L(A) l(a)

Size: px
Start display at page:

Download "L(A) l(a)"

Transcription

1

2 L(A) l(a) K Bessel Airy Schrödinger Airy Airy

3 2 Contents 1. Akira ASADA: Old Tale: Riemann Roch Theorem 2. Kenji SETO: Bessel Function and Airy Function 3. Shozo NIIZEKI: Editorial Comments

4 3 Old Tale: Riemann Roch Theorem 1 Akira Asada 2 C - K- K- K- 1.1 : l(a) = n(a) g l(k A), X X - A = i n ip i n(a) = i n i, X g l(a) = diml(a), L(A) A X l(k A) S : χ(s) = 1 KdS, 2π χ(s) K l(a) n(a) g + 1 l(k A) K K(x) ([1]) ([16]) 1 asada-a@poporo.ne.jp 2 Professor emeritus, Sinsyu University S

5 4 A ( L(A) A L(K A) A X D(A) l(a) d(a) = n(a) g + 1, d(a) = dimd(a) l(a) d(a) χ(s) = dimh 2 (S, R) dimh 1 (S, R)+ dimh (S, R) l(a) A (l(a) d(a)) (n(a) g + 1) ([3]) X ξ Ω(ξ) χ(ξ) = n ( 1) p dimh p (X, Ω(ξ)) p= ([2]) K- Ω(ξ) Ω(ξ) Ω(ξ) ([9],[1]) K- K- X F H G H = F + G K- f : X Y Y Y K- K- Ω(ξ) χ(ξ) = dim(ker( + )) codim(ker( + )), + : n p= H (X, Ω 2p (ξ)) n p= H (X, Ω 2p+1 (ξ)) M D indexd = dim(kerd) dim(cokerd) = dim(kerd) dim(kerd )

6 5 ([4]) ([5],[6],[7]) indd = tre tdd tre td D ([5],[7]) ([11],[12]) l(a) χ(a) χ(a) 1.2 f(z) f(p i ) =, i = 1,..., n, p i f N i - q j, j = 1,..., m M j - f (f) (f) = i N i p i j M j q j, (fg) = (f) + (g) X (f) = (g) f = cg, c C (f) X - X X - r(z) = C P (z) Q(z), P (z) = k i=1 (z c i) n i, Q(z) = l j=1 (z c j) m j, degp = n, degq = m S 2 = C { } (r(z)) = i n i c i j m j c j + (m n)p A = k n k p k k n k = (R(z)) = A C - - ( ) 2 = 4 3 g 2 g 3 = w = 4z 2 g 2 z g 3 A ζ (z) = (z), σ (z) σ(z) = ζ(z) σ A σ(z c i )

7 6 X 1 X (f) ( ϑ- 1.3 L(A) l(a) A = k n k p k ; n k Z, B = k m k p k X - n k m k A B L(A) = {f (f) + A } {}, l(a) = diml(a) g X L(A) f fg L(A + (g)) L(A) = L(A + (g)) l(a) = l(a + (g)) l(a) l(n p) = l(n 1) p + 1 X p n A = k n k p k n(a) = k n k n((f)) = - - l() = l((f)) = 1, l(a) =, n(a) < n(a) = A = (f) X ϕ (ϕ) dz 2 p dz 1 z 2 z = ±1 t 2 = 1 ± z 1 2 dz 1 z 4 dimh 1 (X, R) = 2g X g g f(z) = 1 z 2(g+1) z k 1 z 2(g+1)) dz, k g 1 D(A) = {ϕ A + (ϕ) } {}, l(a) ([1]) d(a) = dimd(a) l(a) d(a) = n(a) g + 1, D(A) = L(A K) K canonical divisor l(k) = g, n(k) = 2g n(a) > 2g l(a) = n(a) g + 1 g m > 2g m

