1 SVD 1.1 SVD SVD SVD 3 I J A A = UD α V (A.1.1) D α α 1... α K K A (K min(i, J)) U, V I K, J K ( ) U U = V V = I :

Size: px
Start display at page:

Download "1 SVD 1.1 SVD SVD SVD 3 I J A A = UD α V (A.1.1) D α α 1... α K K A (K min(i, J)) U, V I K, J K ( ) U U = V V = I :"

Transcription

1 (SVD) Greenacare, M.J. (SVD) 1870 ( Marchall&Olkin, ) Psychometrika Eckart&Young(1936) Eckart-Young (Horst,1963; Green&Carroll,1976 pp ) (Eckart&Young,1936;Johnson,1963) (Good,1969;Kshirsagar,1972) (Benzécri et al., 1973) (2.1, 2.2 ) ( ) SVD SVD SVD SVD SVD SVD SVD Good(1969), Chambers(1977), Gabriel(1978), Rao(1989), Mandel(1982), Greenacre&Underhill(1982) : Greenacre, M.J.(1984) Theory and Applications of Correspondence Analysis. Academic Press. Appendix A: Singlar Value Decomposition (SVD) and Multidimensional Analysis. PDF (2011/01/21 ) (2014/09/23 ) R Clausen( ), ( ) ( ) (...) (2016/05/17 ) (2016/05/19 ) R (2018/05/09 ) 1

2 1 SVD 1.1 SVD SVD SVD 3 I J A A = UD α V (A.1.1) D α α 1... α K K A (K min(i, J)) U, V I K, J K ( ) U U = V V = I : = U... U U = = SVD K A = α k u k vk k=1 (A.1.2) u 1... u K v 1... v K U, V α k A u k v k A (k = 1... K) I A J A SVD 1 u k vk (k=1... K) K ( ) A α k u k vk 2

3 : = [ ] + SVD J J B K B = VD λ V = λ k v k vk k=1 K B (K J) V J K B SVD SVD A SVD B B A A = VD λ V A SVD A = UD α V V B Dα = D 1/2 λ (cf. Mardia et.al., 1979, pp ) SVD (Greenacre, 1978, Appendix A.) SVD SVD Greenacre(1978, Appendix A.) B λ x Bx = λx A Av = αu A u = αv α u, v ( α, u, v ) u, v (u u = v v) ( 1 ) u, v 1.2 SVD (α 1 α 2... α K > 0) ( ) reflection SVD 2 3

4 α k = α k+1 2 (cf. Section 8.1) 1.3 SVD U V Ũ [u 1... u K... u I ] Ṽ [v 1... v K... v I ] u K+1... u I u 1... u K Ũ Ũ = I Ṽ Ṽ = I SVD : A = Ũ Ṽ (A.1.3) [ Dα O O O ] A SVD (Green & Carroll, 1976, p.234 ) U, V SVD (cf. Kshirsagar, 1972, pp ) : ? ? = ? ? [ ] Ũ 4 u (A.1.2) SVD α K α K α 1... α K, (A.1.2) K K A A SVD Eckart&Young(1936) A [K ] A K K I J A [K ] K k=1 α ku k vk A [K ] 4

5 K X I i J (a ij x ij ) 2 = trace{(a X)(A X) } (A.1.4) j A [K ] A K K = A [2] = [ ] [ ] = A ( : Kshirsagar, 1972, pp ; Stewart, 1973) A SVD(A.1.3) (A.1.4) : trace{ũũ (A X)ṼṼ (A X) } = trace{( G)( G) } = K (α k g kk ) 2 + k K K k l k g 2 kl G I J G Ũ X T G X G α 1... α K 0 X = A [K ] U, D α, V U [U (K ) U (K K )] [ Dα(K ) O D α O D α(k K ) ] V [V (K ) V (K K )] I K U (K ) K K D α(k ) J K V (K ) 3 A [K ] SVD : A [K ] = U (K )D α(k )V (K ) (A.1.5) A A [K ] = U (K K )D α(k K )V (K K ) (A.1.6) Y trace(yy ) (A.1.1), (A.1.5), (A.1.6) 5

