C = z z 3.4 F F D D dx a D a D := d(ax)/dx R + 0 D = 0 D (0) D (1) O D := {x D x D 1} F (D = F (integer ring) (order) ). O D F A D a D > 1 A O D O D () p D := {x D x D < 1} O D O D = {x D x D = 1}. O D O D = {x O D x 1 D = x 1 D 1} 1 p D O D O D p D = O D p D B r := {x F x F r}, (r > 0) F 0

17 3.5. Hensel 13 (3) p D = O D ϖ D = ϖ D O D ϖ D F O D (prime element) (uniformizer). D D R + q D > 1 D D = qd Z ϖ D D = qd 1 ϖ O (4) D (residue field) k D := O D /p D p ( ) p D (residual characteristic). O D p D k D (5) k D q D D D = q Z D. val D : D x log q x D Z D (valuation) O. ϖ D D = D d(ϖ D x) p = D dx O D dx O D dx = k D Hensel F O p = (ϖ) val f(x) O[X], x O m, r > 0, Z f(x) p m+r, f (x) / p m+1 t f(x) + pm+r+1 f (x) p m+r val(f (x)) x := x + t x x + p m+r, (val(f (x)) m ). f(x ) p m+r+1. f(x) X x n f(x + t) = f(x) + f (x)t + α k t k, k= α k O t p m+r n k= α k t k p m+r f(x) + f (x)t p m+r+1

18 (Hensel ). f(x) O[X], x O m > 0, Z f(x) p m+1, f (x) / p m+1 y x + p m+1 f(y) = 0. {x r } r N x r+1 x r p m+r ; f(x r ) p m+r p m+1 Cauchy y p m+1 f(x) F f(y) = lim r f(x r ) = a 1 + p val()+1 f(x) := X a x = 1 f(1) = 1 a p val()+1, f (1) = / p val()+1 Hensel f(b) = 0, b = a b 1 + p val()+1 (F ) := {b b F } F 1 + p val(f )+1

19 D F O D k D 4.1. (i) ε O p q D 1 (ii) Z/(q D 1)Z E (p) D E (p) {0} k D O D (iii) Z/(q D 1)Z E (p) 1 D Ad(ϖ D )E (p) = E (p) 1 ϖ D n N (1 + p D ) pn 1 + p n+1 D.. n = 0 n (1 + p D ) pn+1 = Ä ä p 1 p (1 + p D ) pn (1 + p n+1 D ) p = p n+ D 1 + pp n+1 D = 1 + p p(n+1) D k=1 0 p (a) µ : O D x lim x qn O D n (b) x O D k D µ(x) ( ) p p k(n+1) D + p p(n+1) D k. (a) x p D lim n x qn D = 0 k D F qd X q D X x O D xqd 1 1+p D q D = p f D x qn D (qd 1) (1 + p D ) pnf D 1 + p nf D+1 D, x qn+1 D x qd n p nf D +1 D x qn D = x + (x q D 1) + (x q D x q D ) + + (x qn D x q n 1 D ) (4.1)

20 16 4 Cauchy µ (b) µ(1 + p D ) = 1 (4.1) µ(x) x (mod p D ) µ 1 (1) = 1 + p D µ(x n ) = µ(x) n (i) ε O n p n q D q D m 1 (mod n) m N ε qkm D = ε, k N µ ε 4.1. (b) (ii) k D k D x O D 4.1. E (p) := µ(x) Z/(q D 1)Z. (i) E (p) k D (iii) D Ad(a) : D x axa 1 D O D p D k D O D k D D /O D a Ä Ad(a) OD mod p D ä Aut(kD ) ϖ D Aut(k D) = Gal(k D /F p ) f D r Ad(ϖ D) x = x pr, x k D (4.) E (p) ε ε k D ε 1 (4.) Ad(ϖ D)ε ε pr 1 (mod p D ), ϖ D ε pr 1 ϖ Dε 1 (mod p D), ε E (p) ε 1 E (p) 1 ϖ D := ε E (p) εpr 1 ϖ Dε 1 p D ϖ D ϖ D (1 q D )ϖ D ϖ D (mod p D) ϖ D γ E (p) ϖ D γ = ε E (p) ε pr 1 ϖ Dε 1 γ = Ad(ϖ D )E (p) = E (p) 1 ε E (p) (γ 1 ε 1 ) pr ϖ Dε 1 = γ pr 1 ϖ D 6. p Q p Q(x, y) = x + y p 1 (mod 4) (Q p 1 4 ) z D = z dim F D F, (z F ) O F = O E F, p F = p E F k F (z mod p F ) (z mod p D ) k D

21 k D k F f D/F D/F (modular degree) E/F (ramification index) e E/F := val D (ϖ F ) q dim F D F = ϖ F dim F D F = ϖ F D = q val D(ϖ F ) D = (q f E/F F ) e E/F dim F D = e E/F f E/F e D/F = 1 D F (unramified) E/F (1) ε E 1 q E 1 E = F (ε). (F (ε) E [F (ε) : F ] f F (ε)/f = f E/F = [E : F ] ) E X q E X F [X] E/F Galois F [E : F ] O F O E () Gal(E/F ) E (p) Gal(E/F ) τ (τ OE mod p E ) Gal(k E /k F ) Gal(E/F ) Φ E/F (x) x 1/q F ( Frobenius ) (mod p), (x O E ) F D F F (central division algebra) 4.. D F (i) e D/F = f D/F. n ( dim F D = n ) (ii) D F n E (iii) O D ϖ D (a) ϖ n D O F, O E (b) {1, ϖ D,..., ϖd n 1 } O D O E (c) ϖ D E Ad(ϖ D ) E Gal(E/F ) Z/nZ. E (p) O D 4.1 ϖ D E := F (E (p) ) (1) E/F [E : F ] = log qf q D = f D/F n := f D/F (ii) D = N Z ϖ N DO D x ϖ N DO D x = ε n ϖd, N ε n E (p) {0} (4.3) n=n

22 18 4 F = {z D Ad(ϖ)z = Ad(ε)z = z, ε E (p) } Ad(ϖ D ) E (p), E Gal(E/F ) E Ad(ϖ D) F Galois Ad(ϖ D ) E Gal(E/F ) (iii) (c) E E (p) ϖ D ϖ n D E = ϖ n D, E (p) (4.3) (iii) (a), (b) dim E D = n e D/F f D/F = dim F D = dim E D[E : F ] = n (i) 4.3. F n (Z/nZ). F n E σ := Φ E/F 4. F n D E E ϖ D Ad(ϖ D ) E Gal(E/F ) Z/nZ σ = Ad(ϖ D ) k E k Z/nZ σ Gal(E/F ) k (Z/nZ) (E, ϖ D ) D k D k (Z/nZ) km 1 (mod n) m Z/nZ â ì z â ì ϖf σ m (z)... σ m(n 1) (z) z E E, ϖ D := M n (E) F n σ = Ad(ϖ D ) k E 4.4. (i) D k/n 1 n Z/Z D inv F (D) (ii) D M n (E) Gal(E/F ) σ m D := Ad(ϖ D ) σ m D M n (F ) (inner form) (iii) M n (F ) dm = n d, m N F d D M m (D) inv F (M m (D)) := inv F (D) 4.3 inv F : {M n (F ) } Z/nZ