8 7 1.4, p : F X p 1 (x) = F x p f x F x U(f x ) U(x) F x α : F G F x G x α F x x f f = g, f U(x) = g U(x), U(x) x ; f x f x x X F x f x U(f x ; f, U(x)) = {f y ; y U(x)} p s(x) = x s : U F U F U U U = {U i } X s i,...,i p : U i... U ip : F {s i,...,i p } C p (U, F), δ : C p (U, F) C p+1 (U.F) p+1 δs i,...,i p+1 = ( 1) j s i,...,i j 1,i j+1,...,i p+1 j= X F- H p (X, F) (X H (X, F) X F dimx = m H q (X, F) =, q > m, χ(f) = p ( 1) p dim(h p (X, F)) δ ;- ϕ p dϕ p 1 U dϕ p 2 UV,..., δϕp k U i,...,u ik F i G j H H (X, F) H (X, G) H (X, H) H 1 (X, F), ϕp 1 U ϕp 1 V = χ(g) = χ(f) + χ(h) H (X, F) dimh (X, F) G, H G F H χ(f)

9 8 L(A) x L(A) x ; A U(x) A U(x) L(A U(x)) L(A V (x)), V (x) U(x) L(A) x U(x) L(A U(x)) Ω(A) = x L(A) x L(A) Ω(A) Ω(A + (p)) C x χ(ω(a + (p))) = l(a) + 1 H (X, Ω(A)) = L(A), χ(ω()) = 1 g l(a) dim ( H 1 (X, Ω(A)) ) = n(a) + 1 g 1.5 F p- C p H p (X, F) =, p 1 C t C C 1 Φ p p- Φ p C p Φ p+1 H p (X, C t ) = H p (X, C) H p (X, C) = H (X, Φ p )/dh (X, C p 1 ) C t (C) X C χ(c t ) X X d δ = dδ + δd H p (X, C) = ker( H (X.C p )) p- X z k = x k + iy k, dz = dx + idy, d z = dx idy, df = k ( f x k dx k + f y k dy k ) = f + f, f = f dz k, z k k f z =1 2 ( f x + 1 f i y ), f = k f z k d z k, f z = 1 2 ( f y 1 f i y ) X (p, q) X i,j g ijdz i d z j ij dz i d z j (p, q)- Π p,q Π p,q = Π p,q

10 9 X H r (X, C) = p+q=r H p,q (X, C), H p,q (X, C) = H q,p (X, C) ) f = f 2 =, ϕ = ϕ ψ ϕ = i 1,...,i p f i1,...,i p dz i1 dz ip f i1,...,i p ϕ p- p- Ω p H q (X, Ω p ) = H p,q (X, C) 1.6 M F F G U = U} X g UV : U V G, g UV g V W g W U = e, e {g UV } {h U }, h U G g UV = h U g UV h 1 V {g UV } {g UV } g UV X X {U} {f U }, f U U f U f 1 V, {g UV } = {f U f 1 V } f U X D D + (f), f X X ξ = {g UV } X (GL(m, C)- X C ω (C H 1 (X, C ω ) C d H1 (X, C d ) H 1 (X, C d ) = H 2 (X, Z) 1 K- ϕ U g UV ϕ V = ϕ U ξ ξ (p, q)- C p,q (ξ), Ω(ξ), p- Ω p (ξ) ξ (g UV (g UV ϕ V ) = g UV ϕv

11 1 ξ Ω(ξ) C,1 (ξ) H p (X, Ω(ξ)) -closed (, p)- -exact (, p)- ( X = + X 2 = H p (X, Ω(ξ)) ξ p- X H (X, Ω(A)) = L(A), H 1 (X, Ω(A)) = D(A) X {g UV } {detg UV } K H p (X, Ω(ξ)) = H n p (X, Ω(K ξ )) d(a) = l(k A) 1.7 χ(ω(a)) = n(a) + 1 g n(a) A 1 g X (2g = dimh 1 (X, R). 1 g X ) l(a) χ(ω(ξ)) ξ Ch(ξ) = Π i (1 + γ i ) X Ch(X) = Π i (1 + α i ) χ(ω(ξ)) = ch(ξ)td(x), ch(ξ) = X i e γ i, td(x) = ΠQ(α i ), x Q(x) = ([3]) 1 e x ξ χ(ω) ([2]) {g UV } { 1 2πi (log(g V W ) log(g UW ) + log(g UV ))} D D c(d) ( A X A = (f) A Z C d C d n(a) A X 1 g