6 A K k α2 k A [K ] K k α 2 k A A [K ] K k=k +1 α2 k : K k τ K 100 α 2 k K k α2 k (A.1.7) α 2 1 = 642.4, α 2 2 = 4.6, α 2 3 = 2.9, 650( A ) τ 2 = SVD SVD SVD Ω (I I), Φ (J J) A (I J, K) : K A = ND α M = α k n k m k (A.1.8) N, M Ω, Φ : k N ΩN = M ΦM = I (A.1.9) N M A I J Ω, Φ ( ) (Section 2.3 ) D α ( ) SVD SVD Ω 1/2 AΦ 1/2 SVD (Ω Ω = WD µ W Ω 1/2 = WD 1/2 µ W ) Ω 1/2 AΦ 1/2 = UD α V, U U = V V = I N Ω 1/2 U M Φ 1/2 V (A.1.10) (A.1.11) (A.1.8) (A.1.9) 6

7 A SVD 1. B = Ω 1/2 AΦ 1/2 2. B SVD B = UD α V 3. N = Ω 1/2 U, M = Φ 1/2 V 4. A = ND α M A SVD Ω Ω = , Φ = I B = Ω 1/2 AΦ 1/2 = = A Ω Φ 3 SVD (A.1.8) K K A [K ] K k α k n k m k = N (K )D α(k )M α(k ) A K K ( ) X trace{ω(a X)Φ(A X) } (A.1.12) SVD (A.1.12) : Ω ω 1... ω I D ω I trace{d ω (A X)Φ(A X) } = ω i (a i x i ) Φ(a i x i ) (A.1.13) a i, x i A, X Pearson(1901), Young(1937) (Section 2.5 ) A I J ( ) I Φ (Section 2.5 Φ ) ω 1... ω I X K X A [K ] (A.1.13) A I i 7

8 m 1... m K N (K )D α(k ) = [α 1 n 1... α K n K ] ( ) Φ A [K ] M (K ) α K α K +1 ( SVD ). K α K α K +1 SVD F N (K )D α(k ) K (K 2 3) A Gabriel(1971, 1981) G M (K ) Tucker(1960) i ( F i fi ) j ( G j g ) a ij : a ij f i g j = (f i ) (g j ) (f i g j cosine) (A.1.14) a ij ( ) a ij > 0 f i, g j a ij < 0 8

9 2 Y 1 Y A 2 Ω, Φ A SVD ((A.1.10), (A.1.11) ): A = ND α M, N ΩN = M ΦM = I K : A [K ] = N (K )D α(k )M (K ) 3 ( ) a b F N (K )D a α(k ) G M (K )D b α(k ) K / / : 1. 1 / 2. 2 Ω, Φ 3. a, b A.1 A.1 A.1 1. (, b = 0) 2. a + b = 1 fi g j A a ij 9

10 3. b = 0 (a = 1 ) a = b 4. ( F ) (Y A ) SAS GENSTAT (Appendix B ) 5. (4) (5) (I 1) 1/2 MD 2 αm Y (1/I)11 Y (I 1) 1/2 = ND α M {Y (1/I)11 Y} {Y (1/I)11 Y} (I 1) G M (K )D α(k ) (Gabriel, 1971) 6. (2) (3) (i) (ii) 7. Ω, Φ (9) F A = D 1 r P 11 D c, Ω = D r, Φ = D 1 c, a = 1 P A D r ( (2)) (Section 2.5 ) G A = D 1 c P II D r, Ω = D c, Φ = D 1 r, b = 1 4 a, b ( 0 ) a = 0, b = 0 ( ) 2.1 A.1 (Gower, 1966) S ( 2.6.1(b) ) : S = ND µ N ND ω N = I D ω ( ) K F N (K )D 1/2 µ(k ) SVD 10

11 (Section 2.5 Appendix B ) D 1/2 ω SD 1/2 ω N = D 1/2 ω U a ij w ij A Gabriel & Zamir(1979) 1. w ij = 0 2. w ij 3. w ik = s i t j A SVD 11