23 F D D opp

24 Hilbert F a F F E a := F [X]/(X a) x E a E a F det(x Ea ) F x (E a /F ) N Ea /F (x) N Ea /F : E a F F (E a, N Ea /F ) (F, 1) (F, a) F Hilbert (Hilbert symbol) (, ) F : F F {±1} (a, b) F = 1 ax + by = 1, x, y F b N Ea /F (E a ) a N Eb /F (E b ) 5.1. E a E b N Ea /F (E a ) = N Eb /F (E b ). N Ea /F (E a ) = N Eb /F (E b ) (x, y) F x ay = x by (x, y ) F (V, Q) := (F, 1) (F, a) (F, 1) (F, b) F (x, y) (x, y, x, y ) V.4 (V, Q) (H, Q H ) a = b mod (F ) a, b F F B = B a,b := F 1 F i F j F ij i = a 1, j = b 1, ij = ji F (a, b) (quaternion algebra) Hamilton R ( 1, 1) B ι : B x 0 + x 1 i + x j + x 3 ij x 0 x 1 i x j x 3 ij B opp B (main involution) ν B : B b b ι b F

25 5.1. Hilbert 1 B (reduced norm) b = x 0 +x 1 i+x j +x 3 ij ν B (b) = x 0 ax 1 bx + abx 3 (B, ν B) 5.. (i) B a,b a, b F /(F ) (ii) B = B a,b (a) B (b) (B, ν B ) (c) (a, b) F = 1.. (i) a ac i c i (ii) (a) (b) b B ν B (b) 0 ν B (b) 1ι b B b (a) ν B (b) = 0 b = 0 (b) (b) (c) (a, b) F = 1 1 ax by = 0, ν B (1+xi+yj) = 0 x, y F ν B (c) (b) (B, ν B ) (F, 1) (F, a) (F, b) (F, ab) (1, 1) a, b, ab 1 ( ) a b 1 (a, b) F = 1 ab = 1 ax + by xy (a, b) F = F (i) (a, b) F = (b, a) F (a, ) F : F /N Ea/F (E a ) {±1} (ii) a F (F ) (a, ) F : F /N Ea/F (E a ) {±1}. (i) F C F /N Ea/F (E a ) Z/Z F = R F b, c F N Ea /F (E a ) bc N Ea /F (E a ) (a, b) F = (a, c) F = 1 5. B a,b, B a,c F 4 (F ) 4.3 F B a,b F B a,c ν Ba,b, ν Ba,c (F, b) (F, ab) (F, c) (F, ac) b = c mod (F ) bc (F ) N Ea /F (E a ) ab = c mod (F ) bc = a mod (F ) bc N Ea /F (E a )

26 5 5. (V, Q) r i=1 (F, q i ) n i=r+1 (F, 0), (q i F /(F ) ) Hasse ε(v ) = ε(q) := 1 i<j n (q i, q j ) F {±1} 5.4. F = R (V, Q) sgn Q = (p, q) ε(q) = ( 1, 1) q(q 1)/ R = ( 1) q(q 1)/ (V, Q) F α F Q(v) = α v V (i) rk Q = 1 det Q = α mod (F ). (ii) rk Q = (α, det Q) F = ε(q). (iii) rk Q = 3 (a) det Q α mod (F ) (b) det Q = α mod (F ) ε(q) = ( 1, det Q) F. (iv) rk Q 4.. (i) (ii) (V, Q) (F, a) (F, b) Q(x, y) = ax + by = α (x, y) V (aα, bα) F = 1 (aα, bα) F = (a, α) F (α, b) F (α, α) F (a, b) F = ( det Q, α) F ε(q) (iii) (V, Q) (F, a) (F, b) (F, c) Q(x, y, z) = ax + by + cz = α (x, y, z) V ax + by = β = αw cz, x, y, z, w F β F (ii) (β, ab) F = (a, b) F, (β, αc) F = (α, c) F (5.1) β F F F /(F ) β dim F F /(F ) 1 (5.1) ab = αc mod (F ) (a, b) F (α, c) F 1 1 q F 1 ε ϖ F F

27 5.. 3 det Q = α mod (F ) (a, b) F ( abc, c) F = ( abc, 1) F (a, c) F (b, c) F ( c, c) F =( det Q, 1) F (a, c) F (b, c) F, ε(q) ( det Q, 1) F (iv) Q(x, y, z, w) = u(x ay bz + bcw ), (u, a, b, c F ) a c mod (F ) N Ea /F (E a ), N Ec /F (E c ) F 5.1 N Ea/F (E a )N Ec/F (E c ) = F. b = x ay z cw x ay bz + bcw = 0 (x, y, z, w) V Q Q(V ) = F a = c mod (F ) Q = u ν Ba,b B = B a,b ν B Q(V ) = F. B D D 4. E ε /F (ε 1 q F 1 ) E ϖ := F (ϖ D )/F ν D/F Ea = N Ea /F F ν D/F (D ) N Eε/F (E ε )N Eϖ/F (E ϖ) = F. (Hamilton H : ν H/R (H ) = R + ) 5.6. F 5 (V, Q). (V, Q) 5 (V, Q) = (V 1, Q 1 ) (F, a), (dim V 1 = 4) 5.5 (iv) Q 1 (v 1 ) = a v 1, (V, Q) (v 1, 1).4 8. F C (i) F /(F ) F (ii) Hilbert (, ) F F F /(F ) D 4.3 ν D/F det

28 F Hasse. (V, Q), (V, Q ) rk Q = rk Q = n, det Q = det Q mod (F ), ε(q) = ε(q ) n = 1 n 5.5 Q(v 1 ) = α = Q (v 1) v 1 V, v 1 V, α F V 1 := (F v 1 ), V 1 := (F v 1), Q 1 := Q V1, Q 1 := Q V 1 (V, Q) (F, α) (V 1, Q 1 ), (V, Q ) (F, α) (V 1, Q 1) rk Q 1 = rk Q 1 = n 1, det Q 1 = det Q/α = det Q /α = det Q 1, ε(q 1 ) = ε(q)(α, det Q 1 ) F = ε(q )(α, det Q 1) F = ε(q 1) (V 1, Q 1 ) (V 1, Q 1) (V, Q) (V, Q ) 5.5 ( ) rk Q = 1 ε(q) = 1, rk Q = det Q = ε(q) = 1