12 11 γ i ξ F q (= GL(q, C)/ (n, C) = U(q)/T q )- X ξ ξ ξ T q - γ i p : X ξ X p : H p (X, Z) H p (X ξ, Z) F q γ 1,..., γ q H (X, Z) ([3]) D 1, D 2 c(d 1 ) c(d 2 ) = c(d 1 D 2 ) D 1 D 2 D 1 D 2 [1]; χ(d) = 1 2 D (D K) (K2 + c 2 ) c 2 [17] - l(a) + δ δ l(a) + δ = χ(a) X GL(n, C)- ( Z Ω C ω, C ω C ρ Φ,1 ρ(g) = 1 g 1 g 2πi H 1 (X, R)/ι (H 1 (X, Z)) (ι ι : Z R 1.8 K- ξ Ω(ξ) ( dimh p (X, Ω(ξ)) χ(ω(ξ)) ( - p χ(f), F F G H χ(g) = χ(f)+χ(h) G (F + H) K(X) χ K(X) Z f : X Y F f 1 (p) F f! (F) Y f! (F) = n ( 1)n H n (X, F) ch(f! (F)td(Y ) = f (ch(ftd(x)) Y ([9],[1])

13 12 K- K- + : p H (X, Ω 2p (ξ)) p H (X, Ω 2p+1 (ξ)) χ(ω(ξ)) = dim(ker( + )) dim(coker( + )) E 1, E 2 M D : H (M, E 1 ) H (M, E 2 ) D = k m C k (x) k x k 1 1 xk n n, k = k k n ξ 1,..., ξ σ(d) = k =m C k (x)ξ k1 1 ξk n n p : SM M p E 1 p E 2 D σ(d) K (BM/SM), BM, ch(σ(d)) ch(d) D kerd, cokerd indd = dim(kerd) dim(cokerd) dim(cokerd) = dim(kerd ) indd = dim(kerd) dim(kerd ) indd = ϕ(ch(d))td(m) M ϕ : Hc (T M) H (M) M n n d + δ : H (X, C 2p ) H (X, C 2p+1 ), p= p= C p p- K- K- ch(d) K-

14 13 K- K- λ DD ϕ = λϕ (D D)D = λd ϕ D D DD indd = tre td D tre tdd ([4],[6]) Q, F indq = tr( 1) F ([11],[12]) ([11]) 1.9 l(a) χ(a) K - l(a) l(a) A l(k + A) l(k + A) = a(x) + a(a) 1, a(x) X ([2]) l(a) χ(a) H p (X, Ω(ξ)) p 1 ( η- ([8]) ([15]) X ΩX X K 1 (X) ([16]; K (X) ) ([13]) ([14] )

15 14 [1], [2] Kodaira,K.: Some results in the transcendental theory of algebraic variety, Ann. Math. 59(1954), [3] Hirzebruch, F.: Topological Method in Algebraic Geometry, Springer, 1978 [4] Gel fand,i.m.: On elliptic differential equations, Russian Mat. Surveys,15(196), (Uspekhi Mat. Nauka,15(196), ); Collected Works I, [5] Atiyah,M.F. Bott,R. Patodi, V.K.: On the heat equation and the index theorem, Invent.Math.19(1973), , 28(1975), [6] Booss-Bavnbek, B. Bleecker,D.: Topology and Analysis. The Atiyah-SInger index formula and gaugetheoretic phyisics, Springer, [7] Berline,N. Getzler,E. Vergne,M.: Heat Kernels and Dirac Operators, Springer, 24. [8] Merlose,R.B.: The Atiyah-Patodi-Singer Index Theorem, Peters [9] Borel,A. Serre,J.P.: Le théorèm de Riemann-Roch, Bull. Soc. Math. Fr.86(1958), [1] Berthlot,P. et al(ed).: Théories des intersections et théorème de Riemann-Roch, SGA6. Lect. Notes in Math. 225, Springer [11] Fujikawa,K.: Path-Integrals and Quantum Anomalies, Clarendon Press, 24. [12] Alvarez-Gaume,L.: Supersymmetry and the Atiyah-Singer index theorem, Commun. Math. Phys. 9(1983), [13] Higson, N.: The local index formula in noncommutative geometry. Contemporary developments in K-thoery, Karoubi, M. (ed.), ICTP Lect. Notes 15(23), [14] Perrot,D.: A Riemann-Roch Theorem for one-dimensional complex groupoids, Commun. Math. Phys.218(21), [15] Alvarez, O. Killingback,T.P. Mangano, K. Windey,P.: String theory and loop space index theorem, Commun. Math. Phys. 111(1987), 1-1. [16] Asada,A.: Characteristic classes of loop group bundles and generalized string classes. Colloq. SOc. Math. János Bolyai 56(1992), [17] Zariski,O.: Algebraic Surfaces, Springer 1995.