12 A.1 SVD R1... R4, C1... C3 (1)(2)(3)(4)(5) 1 Y (1/I)11 Y Y (1/I)11 Y = (1/4) = = Y =

13 (1) ( ) Y 1 A = Y (1/I)11 Y 2 Ω = (1/I)I, Φ = I 3 a = 1, b = 0 J ( ) K G Pearson(1901) Hotelling(1933) (Bryant&Atchley(1975) 2 ); Morrison(1976); Gabriel(1971); Kendall(1975); Chambers(1977) A = Ω = (1/I)I, Φ = I SVD A = SVD D α 1/ I N I K = 3 F, G F = N (3) D α(3) = G = M (3) = F Ω = I, Φ = I G Ω = (1/I)I SVD Ω = I, Φ = I SVD ( SVD) F = ND α, G = M D α 13

14 第二主成分 C R1 R2 R3 C2 R C 第 1 主成分 10 14

15 R SVD SVD > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > A <- scale(y, center = TRUE, scale = FALSE) > osvd <- svd(a) > osvd$u %*% diag(osvd$d) [,1] [,2] [,3] [1,] [2,] [3,] [4,] > osvd$v [,1] [,2] [,3] [1,] e [2,] e [3,] e

16 R stats prcomp sdev D α I/(I 1) F SD SAS SPSS rotation G x F > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > result <- prcomp(y) > result$sdev [1] > result$rotation PC1 PC2 PC3 [1,] e [2,] e [3,] e > result$x PC1 PC2 PC3 [1,] [2,] [3,] [4,] biplot(result, scale=0) scale (5) SAS proc princomp cov 2 Ω = (1/(I 1))I D α D α I/(I 1) G F SPSS factor method=covariance, extraction=pc SAS proc princomp D α I/(I 1) G F 16

17 (2) ( ) D ω ( 1) (i) : 1 A = Y (1/I)11 D ω Y 2 Ω = (1/I)D ω, Φ 3 a = 1, b = 0 (ii) : 1 A = {Y (1/I)11 D ω Y}Φ 1/2 2 Ω = (1/I)D ω, Φ = I 3 a = 1, b = 0 (1) Φ, D ω ω 1... ω I A (i) (ii) F G (3) (3), (7), (8), (9) D ω, Φ 17

18 (3) ( ) (i) : 1 D s A = Y (1/I)11 Y 2 Ω = I, Φ = D 2 s 3 a = 1, b = 0 (ii) : 1 2 A = {Y (1/I)11 Y}D 1 s Ω = I, Φ = I 3 a = 1, b = 0 (2) (ii) G (i) G = D s G (4) ( (ii)) 18

19 (4) 1 2 A = Y (1/I)11 Y (I 1) 1/2 Ω = I, Φ = I 3 a = 0, b = 1 J ( ) K Gabriel(1971,1972,1981) SVD A = A = Y (1/I)11 Y SVD D α 1/ I 1 K = 3 G = M (3) D α(3) = F = N (3) = = G Y (1/I)11 Y 1 G Y (1/I)11 Y

20 第 2 軸 R1 R4 C3 0 C2 C1-0.5 R2 R 第 1 軸

21 R 1 F, G > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > X <- scale(y, scale=false) > A <- X / sqrt(3) > osvd <- svd(a) > osvd$u [,1] [,2] [,3] [1,] [2,] [3,] [4,] > osvd$v %*% diag(osvd$d) [,1] [,2] [,3] [1,] e [2,] e [3,] e

22 R 2 prcomp (1) prcomp SVD(Ω = Φ = I SVD) M, D α, N x I ND α rotation M sdev I/(I 1))(1/ I) D α = 1 I 1 D α M, D α, N N 1 I 1 MD α F, G > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > result <- prcomp(y) > t(t(result$x)/ (result$sdev*sqrt(3))) PC1 PC2 PC3 [1,] [2,] [3,] [4,] > t(t(result$rotation) * result$sdev) PC1 PC2 PC3 [1,] e [2,] e [3,] e