29 : (V, Q) Hasse 1 (F, α) α 1 (H, Q H ) 1 1 (E α, N Eα /F ), (α F (F ) α 1 ( ) α, β F (E α, βn Eα/F ), α 1 (α, β) F = 1 m + 1 (F, α) (H, Q H ) m ( 1) m α (( 1) m(m 1)/ α m, 1) F (m 1) (D 0, ν D/F D 0) (H, Q H ) m 1 ( 1) m 1 ( 1, 1) m(m+1)/ F (D 0, αν D/F D 0) (H, Q H ) m 1 ( 1) m α (( 1) m(m 1)/ α m, 1) F (α F (F ) ) m (H, Q H ) m ( 1) m ( 1, 1) m(m 1)/ F (m ) (E α, N Eα/F ) (H, Q H ) m 1 ( 1) m α (( 1) m(m 1)/ α m 1, 1) F (α F (F ) ) (E α, βn Eα /F ) (H, Q H ) m 1 ( 1) m α (( 1) m(m 1)/ α m 1, 1) F (α, β F, (α, β) F = 1) (D, ν D/F ) (H, Q H ) m ( 1) m ( 1, 1) m(m 1)/ F 6. (global field) (algebraic number field). Q 1 F p (X) F q (T ). F (completion) K ι : F K ι(f ) K ι : F K, j : F L φ : K L F ι K F j φ L F F (place) F v F F v F v v 6.. Q

30 6 6 (i) : Q R R Q (ii) p p : Q Q p 0 Q p Q Q p 6.3. E/F w : E L (i) w(f ) K L/K w F : F K F v (ii) L = K(E) (K E ). (i) K L a L < 1 a K {a n } n N K K L = {1}, K O L O L K F K L K K [L : K] (ii) K(E) K L K(E) = (K(E) ) (E ) = L E w F v w v F (i) F 0 (a) F Q R R r 1 C r r 1 p i : R r 1 C r R v i : F F Q R p i R F r q i : R r 1 C r C u i : F F Q R q i C (b) p F Q Q p r i=1 K i i p i : F Q Q p K i v i : F F Q Q p K i Q p F (ii) F p > 0 F = F q (T ) (a) v : F q (T ) F q ((T 1 )). (b) ϖ F q [T ] Å ã v ϖ : F q (T ) lim F q [T ]/(ϖ n ) Fq[T ] F q (T ) F q deg ϖ((x)) n

31 6.. 7 F S A(S) := v S F v v / S O v O v = O Fv F v v / S O v Tychonov A(S) S T A(S) A(T ) A = A F := A(S) = lim A(S) S S F (adele ring) 6.4. (i) F V V A := V F A A (ii) V V ξ (ξ) v A V A V A /V. (i) A V A A (ii) F = V = Q, F p (T ) Tychonov Q Z := p Z p (p ) (1) Q A () (0, 1) Z A Q\A. (1) 0 Q A A ( 1, 1) Z Q ( 1, 1) 0 () Q(p) := {a/p n a Z, n N} x p n Z p p x = x k p k, x k {0, 1,..., p 1} k= n Q p = Q(p) + Z p x = (x v ) v A(S) p S x p = ξ(p) + z p, (ξ(p) Q(p), z p Z p ) x = p S ξ(p) + (x, (z p ) p S, (x p ) p/ S ) Q + A( ) Q+A( ) = A A ξ+x = η+y, (ξ, η Q, x, y A( )) x y Q A( ) = Q Z = Z

32 F F 6.5. F ι : F K, j : F L α F α K < 1 α L < 1. α K < 1 {α n } n N K 0 γ L > 1 F γ K > 1 γ L = γ λ K λ > 0 F L = λ K α F α K = γ ν K, (ν R) α L = γ ν L ν a/b α K = γ ν K < γ a/b K αb /γ a K < 1 α b /γ a L < 1 α L < γ a/b L ν a/b α L γ ν L ν a/b α K > γ a/b K α L γ ν L 6.6 ( ). F S F F S := v S F v. S = {v 1,..., v n } γ v1 > 1, γ vi < 1, ( i n) γ F. n n = α v < 1 α v1 < v 1 = v n α v1 > 1, α v,..., α vn 1 < 1 α F n = β v1 > 1, β vn < 1 β F α vn 1 α m β vi < 1, ( i n 1) m N γ := α m β lim m α m 1 + α m = 1 (F v1, F vn ) 0 (F v,..., F vn 1 ) γ = α m β/(1 + α m ) m N ε 1,..., ε n > 0 δ 1 v1 < ε 1, δ vi < ε i, ( i n) δ F

33 γ δ m := γ m /(1 + γ m ) {δ m } m N F v1 1, F v,..., F vn 0 (x v ) v S F S ε > 0 F F vi x vi ξ i vi < ε 3, 1 i n ξ 1,..., ξ n F j n δ j 1 vj < ε 3 ξ j vj, δ j vi < ε 3(n 1) ξ j vi, (i j) δ i F ξ := n j=1 δ j ξ j F x vi ξ vi x vi ξ i vi + ξ i ξ vi ε 3 + ξ i δ i ξ i vi + j i δ j ξ j vi v i S = ε 3 + ε 3 + j i ε 3(n 1) = ε

34 30 7 Hasse 7.1 ( ) A M (simple) (irreducible) 0 A A A (semisimple) (completely reducible) A A M M A (0) A A F F 7.1 (Schur ). A M End A (M). φ End A (M) 0 M 0 M M φ M A 7.. A F M F A End A (M) End F (M) A. B := End A (M) A Cent (B, End F (M)) = End B (M) φ End B (M) A x M φ(x) A.x.. A M A A.x A p : M A.x p B φ(p(x)) = p(φ(x)) im p = A.x M F {v 1,..., v n } A M n End A (M n ) = M n (B) φ n Cent (M n (B), End F (M n )) 7..1 Ä φ(v1 ),..., φ(v n ) ä = Ä a.v 1,..., a.v n ä, a A. φ = a A

35 ( ) F F D M n (D). A F F A M ( A ) 7.1 D opp := End A (M) F 7. A = End D opp(m) M D opp {v 1,..., v n } D opp D End D opp(m) M n (D) ( 10 ) F (central simple algebra) F A Z(A) F 7.3 F 9. A F M F A End A (M) F D i M ni (D i ) 10. D F M F D (i) M D (ii) M D n End D (M) M n (D opp ) 7. F F A F A v := A F F v F v F v D v A v M nv (D v ) dim Fv D v = d v dim F A = dim Fv A v = (d v n v ) n := d v n v v D v ( 4.4 ) inv Fv (D v ) (Z/d v Z) A v inv(a v ) Z/nZ 7.4. K n Br n (K) F Br n (K) A (inv(a v )) Z/nZ v v Z/nZ κ v v κ v Z/nZ 7.5. F F F E A E Ā := lim A E Galois E 0 H (F, F ) H (F, Ā ) H (F, Ā / F ) Q/Z