16 15 Bessel Airy Bessel Function and Airy Function 3 Kenji Seto Bessel Airy Airy Bessel Bessel Airy ±1/3 Bessel Airy George Biddell Airy( ) Airy Airy (1838) Airy 2 1 ±1/3 Bessel σ y = 2MPa, ρ = 8kg/m 3 g = 1m/s 2 h[m] ρgh h = σ y /ρg = 25m (buckling by gravity) 3 4 seto@pony.ocn.ne.jp

17 h x Young 2 ρ, E, A, I x θ(x), V (x) 2 V (x) = x sin θ(x )dx (2.2.1) θ x U 1, U 2 U 1 = EI 2A θ 2 x, U 2 = ρg x cos θ(x )dx (2.2.2) 5 U U = h ( U1 + U 2 ) Adx = EI 2 h θ 2 x dx + ρga h [ x cos θ(x )dx ] dx (2.2.3) 2 x x U = EI 2 h θ 2 x dx + ρga h (h x) cos θ(x)dx (2.2.4) U θ Euler-Lagrange EIθ xx + ρga(h x) sin θ = (2.2.5) θ sin θ = θ EIθ xx + ρga(h x)θ = (2.2.6) h x µ x/h x (2.2.7) µ = ρgah 3 EI (2.2.8) (2.2.6) θ xx + µ 2 (1 x)θ = (2.2.9) x θ z = 2 3 µ(1 x)3/2, θ(x) = z 1/3 f(z) (2.2.1) d 2 f dz df ( z dz ) 9z 2 f = (2.2.11) 5 θ x x U 1

18 17 ±1/3 Bessel C, D f(z) = CJ 1/3 (z) + DJ 1/3 (z) (2.2.12) θ(x) = [ ( 2µ ( 2µ 1 x CJ 1/3 3 (1 x)3/2) + DJ 1/3 3 (1 x)3/2)] (2.2.13) (2µ/3) 1/3 C, D (2.2.9) ±1/3 Bessel Airy Airy 4 Bessel (2.2.13) x d dz J ν(z) = ν z J ν(z) J ν+1 (z) = J ν 1 (z) ν z J ν(z) (2.2.14) θ x (x) = Cµ(1 x)j 2/3 ( 2µ 3 (1 x)3/2) Dµ(1 x)j 2/3 ( 2µ 3 (1 x)3/2) (2.2.15) x = x = 1 θ() =, θ x (1) = (2.2.16) θ x (1) = (2.2.15) 1 x = 1 2 D = θ() = (2.2.13) ( 2µ ) J 1/3 = (2.2.17) 3 2µ/3 1/3 Bessel 2µ i /3, (i = 1, 2, 3, ) 6 2µ i 3 = 1.866, 4.987, 8.166, , , 17.7 (2.2.18) θ(x) µ i θ(x, µ i ) θ(x, µ i ) = C 1 xj 1/3 ( 2µi 3 (1 x)3/2) (2.2.19) µ (2.2.8) ρ E ρ = 8kg/m 3, E = 2GPa (2.2.2) A I r A = πr 2, I = π 4 r4 (2.2.21)

19 18 A/I A I = 4 r 2 (2.2.22) r r d d d r A = π[r 2 (r d) 2 ] = 2πrd, I = π 4 [r4 (r d) 4 ] = πr 3 d (2.2.23) A/I A I = 2 r 2 (2.2.24) d (2.2.2) (2.2.22) (2.2.24) g = 9.8m/s 2 (2.2.8) µ µ 1 h r 1 r, h m r =1m h 8m 1m 25m 1 4 x, t θ θ(x, t) cos(ωt) ω ω i, (i = 1, 2, 3, ) µ µ ω i µ = µ 1 ω 1 = µ ω 1 µ = µ i, (i = 2, 3, ) ω i = µ ω i ω cos(ωt) cosh( ω t) ±1/3 Bessel