23 R 3 biplot > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > result <- prcomp(y) > biplot(result) PC Var 3 Var 2 Var PC1 result$x (1,2) result$sdev I 1 I F result$rotation (1,2) result$sdev IG biplot(result) 23

24 R 4 biplot pc.biplot=true > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > result <- prcomp(y) > biplot(result, pc.biplot=true) PC Var 3 Var 2 Var PC1 pc.biplot=true result$x (1,2) result$sdev I 1F result$rotation (1,2) result$sdev G pc.biplot=true 24

25 WRC Research Systems Brandmap Y Data Centering Row Y Factorization G*(V*H ) SVD Y SVD Brandmap 1 I 1 Y ( ) I I Y ( ) 25

26 (5) D s 1 A = {Y (1/I)11 Y}D 1/2 s (I 1) 1/2 2 Ω = I, Φ = I 3 a = 0, b = 1 J 1 K ( 2 ) Hill(1969) A I A = SVD A = K = 3 G = M (3) D α(3) = F = N (3) = = G 4/3 = 1.2 4/3 1 I 1 I 26

27 R R scale() SD SD SD > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > agsd <- sqrt(apply(y, 2, var) * (3/4)) > A <- scale(y, center = TRUE, scale = agsd) / sqrt(3) > osvd <- svd(a) > osvd$u [,1] [,2] [,3] [1,] [2,] [3,] [4,] > osvd$v %*% diag(osvd$d) [,1] [,2] [,3] [1,] e [2,] e [3,] e WRC Research Systems Brandmap Y Data Centering Row Data Standardization Row Factorization G*(V*H ) Brandmap 1 ( (I 1)/I ) Y ( ) I 1, I 1 Y ( ) 27

28 (6) ŷ 1 A = Y ŷ11 2 Ω = I, Φ = I 3 a = 1/2, b = 1/2 - Bradu & Gabriel(1978); Gabriel(1981) 28

29 (7) 1 I J Y Y 1 Y 2 Y ( ) S 11, S 22 S 12 A = S 1 11 S 12S Ω = S 11, Φ = S 22 3 a = 1, b = 1 F G ( ) ( Y 1 F Y 2 G ) 2 ( S 1 11, S 1 22 ) 2 K Anderson(1958); Tatsuoka(1971); Morrison(1976); Mardia et al.(1979); Falkenhagen & Nash(1978); Chambers(1977); Gittins(1979) 29

30 (8) Y H J H J Ȳ D w (H H) S 1 A = Ȳ 11 D w Ȳ 2 Ω = D w, Φ = S 1 3 a = 1, b = 0 Y ( Ȳ ) (2) S 30

31 (9) ( ) 1 2 Y Y P P D r, D c A = D 1 r PD 1 c 11 Ω = D r, Φ = D c 3 a = 1, b = 1 (7) Y ( Example ) Benzécli et al.(1973); Hill(1974); Greenacre(1978); Nishisato(1980); Greenacre(1981); Gifi(1981); Gauch(1982); 1/ A = 0 1/ / /.42 = / / / D r, D c SVD [ A = F = G = [ [ ] [ ] = ] = Y 1 1, 6, 8, 10, (F 1 ) (G 1 ) ] 31

32 C2 R R1 C3 R4 R2 C

33 R > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > P <- Y / sum(y) > DR <- diag(rowsums(p)) > DC <- diag(colsums(p)) > A <- solve(dr) %*% P %*% solve(dc) - 1 > A [,1] [,2] [,3] [1,] [2,] [3,] [4,] > # SVD > osvd <- svd(sqrt(dr) %*% A %*% sqrt(dc)) > N <- solve(sqrt(dr)) %*% osvd$u > M <- solve(sqrt(dc)) %*% osvd$v > # A > N %*% diag(osvd$d) %*% t(m) [,1] [,2] [,3] [1,] e [2,] e [3,] e [4,] e > # F > N %*% diag(osvd$d) [,1] [,2] [,3] [1,] e-17 [2,] e-17 [3,] e-17 [4,] e-17 > # G > M %*% diag(osvd$d) [,1] [,2] [,3] [1,] e-17 [2,] e-17 [3,] e-17 33