36 3 7 Hasse [CF86, VII ] 7.6. α, β F v (α, β) Fv = a, b F v (a, b) F v = ( 1) inv(b a,b) 7.4 (ii) v inv(b α,β ) v = 0 1 Z/Z 7.3 Hasse F 7.4 F 7.7 (Hasse-Minkowski). (V, Q) (i) dim F V 3 v (V v := V F F v, Q v := Q F F v ) (ii) dim F V (V, Q) v (V v, Q v ). (i) Q V = F 3, Q(x, y, z) = x αy βz, (α, β F ) F B = B α,β 7.4 v B v M (F v ) 5. (ii) dim F V dim F V = 1 Q Q v dim F V = Q(x, y) = x αy, (α F ) v (α, x) Fv = 1, x F v β F (α, β) Fv = 1, v inv(b α,β ) v = 0, v 7.4 B α,β M (F ) x αy β(z αw ) β Q dim F V = 3 Q(x, y, z) = x αy βz, (α, β F ) v (α, β) Fv = 1, inv(b α,β ) v = 0 B α,β M (F ) 5. (α, β) F = 1, Q

37 7.3. Hasse 33 dim F V = 4 Q(x, y, z, w) = x αy βz +βγw, (α, β, γ F ) Q (x, y, z, w) 0, F 4 Q(x, y, z, w) = 0, β = x αy z γw N E α /F (E α )N Eγ /F (E γ ) = N Eα.E γ /E αγ ((E α.e γ ) ) F ( 11 ) α γ F F E αγ dim F V = 3 ( E αγ w (α, β) Eαγ,w = 1 (α, β) Eαγ = 1, β N Eα.E γ/e αγ ((E α.e γ ) ) ) dim F V 5 (V, Q) = (F, P ) (V, Q ), dim F V 3 (i) F S v / S Q v S P (x v, y v ) = c v = Q (x v ), (x v, y v ; x v ) 0 (F v ) F v (v 3. ) 6.6 P (ξ, η) F P (ξ, η) =: γ c v mod (F v ), v S (V 1, Q 1 ) := (V, Q ) (F, γ) v / S v S F Q (ξ ) = γ ξ 0, V Q(ξ, η; ξ ) = F α, γ F N Eα.E γ/e αγ ((E α.e γ ) ) F = N Eα/F (E α )N Eγ/F (E γ )

38 { 8.1. F } F n (i) (V, Q) (V v, Q v ) v (ii) (a) (det Q(v)) v F (mod v (F v ) ), { Fv n } (b) v ε(q(v)) = 1 v ε(q(v)) = 1 Ä V (v), Q(v) ä v. (i) F n (V, Q), (V, Q ) (V v, Q v ) (V v, Q v), v (V, Q) (V, Q ) n n = 0 n v (V v V v, Q v Q v) Hasse-Minkowski 7.7 (V V, Q Q ) Q(ξ) = α = Q(ξ ), ξ 0, V, ξ 0, V, α F V 1 V, V 1 V ξ, ξ Q, Q Q 1, Q 1 F v (V v, Q v ) = (F v, α) (V 1,v, Q 1,v ) (V v, Q v) = (F v, α) (V 1,v, Q 1,v) ( 1.4) (V 1,v, Q 1,v ) (V 1,v, Q 1,v) (V 1, Q 1 ) (V 1, Q 1) (ii) (a), (b) Ä V (v), Q(v) ä v (V v, Q v ) (V (v), Q(v)), v F (V, Q) n Q(v) det Q(v) v δ F n = 1

39 n = Q(v)(x, y) = a v x + a v δy, (a v F v ) δ (F ) v Q(v) (V, Q) = (H, Q H ) 1 = v ε(q(v)) = v (a v, a v δ) Fv = v (a v, δ) Fv v inv(b av, δ) = 0 1 Z/Z ( 7.6 ) 7.4 α, β F (B α,β ) v B av, δ, v ν Bα,β δ F ( 7.7) δ 1 (mod (F ) ) α, β, αβ δ = β (mod (F ) ) (V, Q) := (F, α) (F, αδ) det Q = δ (mod (F ) ) v ( 1, 1) Fv ε(q v ) = ( 1, 1) Fv (α, δ) Fv = ε(ν (Bα, δ ) v ) = ε(ν Bav, δ ) = ( 1, 1) Fv (a v, δ) Fv = ( 1, 1) Fv ε(q(v)) Hasse n = 3 S := {v ε(q(v)) ( δ, 1) Fv } (B δ, 1 ) v v M (F v ) (b) S v (F v ) F S ( 3.) 6.6 αδ / (F v ), v S α F v S αδ 1 F (V 1 (v), Q 1 (v)) det(q 1 (v)) = αδ, ε(q 1 (v)) = (α, αδ) Fv ε(q(v)) (8.1) (5 6.1 ) v / S αδ = 1 S (α, αδ) Fv ε(q(v)) = (α, 1) Fv ( δ, 1) Fv = (1, 1) F = 1 (8.1) F v (V 1 (v), Q 1 (v)) (a), (b) F (V 1, Q 1 ) (V 1,v, Q 1,v ) (V 1 (v), Q 1 (v)), v (V, Q) := (V 1, Q 1 ) (F, α) det Q = α det Q 1 = δ (mod (F ) ) v ε(q v ) = (α, det Q 1 ) Fv ε(q 1,v ) = ε(q(v)) 3 Hasse

40 36 8 n 4 v sgn Q(v) = (p v, q v ) F v F v F v +, Fv 6.6 α F F v + v p v 0 α v p v = 0 F v n 4 Q(v)(x v ) = α x v V (v) ( 5.5) α v (V (v), Q(v)) (V 1 (v), Q 1 (v)) (F v, α) 3 det Q 1 (v) = αδ F, ε(q 1 (v)) = (α, αδ) Fv ε(q(v)) (a), (b) F n 1 (V 1, Q 1 ) det Q 1 = αδ, ε(q 1,v ) = (α, αδ) Fv ε(q(v)), v; (p v 1, q v ) v p v 0 sgn (Q 1,v ) = (p v, q v 1) v p v = 0 (V, Q) := (V 1, Q 1 ) (F, α) 8.. R (V, Q) sgn Q = (p, q) det Q = ( 1) q, ε(q) = ( 1, 1) q(q 1)/ R = 1 q 0, 1 (mod 4) 1 q, 3 (mod 4) F {((V (v), Q(v))} v F v (p v, q v ) (p v + 4k v, q v 4k v ), (k v Z) F