20 ρ T l x t, x V (x, t) ρ(x) ρ(x)v tt = T V xx (2.3.1) x 1 ( ρ(x) = ρ 1 x ) l (2.3.2) x = ρ = ρ x = l c l c = T ρ (2.3.3) τ = l/c (2.3.4) l, τ x, t, V x/l x, t/τ t, V/l V (2.3.5) (1 x)v tt = V xx (2.3.6) V (x, t) x, t ω V (x, t) = X(x) sin(ωt) (2.3.7) X xx + ω 2 (1 x)x = (2.3.8) ω µ, X θ (2.2.9) x = x = 1 X() =, X x (1) = (2.3.9) (2.2.9) (2.2.19) µ ω, θ X (2.2.17) (2.2.18) (2.2.19) ω ( 2ω ) J 1/3 = (2.3.1) 3 ω i, (i = 1, 2, 3, ) 6 2ω i 3 = 1.866, 4.987, 8.166, , , 17.7 (2.3.11) X(x) ω i X(x, ω i ) X(x, ω i ) = 1 xj 1/3 ( 2ωi 3 (1 x)3/2) (2.3.12) (2.2.19) C 1

21 ω, ω (2.3.12) ω i ω ω X(x, ω), X(x, ω ) (2.3.8) X xx (x, ω) + ω 2 (1 x)x(x, ω) =, X xx (x, ω ) + ω 2 (1 x)x(x, ω ) = (2.3.13) 1 X(x, ω ) 2 X(x, ω) d [ X(x, ω )X x (x, ω) X(x, ω)x x (x, ω ) ] + (ω 2 ω 2 )(1 x)x(x, ω)x(x, ω ) = (2.3.14) dx 1 (1 x)x(x, ω)x(x, ω )dx = 1 [ X(x, ω)xx ω 2 ω 2 (x, ω ) X(x, ω )X x (x, ω) ] 1 (2.3.15) ω, ω ω i, ω j (2.3.9) ω = ω i X x (1, ω) = ω ω i N i = 1 ω 2 ω i 2 X(, ω)x x(, ω i ) (2.3.16) = 1 [ ω X(, ω)] 2ω ω=ωi X x (, ω i ) = 1 [ ( 2ωi )] 2 J 2/3 (2.3.17) i (1 x)x(x, ω i )X(x, ω j )dx = N i 2 δ i,j (2.3.18) N i = 1 ( 2ωi ) J 2/3 3 3 (2.3.19) X(x, ω i )/N i 2 6 2

22 t = v (x) V (x, ) =, V t (x, ) = v (x) (2.3.2) V (x, t) X(x, ω i ) K i V (x, t) = K i X(x, ω i ) sin(ω i t) (2.3.21) i=1 t t = ω i K i X(x, ω i ) = v (x) (2.3.22) i=1 (1 x)x(x, ω j ) x (2.3.18) K j = 1 ω j N 2 j 1 (2.3.21) V (x, t) = i=1 (1 x)v (x)x(x, ω j )dx (2.3.23) 1 [ 1 ω i Ni 2 (1 x )v (x )X(x, ω i )dx ] X(x, ω i ) sin(ω i t) (2.3.24) 2.4 Schrödinger 2 Hermite 1 α WKB 1 Schrödinger Schrödinger 1 Schrödinger [ ħ2 d 2 ] 2m dx 2 + V (x) ψ = Eψ (2.4.1) V (x) V (x) = V () + V ()x (2.4.2) x x + V () E V () x (2.4.3)

23 22 [ ħ2 d 2 ] 2m dx 2 + V ()x ψ = (2.4.4) x = ± ψ = V () ħ 2 /(2mV ()) 3 l l 3 l x (2.4.4) ħ 2 2mV () (2.4.5) x/l x (2.4.6) ψ xx xψ = (2.4.7) x 2 x 1 (2.2.9) x > (2.2.1) z = 2 3 x3/2, ψ = z 1/3 g(z) (2.4.8) d 2 g dz dg ( z dz ) 9z 2 g = (2.4.9) ±1/3 Bessel (modified Bessel function) Bessel ( z ±1/3 I ±1/3 (z) e πi/6 J ±1/3 (iz) = 2) (z/2) 2n n! Γ (± n + 1) (2.4.1) ±1/3 z 2 n= K 1/3 (z) π 2 I 1/3 (z) I 1/3 (z) sin(π/3) (2.4.11) K 1/3 (z) z (2.4.9) g(z) = /3 π K 1/3(z) (2.4.12) (2.4.8) ψ(x) = Ai(x) (2.4.13) Ai(x) x > Airy Ai(x) 1 x ( 2 π 3 K 1/3 3 x3/2), x > (2.4.14) x (entire function)