34 R ca ca ca() print() ca() rowcoord, colcoord F, G A SVD N, M > library(ca) > Y <- matrix(c(1,2,3,6,4,5,8,9,7,10,11,12), ncol=3, byrow=true) > oca <- ca(y) > print(oca) Principal inertias (eigenvalues): 1 2 Value Percentage 72.71% 27.29% Rows: [,1] [,2] [,3] [,4] Mass ChiDist Inertia Dim Dim Columns: [,1] [,2] [,3] Mass ChiDist Inertia Dim Dim > oca$rowcoord %*% diag(oca$sv) [,1] [,2] [1,] [2,] [3,] [4,] > oca$colcoord %*% diag(oca$sv) [,1] [,2] [1,] [2,] [3,]

35 ca() N, M plot F, G > plot(oca) Dimension 2 (27.3%) Dimension 1 (72.7%) WRC Research Systems Brandmap Factorization Symmetric Prn SAS proc corresp SPSS correspondence standardize=rcmean, measure=chisq, normalization=principal 35

Correspondence Analsis R Principal components of scale analsisguttman; Lond factorial analsis of qualitative databurt dual scalingnishisato third method of quantificationhaashi multiple correspondence

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt

Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt 主成分分析 1 内容 主成分分析 主成分分析について 成績データの解析 R で主成分分析 相関行列による主成分分析 寄与率 累積寄与率 因子負荷量 主成分得点 2 主成分分析 3 次元の縮小と主成分分析 主成分分析 次元の縮小に関する手法 次元の縮小 国語 数学 理科 社会 英語の総合点 5 次元データから1 次元データへの縮約 体形評価 : BMI (Body Mass Index) 判定肥満度の判定方法の1つで

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

取扱説明書 [F-06E]

取扱説明書 [F-06E] F-06E 3.6 2 3 4 5 6 7 8 9 0 2 3 4 5 6 a b c d a b c d 7 a b cd e a b c 8 d e 9 20 a b b a a b 2 22 b a c 23 d 24 a b c d e f g h l m n o p i j k ku v w q r s t x y a b c d e f g h i j k l m n o p q

More information

=

= 2. 2.1 2.2 kuri@ice.uec.ac.jp ( 2007/10/30/16:46) 1 . 1. 1 + 2 = 5. 2. 180. 3. 3 3. 4.. 5.. 2 2.1 1.,,,,. 2., ( ) ( ).,,,, 3.,. 4.,,,. 3 1.,. 1. 1 + 2 = 5. (, ) 2. 180. (, ) 3. 3, 3. (, ) 4.. (, ) 5..

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

5 5.1 A B mm 0.1mm Nominal Scale 74

5 5.1 A B mm 0.1mm Nominal Scale 74 5 73 5 5.1 A B 2 1 2 1mm 0.1mm 5.1.1 Nominal Scale 74 5.2. Calc 5.1.2 Ordinal Scale (1) (2) (3) (4) (5) 5 1 5 1 5 4 5-2 -1 0 1 2 1 5 15 25 55 1 1 2 3 4 5 1 5.1.3 5.1.3 Interval Scale 100 80 20 80 100 5

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

i Armitage Q. Bonferroni 1 SAS ver9.1.3 version up 2 *1 *2 FWE *3 2.1 vs vs vs 2.2 5µg 10µg 20µg 5µg 10µg 20µg vs 5µg vs 10µg vs 20µg *1 *2 *3 FWE 1

i Armitage Q. Bonferroni 1 SAS ver9.1.3 version up 2 *1 *2 FWE *3 2.1 vs vs vs 2.2 5µg 10µg 20µg 5µg 10µg 20µg vs 5µg vs 10µg vs 20µg *1 *2 *3 FWE 1 i Armitage Q Boferroi SAS ver93 versio up * * FWE *3 vs vs vs 5µg 0µg 0µg 5µg 0µg 0µg vs 5µg vs 0µg vs 0µg * * *3 FWE 3 A B C D E (i A B C D E (ii A B C D E (iii A B C D E (iv A B C D A < B C D A < B