41 37 9 Weil Weil [Wei64] 9.1 Weil F ψ : F C F ψ a (x) := ψ(ax), a F F ψ R (x) := e πix, ψ C (z) := ψ R (z + z) F ψ p n n Z ψ (order) ord ψ F (V, Q) Schwartz-Bruhat S(V ) S(V ) F V V dv Fourier F Q φ(v) := φ(v )ψ((v, v ) Q ) dv, φ S(V ) Fourier F Q φ(v )ψ((v, v ) Q ) dv = φ(v) V V dv V (self-dual measure) dv 9.1. (i) F (V, Q) 1 γ ψ (V ) = γ ψ (Q) Å Q(v) ã Å φ(v)ψ dv = γ ψ (Q) F Q φ(v)ψ Q(v) ã dv V V (ii) Q γ ψ (Q) Witt γ ψ : Witt(F ) C 1. (i) (V, Q) ( 1.4) Fubini (V, Q) = (F, a) F φ(x)ψ a Å x ã dx = γ ψ (a) F F a φ(x)ψ a Å x ã dx, γ ψ (a) C 1 (9.1)

42 38 9 Weil f(x) := ψ a ( x /), ξ φ (x) := φ( x)ψ a (x /), (φ S(F )) Å Å f ξ φ (x) = ψ a (x + y) y ãφ(y)ψ a ã dy F Å =ψ a x ã Å φ(y)ψ a ( xy) dy = ψ a F φ 0 S(F ) F F f ξ φ0 (x) dx = γ ψ (a) := F F x Å ψ a x ã F a φ 0 (x) dx 0 Å ξ φ0 (x) dx F ã 1 f ξ φ0 (x) dx ã F a φ( x). Å x f ξ φ0 (x) dx φ(x)ψ a ã dx = f ξ φ0 (x + y)ξ φ ( y) dy dx F F F = f ξ φ0 ξ φ (x) dx = ξ φ0 ( y)f ξ φ (x + y) dy dx F F F = ξ φ0 (x) dx f ξ φ (x) dx (9.) γ ψ (a) F =γ ψ (a) F F f ξ φ0 (x) dx F F a φ(x)ψ a Å x ã dx. (9.) F f ξ φ 0 (x) dx (9.1) (9.1) φ 1 S(F ) Fourier F a φ(x) = F a φ(x) = Fa 1 φ(x) (9.1) F Å x φ(x)ψ a ã Å dx = γ ψ (a) F a φ(x)ψ a x ã dx F Å x ã Å =γ ψ (a) Fa 1 φ(x)ψ a dx = γ ψ (a)γ ψ (a) φ(x)ψ F a F Å x =γ ψ (a)γ ψ (a) φ(x)ψ a ã dx. F x ã dx γ ψ (a) C 1 (ii) γ ψ (Q) (V, Q) ( 1 ) F Q φ(v) = F Q φ(v) γ ψ (Q) V Å φ(v)ψ Q(v) ã dv = γ ψ (Q) V Å Q(v) F Q φ(v)ψ ã dv γ ψ ( Q) γ ψ ( Q) = γ ψ (Q) = γ ψ (Q) 1 γ ψ Witt(F )

43 9.1. Weil 39 γ ψ (Q) (V, Q) Weil 1. (i) a, c F γ ψ (ac ) = γ ψ (a) (ii) γ ψr (a) = e sgn (a)πi/4, (a R ) γ ψc (c) = 1, ( c C ) (Gauss e πx, e πz z Fourier ) 9.. (i) F = C γ ψ (Q) = 1. (ii) F = R sgn Q = (p, q) γ ψ a R (Q) = e sgn (a)(p q)πi/4. (iii) F ord ψ = 0 γ ψ (a) = 1, a O. (i), (ii) 1 (iii) a O ψ a O 1 φ S(F ) O F (9.1) F C D F γ ψ (ν D ) = 1.. F = R 9. (ii) F ν D F ν D γ ψ (ν D ) ψ ord ψ = 0 O D 4. ϖ D 1 q F 1 ε D D O D = O Oε D ϖ D (O Oε D ) ν D (x, y) D = τ D (xy) O D ϖ D = ϖ F OD :={x F τ D (xy) O, y O D } x 1 + x ε D = x 1 y 1 + x y ε D + x 3 y 3 ϖd, x 4 y 4 ε DϖD O +x 3 ϖ D + x 4 ε D ϖ D y 1 + y ε D + y 3 ϖ D + y 4 ε D ϖ D O D =O Oε D p 1 ϖ D p 1 ε D ϖ D = ϖ 1 D (Oϖ D Oε D ϖ D O D O D ε D ) =p 1 D φ S(D) p val() D F D φ(x) = φ(x)ψ D Å τd (xy) ã dy = p val() D meas p val() D = 0 Å τd (xy) ψ τ D ( 1 xpval() D ) O ã dy

44 40 9 Weil {x D 1 ϖ val() D x O D} = p val() 1 D c := meas p val() D ( 4. val D () = val() ) D d D x := d D x/ x D D Å F D φ(x)ψ ν D(x) ã d D x = c n=val() 1 ϖ n D O D Å ψ ν D(x) ã x D d D x D = ν D ( ) F D1 := ker ν D O D ν D : O D/D 1 O =c meas D 1 n=val() 1 ϖ n O Å ψ x ã x F dx. d D x /d D 1x = dx := dx/ x F D 1 d D 1x D 1 meas D 1 Å ψ x ã Å x ϖ n O F dx = ψ x ã x F dx p n p n+1 q n (1 q 1 ) n val() = q 1 val() O ψ( x/) dx = q1 val() n = val() 1 D Å F D φ(x)ψ ν D(x) D ã d D x =c meas D 1 Å q 1 val() + = c meas D 1 q1 val() 1 + q 1 Å ã νd (x) φ(x)ψ d D x = p val() D n=val() d D x > 0 ã q n (1 q 1 ) Weil ( 9.1) γ ψ (ν D ) C 1 R <0 = { 1} 9.4. (i) a, b F γ ψ(1)γ ψ (ab) γ ψ (a)γ ψ (b) = (a, b) F. Weil γ ψ (Q) 1 8 (ii) γ ψ (Q) = γ ψ (1) rkq 1 γ ψ (det Q)ε(Q).. (i) γ ψ (ν Ba,b ) = (a, b) F (B a,b, ν Ba,b ) (F, 1) (F, a) (F, b) (F, ab) 9.1 γ ψ (ν Ba,b ) = γ ψ(1)γ ψ (ab) γ ψ (a)γ ψ (b)

45 9.1. Weil 41 c F γ ψ (c) 4 = γ ψ c(1) 4 = γ ψ c(1)γ ψ c(1) γ ψ c( 1)γ ψ c( 1) = ( 1, 1) F {±1} (ii) rkq 1 Q Q 1 q ( ) =γ ψ (1) rkq 1 γ ψ (q det Q 1 )ε(q 1 )(q, det Q 1 ) F (i) =γ ψ (1) rkq 1 γ ψ (q det Q 1 )ε(q 1 ) γ ψ(q)γ ψ (det Q 1 ) γ ψ (1)γ ψ (q det Q 1 ) =γ ψ (1) rkq 1 1 γ ψ (det Q 1 )ε(q 1 )γ ψ (q) =γ ψ (Q 1 )γ ψ (q) = γ ψ (Q).