24 23 (2.4.1) (2.4.11) 2 Ai(x) = 1 3 2/3 Γ ( 2 3 ) 1 3 1/3 Γ ( 1 + (2.4.15) 3 )x I 1/3 I 1/3 x Bessel I ν (z) Ai(x) e 2 3 x3/2 2 πx 1/4 (2.4.16) x > (2.4.2) (2.4.3) E E < V (x) x > x < (2.4.8) z = 2 3 ( x)3/2, ψ = z 1/3 g(z) (2.4.17) d 2 g dz dg ( z dz ) 9z 2 g = (2.4.18) ±1/3 Bessel J ±1/3 (z) C, D (2.4.17) ψ g(z) = CJ 1/3 (z) + DJ 1/3 (z) (2.4.19) ψ(x) = (2/3) 1/3 [ ( 2 ( 2 x CJ 1/3 3 ( x)3/2) + DJ 1/3 3 ( x)3/2)] (2.4.2) ψ x = Bessel ( z ν J ν (z) = 2) ( 1) n (z/2) 2n n!γ (ν + n + 1) n= (2.4.2) x = (2.4.21) ( 2 xj 1/3 3 ( x)3/2) 1 = 3 1/3 Γ ( 2 3 ) +, ( 2 xj1/3 3 ( x)3/2) 1 = 3 2/3 Γ ( 1 + (2.4.22) 3 )x (2.4.2) x > Ai(x) (2.4.15) 1 C = D = 1 3 ( 2 3 ) 1/3 (2.4.23) (2.4.2) ψ(x) = Ai(x) (2.4.24) x < Airy x [ ( 2 ( 2 Ai(x) J 1/3 3 3 ( x)3/2) + J 1/3 3 ( x)3/2)], x < (2.4.25) (2.4.14) x > Airy x < Airy 2 Taylor 1

25 24 (2.4.14) Airy K 1/3 (z) (2.4.11), I ±1/3 (z) (2.4.1) Ai(x) = 1 3 2/3 n= x 3n n! Γ ( n)32n 1 3 4/3 n= x 3n+1 n! Γ ( n)32n (2.4.26) (2.4.25) Airy (2.4.21) Airy x (2.4.7) ψ(x) = C n x 3n + D n x 3n+1 (2.4.27) n= x C n, D n n= 1 C = 3 2/3 Γ ( 2 3 ), D 1 ( 1 ) = 3 4/3 Γ ( 4 3 ) = 3 1/3 Γ ( 1 3 ) x Bessel J ν (z) (2.4.28) Ai(x) sin ( 2 3 ( x)3/ π) π( x) 1/4 (2.4.29) x Airy x 2 Airy ; Bi(x) 3 Airy Ai(x) (2.4.26) x 5 x 14 (2.4.29) 14 x 5 (2.4.26) 5 x 25 (2.4.16) 3 Airy Ai(x) Airy Airy Bessel Airy Ai(x) = 1 e 1 3 t3 xt dt (2.4.3) 2πi t π/3 +π/3 C C Me (π/3)i ( Me (π/3)i Me (π/3)i ) = lim, or = lim M Me (π/3)i M (2.4.31)