More information

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T analog-control-mod : 2007/2/4(8:44) E8 E8. PID DC. PID 2. DC PID 3. E8.2 DC PID C8 E8. DC PID E6 DC P M () K M ( T M ) (E8.) DC PID C8 E8. r e u E8.2 PID E8. PID analog-control-mod : 2007/2/4(8:44) 2 E8

More information

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ t 2 Armitage t t t χ 2 F χ 2 F 2 µ, N(µ, ) f(x µ, ) = ( ) exp (x µ)2 2πσ 2 2 0, N(0, ) (00 α) z(α) t * 2. t (i)x N(µ, ) x µ σ N(0, ) 2 (ii)x,, x N(µ, ) x = x + +x ( N µ, σ2 ) (iii) (i),(ii) x,, x N(µ,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1 n 1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1..........................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

社会学部紀要 122号☆/4.中山

社会学部紀要 122号☆/4.中山 Biplot 1 Singular Value Decomposition Biplot SVD Biplot Biplot n p data matrix rows individual sample units columns variables Biplot Gabriel 1971 PCA point vector SVD Biplot Biplot R program R package

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

第Ⅰ章

第Ⅰ章 4 11 () () () () () () () () () 19 () () () () () () () () () 28 () () 30 32 34 36 37-1 - -2 - () -3 - SPSS () ()() () () () -4 - N N N -5 - () A AB B O () A AB B O N N -6 - -7 - () N= -8 - () () () -9

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

untitled

untitled c 1. 2 2011 2012 0.248 0.252 1 Data Envelopment Analysis DEA 4 2 180 8633 3 3 1 IT DHARMA Ltd. 272 0122 1 14 12 13.10.7 14.5.27 DEA-AR (Assurance Region) 1 DEA 1 1 [1] 2011 2012 220 446 [2] 2. [2] 1 1

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

k- W707 1 / 39

k- W707 1 / 39 k- W707 s-taiji@is.titech.ac.jp 1 / 39 7/7 2 / 39 k- k- 3 / 39 1 k- k- k 2 k- 3 4 / 39 k- 5 / 39 k- k- 6 / 39 1 k- k- k 2 k- 3 7 / 39 k- {X i } n i=1 : (d ) k- (k-nearest neighbor) 1 k 1 2 x k {X (1),

More information

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat = H BioS t (i) treat treat data d; input patno treat treat; cards; 3 8 7 4 8 8 5 5 6 3 ; run; (i) treat treat data d; input group patno period treat y; label group patno period ; cards; 3 8 3 7 4 8 4 8 5

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

2003 12 11 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2003 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 9 2. 10/16 3. 10/23 ( ) 4. 10/30 5. 11/ 6

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

取扱説明書 [F-05E]

取扱説明書 [F-05E] F-05E 12.11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 a b 22 c d e 23 24 a o c d a b p q b o r s e f h i j k l m g f n a b c d e f g h 25 i j k l m n o p q r s a X b SD 26 27 28 X 29 a b c

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I H BioS (i) I treat II treat data d; input group patno treat treat; cards; 8 7 4 8 8 5 5 6 ; run; I II sum data d; set d; sum treat + treat; run; sum proc gplot data d; plot sum * group ; symbol c black

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

26 No.62 Contents 1 2 3 4 2 No.62

26 No.62 Contents 1 2 3 4 2 No.62 Institute for Traffic Accident Research and Data Analysis INFORMATION 26 No.62 Institute for Traffic Accident Research and Data Analysis 26 No.62 Contents 1 2 3 4 2 No.62 ITARDA INFORMATION Section 1 9

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

取扱説明書 [F-01F]

取扱説明書 [F-01F] F-0F 3.0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 a b c d a b c 2 d 22 a b cd e a b c d e 23 24 25 26 a b a b 27 28 b a 29 c d 30 r s t u v w x a b c e f g d h n i j k l m a b o c d p e f g h i j k q l

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) 1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3..........................................

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information