46 4 10 Weil F 10.1 F ( ) W, : W W F w, w = w, w, w, w W ; W w [w w, w ] W (W,, ) F Y W, Y Y 0 Lagrange (Lagrangian subspace) W Lagrange Ω(W ) Y, Y W Y y [y y, y ] Y (W,, ) F (i) (Witt ) Y W {e 1,..., e r } {e 1,..., e r} W e i, e j = δ i,j, e i, e j = 0, (1 i, j r) (ii) Y, Y W Y Ω(W ) Y Ω(W ) Y = Y W = Y Y (W,, ) (polarization) Y Ω(W ) Y := {w W w, y = 0, y Y } = Y..

47 10.. Leray 43 ( 10.. ) F n 0n 1 n 1 n 0 n (y 1, y 1 ), (y, y ) = y 1 t y y 1 t y, y i, y i F n (W,, ) Sp(W ) := {g End F (W ) w.g, w.g = w, w, w, w W } W Y Ω(W ) P Y := Stab(Y, Sp(W )) Sp(W ) Siegel U Y := {g P Y g Y = id Y } Y Y = {0} ( Y ) Y Ω(W ) P Y Levi M Y := Stab(Y, P Y ) 1 n (W,, ) = (F n, Ä ä 0 n 1 n 0 n ) Y = {(0,..., 0; x1,..., x n ) W }, Y := {(x 1,..., x n, 0,..., 0) W } P Y = M Y U Y ( ) a M Y = m Y (a) := t a 1 a GL(n, F ), ( ) U Y = u 1n b Y (b) := 1 b = t b M n (F ) n 10. Leray Lagrange (Y 1, Y, Y 3 ) Ω(W ) 3 Y 1 Y Y 3 Q Y1,Y,Y 3 Q Y1,Y,Y 3 (y 1, y, y 3 ) := y 1, y + y, y 3 + y 3, y 1 (Y 1 Y Y 3, Q Y1,Y,Y 3 ) Witt(F ) (Y 1, Y, Y 3 ) Leray L(Y 1, Y, Y 3 ) [Ler74] (i) σ S 3 L(Y σ(1), Y σ(), Y σ(3) ) = sgn (σ)l(y 1, Y, Y 3 ). (ii) (Y 1, Y, Y 3 ), (Y 1, Y, Y 3) Ω(W ) 3 Y i Y j = Y i Y j = {0}, (1 i < j 3) g.(y 1, Y, Y 3 ) = (Y 1, Y, Y 3) g Sp(W ) L(Y 1, Y, Y 3 ) = L(Y 1, Y, Y 3)

48 44 10 Weil. (i) (ii) L(Y 1, Y, Y 3 ) = L(Y 1, Y, Y 3) (Y 1, Y ).g = (Y 1, Y ) g Sp(W ) (Y 1, Y, Y 3) (Y 1, Y, Y 3).g (Y 1, Y ) = (Y 1, Y ) Q Y1,Y,Y 3, Q Y1,Y,Y 3 a i Aut F (Y i ), (i = 1, ) h : Y 3 Y 3 (y 1, y, y 3 ) Y 1 Y Y 3 y 1, y + y, y 3 + y 3, y 1 = y 1.a 1, y.a + y.a, y 3.h + y 3.h, y 1.a 1 y 3 = 0 y 1, y = y 1.a 1, y.a m Y (a 1 ) := a 1 a Sp(W ) Siegel Levi M Y := Stab (Y 1, P Y ) y 1, y 0 y 3, y i = y 3.h, y i.a i, (i = 1, ), y 3, w = y 3.h, w.m Y (a 1 ) = y 3.hm Y (a 1 ) 1, w, y 3 Y 3, w W y 3.h = y 3.m Y (a 1 ) (Y 1, Y, Y 3 ).m Y (a 1 ) = (Y 1, Y, Y 3) 10.3 Weil F (W,, ) W F (w 1 ; z 1 )(w ; z ) := Ä w 1 + w ; z 1 + z + w 1, w ä, wi W, z i F H(W ) W Heisenberg H(W ) F W = Y Y Y F H(W ) F ψ ψ : Y F (y; z) ψ(z) C H(W ) L φ : H(W ) C H(Y ) := (i) (ii) φ((y; z)h) = ψ(z)φ(h), y Y, z F, h H(W ) Y φ(y ; 0) dy < H(W ) ρ ψ H(W ) ψ-schrödinger H(Y ) L (Y ) ρ ψ Å ρ ψ (y, y; z)φ(x ) = ψ z + x + y, y ã φ(x + y ), y, x Y, y Y, z F 10.5 ( Schur ). G G (π, V ) End G (π) C

49 10.3. Weil (Stone-von-Neumann ). (ρ ψ, L (Y )) F ψ H(W ) ( ) Sp(W ) H(W ) (w; z).g := (w.g; z), w W, z F, g Sp(W ) J (W ) := H(W ) Sp(W ) W Jacobi g Sp(W ) g.ρ ψ : h ρ ψ (h.g) F ψ H(W ) 10.6 H(W ) ω g : g.ρ ψ ρ ψ C 1 ω g1 ω g, ω g1 g g 1 g.ρ ψ = g 1.(g.ρ ψ ) ρ ψ H(Y ) U(H(Y )) Sp(W ) g (ω g mod C 1 ) U(H(Y ))/C 1 g ω g Sp(W ) H(Y ) (projective representation) Y 1, Y Ω(W ) A Y,Y 1 : Y 1 /Y 1 Y y + Y 1 Y y, (Y /Y 1 Y ) g Sp(W ) ρ ψ (g) : H(Y ) H(Y ) Ä ρψ (g)φ ä (h) := A Y.g,Y 1/ F φ((y; 0)h.g) dȳ Y.g/Y.g Y Y dy Y.g g Y.g Y du Y/Y.g Y dȳ = dy/du Y.g/Y.g Y d(ȳ.g) = d(y.g)/du (Y.g/Y.g Y ) d(ȳ.g) ψ d(ȳ.g) dȳ A Y.g,Y A Y.g,Y F := da Y.g,Y (ȳ) d(ȳ.g) ρ ψ (g) du H(W ) ρ ψ (g) : g.ρ ψ ρ ψ g 1, g Sp(W ) ρ ψ (g 1 ) ρ ψ (g ) = γ ψ (L(Y, Y.g 1, Y.g 1 ))ρ ψ (g 1 g ). Weil 13. Y Y.g = Y.g Y.g 1 g = Y Y.g 1 g = {0} 10.7 ρ ψ (g 1 g ) = γ ψ (L(Y, Y.g, Y.g 1 g ))ρ ψ (g 1 ) ρ ψ (g )