26 25 e 1 3 t3 e 1 3 t 3 x z Airy (2.4.7) ( d 2 ) dx 2 x Ai(x) = 1 2πi C (t 2 x)e 1 3 t3 xt dt = lim M 1 2πi e 1 3 t 3 xt Me(π/3)i Me (π/3)i = (2.4.32) x (2.4.26) e xt Taylor Ai(x) = 1 e 1 t3( ( xt) k ) 3 dt = 1 ( 1) k ( 2πi k! 2πi k! C k= k= C ) e 1 3 t3 t k dt x k (2.4.33) (2.4.31) t e (π/3)i t t e (π/3)i t = 1 π ( 1) k sin ( 1 k! 3 (k + 1)π)( k= ) e 1 3 t3 t k dt x k (2.4.34) 1 3 t3 = ξ gamma e 1 3 t3 t k dt = (k 2) k! gamma 3 (2.4.34) e ξ ξ 1 3 (k 2) dξ = (k 2) Γ ( 1 3 (k + 1)) (2.4.35) k! = Γ (k + 1) = 3k+1 2π 3 Γ ( 1 3 (k + 1)) Γ ( 1 3 (k + 2)) Γ ( 1 3 (k + 3)) (2.4.36) Ai(x) = 2 3 k= ( 1) k (2k+5) sin ( 1 3 (k + 1)π) Γ ( 1 3 (k + 2)) Γ ( 1 3 (k + 3)) xk (2.4.37) n k = 3n k = 3n + 1 k = 3n k = 3n + 2 sin 2 k = 3n 1 3 2/3 n= x 3n n! Γ ( n)32n (2.4.26) 1 k = 3n /3 n= x 3n+1 n! Γ ( n)32n (2.4.26) 2 (2.4.26) Airy Ai(x) (2.4.3) t π/3 π/3 t 3 π/2 π/6 π/6 π/2 π/2 π/2 (2.4.3) t it Ai(x) = 1 2π e i( 1 3 t3 +xt) dt = 1 2π e i( 13 t3 +xt) dt = 1 π ( t 3 ) cos 3 + xt dt (2.4.38) t ( t 3 ) cos 3 + xt dt = 1 ( t 3 ) t 2 + x sin 3 + xt 2t ( t 3 ) + (t 2 + x) 2 sin 3 + xt dt (2.4.39)

27 26 (2.4.7) ( d 2 dx 2 x )Ai(x) = 1 π (t 2 + x) cos ( t xt ) dt = 1 π sin ( t 3 ) 3 + xt (2.4.4) t = t (2.4.7) (2.4.38) x 1 (2.4.15) (2.4.38) Airy Ai(x) (2.4.33) (2.4.38) x e ixt t x Airy Airy (2.4.6) (2.4.3) x (2.4.3) x ξ = V () E lv () (2.4.41) ξ x ψ = Ai(x + ξ) Kronecker-δ Dirac-δ (2.4.38) 2 ξ, ξ Airy Ai(x + ξ)ai(x + ξ )dx = δ(ξ ξ ) (2.4.42) (2.4.38) Ai(x + ξ)ai(x + ξ )dx = 1 4π 2 e i[ 1 3 (t3 +t 3 )+(x+ξ)t+(x+ξ )t ] dtdt dx (2.4.43) x e i(t+t )x dx = lim M e i(t+t )x i(t + t ) M M sin ( (t + t )M ) = 2π lim M π(t + t = 2πδ(t + t ) (2.4.44) ) (2.4.43) Ai(x + ξ)ai(x + ξ )dx = 1 e i(ξ ξ )t dt (2.4.45) 2π (2.4.44) 1 e i(ξ ξ )t sin ( (ξ ξ )M ) dt = lim 2π M π(ξ ξ = δ(ξ ξ ) (2.4.46) )

28 27 (2.4.42) Ai(x + ξ)ai(x + ξ)dξ = δ(x x ) (2.4.47) (, ) f(x) g(ξ) = f(x) = Ai(ξ + x)f(x)dx (2.4.48) Ai(x + ξ)g(ξ)dξ (2.4.49) x + ξ (, ) Fourier g(ξ) = 1 2π [, ) Fourier-Bessel g(ξ) = e iξx f(x)dx, f(x) = 1 2π J ν (ξx)f(x)xdx, f(x) = e ixξ g(ξ)dξ (2.4.5) J ν (xξ)g(ξ)ξdξ, ν > 1 (2.4.51) xξ x + ξ Bessel Airy ( ) p.181, p Airy (2.4.7) Airy (2.4.3) x t 4 ψ xxxx + αψ xx xψ =, ψ(x) e 1 5 t5 +α 1 3 t3 xt dt D t π/5 π/5 Airy WKB 3 3 (213 3 ) Bessel Airy Ai(x) D

29

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information