50 46 10 Weil 10.7 c ψ (g 1, g ) := γ ψ (L(Y, Y.g 1, Y.g 1 )) Sp(W ) C 1 ( 1 8 ) : c ψ (g, g 3 )c ψ (g 1 g, g 3 ) 1 = c ψ (g 1, g g 3 ) 1 c ψ (g 1, g ), g 1, g, g 3 Sp(W ). Sp(W ) C 1 Mp ψ (W ) = Sp(W ) C 1 : (g 1, z 1 )(g, z ) := (g 1 g, z 1 z c ψ (g 1, g )), (g i Sp(W ), z i C 1 ) W 10.7 ω ψ : Mp ψ (W ) (g, z) zρ ψ (g) U(H(Y )) Mp(W ) Mp ψ (W ) Weil (oscillator representation) 10.8 (ω ψ ). W = Y Y Witt {e 1,..., e n; e 1,..., e n } H(Y ) = L (Y ) = L (F n ) ω ψ ω ψ (m Y (a), z)φ(y ) =z det a 1/ F φ(y.a), (a GL(n, F )) (10.1) Å y ω ψ (u Y (b), z)φ(y b t y ã ) =zψ φ(y ), (b = t b M n (F )) (10.) Å ( ) ã 0 n 1 n ω ψ, z φ(y ) = φ(y)ψ( y t y) dy (10.3) 1 n 0 n F n

51 47 11 SL(, F ) F 11.1 O(E) SL(, F ) Weil F γe := (E, γn E/F ), γ F mod N E/F (E ) ( 6.1 ) E F F F Aut F (E) Z/Z σ N E/F : E z zσ(z) F Tr E/F : E z z + σ(z) F (z, z ) γe := γtr E/F (zσ(z )), z, z E γe γ SO(E) = {z E N E/F (z) = 1} O(E) = SO(E) σ E = E α α F ω E/F : F x (x, α) F {±1} ω E/F : F /N E/F (E ) {±1} Langlands λ λ(e/f, ψ) := γ ψ (N E/F ) = γ ψ (1)/γ ψ (α) (W = F,, = ( )) Sp(W ) = SL(, F ) (W := E F W,, := (, ) γe, ) F 4 ι γe,w = ι W ι γe : O(E) SL(, F ) (g, g ) g g Sp(W) W = Y Y, Y := {(0, y) x F }, Y := {(y, 0) y F } W = Y Y Y := γe F Y, Y := γe F Y γ ψ (L(Y, Y.g 1, Y.g 1 )), (g 1, g Sp(W)) 1 C 1 Mp(W) Sp(W) 1 (10.3 )

52 48 11 SL(, F ) ( ) a b 11.1 ([Kud94] 3.1). g = SL(, F ) c d β γe (g λ(e/f, ψ)ω E/F (γc) c 0 ) := ω E/F (d) c = 0 ι γe,w : O(E) SL(, F ) (g, g ) (ι γe,w (g, g ), β γe (g )) Mp(W) Mp(W) Weil (ω ψ, L (Y ) = L (E)) O(E) SL(, F ) Weil ω γe,w = ω W ω γe : O(E) SL(, F ) ι γe,w Mp(W) ω ψ U(L (Y )) (ω γe,w, L (E)) ω W (g)φ(z) =φ(g 1.z), g O(E) (11.1) Å ( ) ã a 0 ω γe φ(z) =ω 0 a 1 E/F (a) a F φ(az), a F (11.) Å ( ) ã Ç å 1 b ω γe φ(z) =ψ γ NE/F (z)b φ(z), b F (11.3) 0 1 Å ( ) ã Ç å 0 1 ω γe φ(z) =λ(e/f, ψ γ ) φ(z )ψ γ E zσ(z ) dz. (11.4) 1 0 E 11. O(E) SL(, F ) θ O(E) = SO(E) σ η : E /F C η u : SO(E) z/σ(z) η(z) C (Hilbert 90 g SO(E) g = z/σ(z), (z E ) ) Mackey

53 11.. O(E) SL(, F ) θ (i) η : E /F C η 1 τ η := ind O(E) SO(E) η u O(E) τ η τ η η = η ±1 (ii) η = 1 F E η = ω K/E, (K := E F E ) ind O(E) SO(E) η u τ K ± τ K(σ) ± = ±1 τ K ± = τ ± K K E K K F E τ K + = 1 O(E), τk = sgn O(E) (iii) O(E) (i), (ii) L (E) ω γe,w S(E) O(E) τ S(E) S(E, τ) SL(, F ) θ ψ γ(τ, W ) E/F SO(E) η : E /F C p η : S(E) φ(z) φ(g.z)η u (g) dg S(E) SO(E) η : E /F C (i) 11.3 S(E, τ η ) p η : S(E) S(E, η u ) := S(E, τ K) + S(E, τk) S(E, 1 O(E) ) η 1 η = ω K/E 1 η = 1 O(E) SL(, F ) (ii) η 1 θ ψ γ(τ η, W ) := (ω γe, S(E, η u )) SL(, F ) a (iii) η = ω K/E 1 θ ψ γ(τ ± K, W ) := (ω γe, S(E, τ ± K)) SL(, F ) b (iv) η = 1 θ ψ γ(1, W ) := (ω γe, S(E, 1 O(E) )) SL(, F ) θ ψ γ(sgn O(E), W ) = 0 a SL(, F ) b SL(, F ). (i) (ii) (iv) (i) θ [Kud86], [MVW87, 3 ] SO(E) S(E) = η im p η ω W (g)p η (φ) = η u (g)p η (φ),

54 50 11 SL(, F ) (g SO(E)) η 1 im p η = S(E, τ η ) η = ω K/E 1 ω W (σ)p η (φ)(z) = φ(g.σ(z))η u (g) dg = φ((gσ(z)/z).z)η u (g) dg SO(E) SO(E) = φ(g.z)η u (g z/σ(z)) dg = ω K/E (z)p η (φ)(z) SO(E) im p η S(N K/E (K )) = S(E, τ + K), im p η S(E N K/E (K )) = S(E, τ K) η im p η 0 N K/E (K) = E im p η = S(E, 1 u ) E = F γe = (H, Q H ) O(E) = Ä a 0 0 a 1 ä a F ( ) η : F F / F C η u : F x η(x, 1) C F = R C (1) (ω γe,w, S(E)) Fourier F X : S(E) φ F X φ(x, x) := F ( ) x Å xy φ ψ γ ã dy S(W ) y (x, y) ψ γ (xy/) Å ( ) ã a 0 ω W ϕ(w) = a 1 0 a 1 F ϕ(a 1.w), a F (11.5) ) ã ϕ(w) = ω W Å ( ω γe,w W Å w ϕ(w )ψ γ ã, w dw (11.6) ω γe (g )ϕ(w) =ϕ(w.g ), g SL(, F ). (11.7) () SO(E) SL(, F ) W SO(E) SL(, F ) {0} 0 W (a) {0} S({0}) = Cδ 0 (Dirac ) 1 F (b) W (0, 1) ϕ S(W ) p η (ϕ)(g ) := F ω W 1 SL(,F ) Å ( ) ã t 0 ϕ((0, 1).g )η 0 t 1 u (t) 1 dt = ϕ((0, t).g )η u (t) t F dt F

55 11.. O(E) SL(, F ) θ 51 S(W ) I(η u ) := φ : SL(, F ) C (i) φ( Ä ä a b 0 a g) = 1 ηu (a) a F φ(g) (ii) φ SL(, F ) SL(, F ) η u (i) η u 1 θ ψ (τ η, W ) I(η u ) SL(, F ) (iii) η u = ω E /F 1 I(η u ) θ ψ (τ ± E, W ) (iv) η u = 1 θ ψ (1 O(E), W ) I(1) θ ψ (sgn O(E), W ) = (11.5), (11.6), (11.7)

56 5 1 SL(, A) 1.1 SL(, A) SL(, A) F A (6. ) F S A(S) := v S F v O v A = S A(S) = lim S A(S) F 3.4 () A : A (x v ) v v x v v R + A 1 F A A = R + R F q (T ) A A = q Z Z 1.1. F A 1 (Artin ) A 1 /F SL() ( ) a b SL(, A) := c d a, b, c, d A ad bc = 1 SL() Borel B = T U T := {( a a 1 ) SL() }, U := {( ) } 1 b SL() 1 K = v K v SO(, R) v K v := SU(, R) v SL(, O v ) v

57 1.1. SL(, A) 53 ( Langlands) SL(, A) = B(A)K = U(A)T (A) 1 AK (1.1) ( 1 ) ( ) ( a T (A) 1 := a A1, A := a a 1 ) a 1 a R + R + F = v F v 1. (Mikowski ). U(A) = U(F )Ω U, T (A) 1 = T (F )Ω T Ω U U(A), Ω T T (A) 1 ( 6.4 (ii), 1.1) Ω := Ω U Ω T B(A) c > 0 SL(, A) = SL(, F )ΩA B (c)k A B (c) := { Ä a 0 0 a 1 ä A a > c } 1.3. SL(, F )\SL(, A) SL(, A). SL(, A) ΩA B (c)k f(g) dg = f(utak) du dt a da a dk SL(,A) K A T (A) 1 U(A) 1.4. SL(, A) (R, L(SL())): L(SL()) := φ : SL(, A) C [R(g)φ](x) := φ(xg), (i) φ(γg) = φ(g), γ SL(, F ) (ii) SL(,F )\SL(,A) φ(g) dg < + g SL(, A), φ L(SL()) SL(, A) ( ) (π, V ) R R (R 0, L 0 (SL())): Å L 0 (SL()) := φ L(SL()) ( ) ã 1 x φ g dx = 0, g SL(, A) F \A 0 1 (π, V ) ( )

58 54 1 SL(, A) 1. O(E A ) E F ( ) E/F Galois σ (E, N E/F ) O(E) A O(E A ) Å O(E A ) = lim O(E v ) ã K(E v ) S v S v / S E v /F v K(E v ) := O(E v ) E v F v F v O(E v ) = F v σ, (σ(x) = 1/x) K(E v ) := {x F v x v = 1} σ O(E A ) SL() φ : O(E A ) C (i) φ(γg) = φ(g), γ O(E) L(O(E)) := (ii) O(E)\O(E A ) φ(g) dg < + O(E A ) 1.5. η : A E/E A C η v = 1 Σ 11.3 τ η (Σ) := v Σ τ K v v / Σ η v=1 τ + K v v;η v 1 τ ηv ηv = 1 η v = ω Kv/Ev Hilbert L(O(E)) τ η (Σ) η:a E /E A C mod σ Σ; Σ. ( ) SO(E) ( Langlands ) L(SO(E)) 11.3 η:a E /E A C η u ind O(E A) SO(E A ) η u Σ τ η (Σ) σ O(E) O(E A ) Σ

59 γ F F γe = (E, γn E/F ) A/F ψ = v ψ v v O(E v ) SL(, F v ) Weil (ω γev,w v, S(E v )) 1.6. F v E v /F v γ O v, ψ v O v ϖv 1 O v O Ev 1 S(E OE v v) ω Wv (K(E v )) ω γev (K v ). O Ev K(E v ) ω Wv (K(E v )) ω γev (SL(, O v )) OEv ψ γ E-Fourier Å ω γe,w := ω γev,w v, S(E A ) := lim S(E v ) ã 1 OE S v v v S v / S O(E A ) SL(, A) ( ) Weil Φ S(E A ) θ Φ (g, g ) := ξ E ω γe,w (g, g )Φ(ξ), g O(E A ), g SL(, A) ω γe,w (g, g )Φ 1.5 L(O(E)) τ L(O(E)) ( ) L(τ), SO(E A ) A(τ) f L(τ) Φ S(E A ) Θ Φ (f, g ) := O(E)\O(E A ) f(g)θ Φ (g, g ) dg 1.7. τ O(E A ) (i) f L(τ), Φ S(E A ) Θ Φ (f) L 0(SL()). (ii) τ = τ η (Σ) v Σ η v 1 Θ(τ η (Σ), W ) := cl.span {Θ Φ (f) Φ S(E A ), f L(τ)} SL(, A) Θ(τ η (Σ), W ) = 0.

60

61 57 [CF86] [Kud86] J. W. S. Cassels and A. Fröhlich, editors. Algebraic number theory, London, Academic Press Inc. [Harcourt Brace Jovanovich Publishers]. Reprint of the 1967 original. S. S. Kudla. On the local theta correspondence. Invent. Math., Vol. 83, pp. 9 55, [Kud94] S.S. Kudla. Splitting metaplectic covers of dual reductive pairs. Israel J. Math., Vol. 87, pp , [Ler74] Jean Leray. Complèment à la théorie d Arnold de líndice de Maslov. In Proc. Sympos. Pure Math., Vol. XXVI, pp Amer. Math. Soc., Providence, R.I., [MVW87] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger. Correspondences de Howe sur un corps p-adique. Springer Verlag, Lecture Notes in Math [Wei64] A. Weil. Sur certains groupes d opérateurs unitaires. Acta Math., Vol. 111, pp , [Wei95] André Weil. Basic number theory. Springer-Verlag, Berlin, Reprint of the second (1973) edition.

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information